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Wall conjecture 
Q: Which hyperbolic groups G have a closed-manifold K(G,1)? 

Conjecture (Wall, 1979).  
G finitely-presented PD(n) group  ⟹  K(G,1) ∼ manifold. 

closed

Relative version. 
(G,P) PD(n) pair  ⟹  K(G,1) ∼ compact manifold with

aspherical boundary. 
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Theorem (Lafont-T, 2015).
G hyperbolic, ∂G ≃ �n-2 Sierpinski space 
⟹ K(G,1) ∼ compact n-manifold with aspherical boundary. 

n≥7. 

Theorem (Bestvina-Mess). G a δ -hyperbolic group. 
G is PD(n) group H*(∂G) ≃ H*(S n-1)⟺

Problem. Extend to relatively hyperbolic groups (G,P). 

Remark: G2 = ⟨ a,b,t | ta=a2b, tb=ab ⟩  
is not hyperbolic, but is relatively hyperbolic. 
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= π1( S 3 \ figure-8 knot ) 

G H 3

↻

free, proper 
not cocompact

⊂Z 2 ≃ Pcusp subgroup

⋃ ∂(G,P) 
{≃ S 2

X = H 3 \ (horoballs) {
≃ �1 Sierpinski carpet

⋃ ∂D(G,P) =: X 

Gδ = G *G has ∂D(Gδ, P) ≃ “tree of Sierpinski carpets” ≃ S 2 
P
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Questions

1. If ∂(G,P) ≃ S 
3, what are the possible peripheral subgroups? 

• virtual niplotent ✓

• hyperbolic 3-manifold groups ✓
Anything else? 

2. When ∂(G,P) ≃ S 
3, does P always have a Z-boundary? 



Thank you.


