Relatively hyperbolic groups with S^2 boundary

Bena Tshishiku April 15, 2018

joint with Genevieve Walsh

Q: Which hyperbolic groups G have a closed-manifold K(G,1)?

Q: Which hyperbolic groups G have a closed-manifold K(G,1)?

E.g. which of these?

Q: Which hyperbolic groups G have a closed-manifold K(G,1)?

E.g. which $G_1 = \langle a, b, c, t | {}^t a = c, {}^t b = ac, {}^t c = b \rangle$ of these?

Q: Which hyperbolic groups G have a closed-manifold K(G,1)?

E.g. which $G_1 = \langle a, b, c, t \mid {}^ta = c, {}^tb = ac, {}^tc = b \rangle$ of these? $G_2 = \langle a, b, t \mid {}^ta = a^2b, {}^tb = ab \rangle$

Q: Which hyperbolic groups G have a closed-manifold K(G,1)?

E.g. which $G_1 = \langle a, b, c, t \mid {}^ta = c, {}^tb = ac, {}^tc = b \rangle$ of these? $G_2 = \langle a, b, t \mid {}^ta = a^2b, {}^tb = ab \rangle$ $G_3 = \langle a, b, c, d \mid aba^{-1}b^{-1}cdc^{-1}d^{-1} = 1 \rangle$

Q: Which hyperbolic groups G have a closed-manifold K(G,1)?

E.g. which $G_1 = \langle a, b, c, t \mid {}^t a = c, {}^t b = ac, {}^t c = b \rangle$ of these? $G_2 = \langle a, b, t \mid {}^t a = a^2 b, {}^t b = ab \rangle$ $G_3 = \langle a, b, c, d \mid aba^{-1}b^{-1}cdc^{-1}d^{-1} = 1 \rangle$

Necessary condition: Poincare duality

Q: Which hyperbolic groups G have a closed-manifold K(G,1)?

E.g. which $G_1 = \langle a, b, c, t \mid {}^ta = c, {}^tb = ac, {}^tc = b \rangle$ of these? $G_2 = \langle a, b, t \mid {}^ta = a^2b, {}^tb = ab \rangle$ $G_3 = \langle a, b, c, d \mid aba^{-1}b^{-1}cdc^{-1}d^{-1} = 1 \rangle$

Necessary condition: Poincare duality

 $\mathrm{H}^k(G; \, \mathrm{Z}G) \,\simeq\, \widetilde{\mathrm{H}}^k(S^n; \, \mathrm{Z})$

Q: Which hyperbolic groups G have a closed-manifold K(G,1)?

E.g. which $G_1 = \langle a, b, c, t \mid {}^ta = c, {}^tb = ac, {}^tc = b \rangle$ of these? $G_2 = \langle a, b, t \mid {}^ta = a^2b, {}^tb = ab \rangle$ $G_3 = \langle a, b, c, d \mid aba^{-1}b^{-1}cdc^{-1}d^{-1} = 1 \rangle$

Necessary condition: Poincare duality

$$\mathrm{H}^k(G; \, \mathrm{Z}G) \,\simeq\, \widetilde{\mathrm{H}}^k(S^n; \, \mathrm{Z})$$

 $\frac{\text{Conjecture}}{G} \text{ (Wall, 1979).} \qquad \text{closed}$ $G \text{ finitely-presented } PD(n) \text{ group} \implies K(G,1) \sim \text{manifold.}$

Q: Which hyperbolic groups G have a closed-manifold K(G,1)?

 $\frac{\text{Conjecture}}{G} \text{ (Wall, 1979).} \qquad \text{closed} \\ G \text{ finitely-presented } PD(n) \text{ group} \implies K(G,1) \sim \text{manifold.} \\ \end{cases}$

Q: Which hyperbolic groups G have a closed-manifold K(G,1)?

 $\frac{\text{Conjecture}}{G} \text{ (Wall, 1979).} \qquad \text{closed} \\ G \text{ finitely-presented } PD(n) \text{ group} \implies K(G,1) \sim \text{manifold.} \\ \end{cases}$

<u>Relative version</u>.

 $(G,P) PD(n) pair \implies K(G,1) \sim compact manifold with aspherical boundary.$

Warm-up. $G_3 = \langle a, b, c, d | aba^{-1}b^{-1}cdc^{-1}d^{-1} = 1 \rangle$ is a PD(2) group.

Warm-up. $G_3 = \langle a, b, c, d | aba^{-1}b^{-1}cdc^{-1}d^{-1} = 1 \rangle$ is a PD(2) group.

Viewpoint 1:

Warm-up. $G_3 = \langle a, b, c, d | aba^{-1}b^{-1}cdc^{-1}d^{-1} = 1 \rangle$ is a PD(2) group.

Viewpoint 1: $G_3 = \pi_1$ (closed surface).

Warm-up. $G_3 = \langle a, b, c, d | aba^{-1}b^{-1}cdc^{-1}d^{-1} = 1 \rangle$ is a PD(2) group.

Viewpoint 1: $G_3 = \pi_1$ (closed surface). Manifolds have PD. \Box

Warm-up. $G_3 = \langle a, b, c, d | aba^{-1}b^{-1}cdc^{-1}d^{-1} = 1 \rangle$ is a PD(2) group.

Viewpoint 1: $G_3 = \pi_1$ (closed surface). Manifolds have PD. \Box

Viewpoint 2:

Warm-up. $G_3 = \langle a, b, c, d | aba^{-1}b^{-1}cdc^{-1}d^{-1} = 1 \rangle$ is a PD(2) group.

Viewpoint 1: $G_3 = \pi_1$ (closed surface). Manifolds have PD. \Box

Viewpoint 2: $G \subset H^2$

hyperbolic plane

Warm-up. $G_3 = \langle a, b, c, d | aba^{-1}b^{-1}cdc^{-1}d^{-1} = 1 \rangle$ is a PD(2) group.

Viewpoint 1: $G_3 = \pi_1$ (closed surface). Manifolds have PD. \Box

Viewpoint 2: $G C H^2$

hyperbolic plane

Warm-up. $G_3 = \langle a, b, c, d | aba^{-1}b^{-1}cdc^{-1}d^{-1} = 1 \rangle$ is a PD(2) group.

Viewpoint 1: $G_3 = \pi_1$ (closed surface). Manifolds have PD. \Box

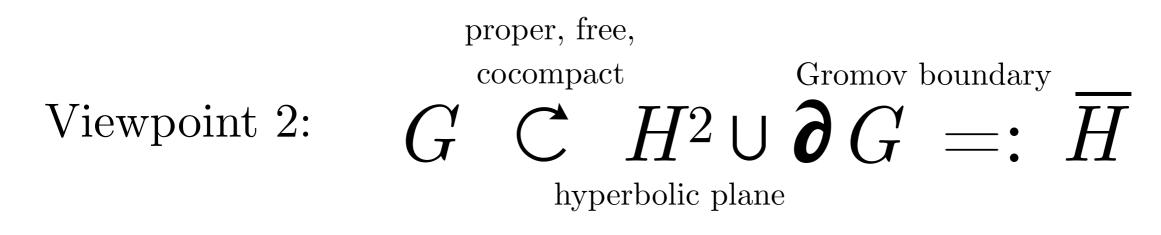
Viewpoint 2: $G \overset{\text{proper, free,}}{C} H^2$

hyperbolic plane

 $\mathrm{H}^{k}(G; \mathrm{Z}G) \simeq \mathrm{H}^{k}_{\mathrm{c}}(H)$

Warm-up. $G_3 = \langle a, b, c, d | aba^{-1}b^{-1}cdc^{-1}d^{-1} = 1 \rangle$ is a PD(2) group.

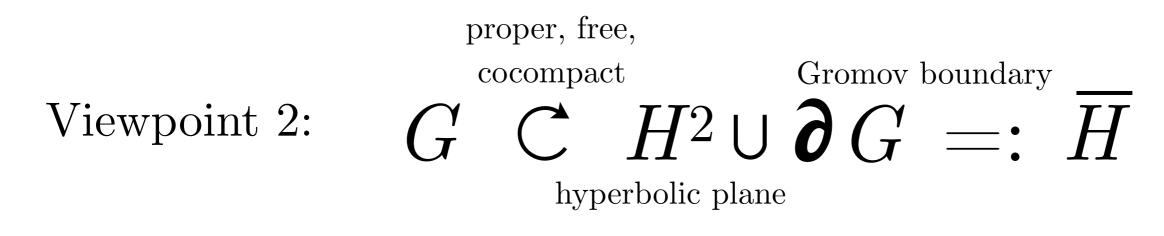
Viewpoint 1: $G_3 = \pi_1$ (closed surface). Manifolds have PD. \Box



 $\mathrm{H}^k(G; \mathrm{Z}G) \simeq \mathrm{H}^k_{\mathrm{c}}(H)$

Warm-up. $G_3 = \langle a, b, c, d | aba^{-1}b^{-1}cdc^{-1}d^{-1} = 1 \rangle$ is a PD(2) group.

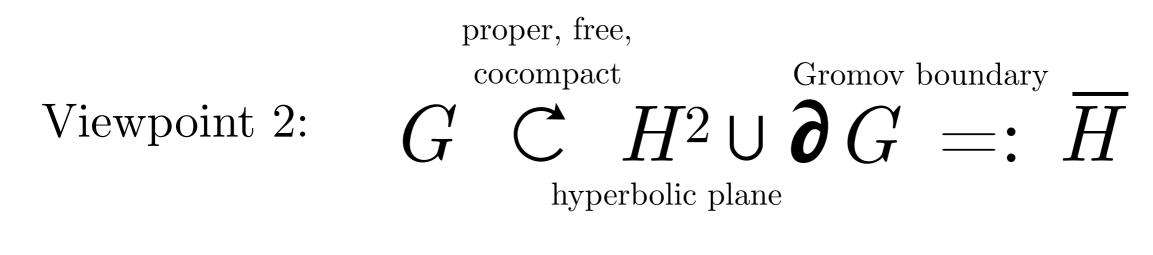
Viewpoint 1: $G_3 = \pi_1$ (closed surface). Manifolds have PD. \Box



 $\mathrm{H}^k(G; \mathrm{Z}G) \simeq \mathrm{H}^k_{\mathrm{c}}(H) \simeq \mathrm{H}^k(\overline{H}, \partial G)$

Warm-up. $G_3 = \langle a, b, c, d | aba^{-1}b^{-1}cdc^{-1}d^{-1} = 1 \rangle$ is a PD(2) group.

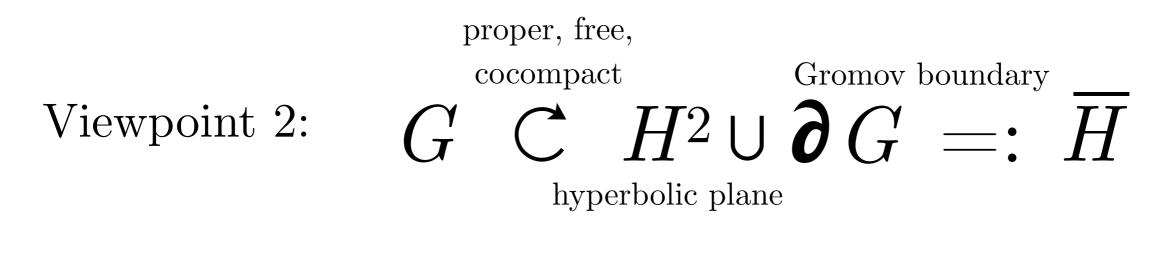
Viewpoint 1: $G_3 = \pi_1$ (closed surface). Manifolds have PD. \Box



$$\mathrm{H}^{k}(G; \mathrm{Z}G) \simeq \mathrm{H}^{k}_{\mathrm{c}}(H) \simeq \mathrm{H}^{k}(\overline{H}, \partial G) \simeq \widetilde{\mathrm{H}}^{k-1}(\partial \mathrm{G})$$

Warm-up. $G_3 = \langle a, b, c, d | aba^{-1}b^{-1}cdc^{-1}d^{-1} = 1 \rangle$ is a PD(2) group.

Viewpoint 1: $G_3 = \pi_1$ (closed surface). Manifolds have PD. \Box



$$\mathrm{H}^{k}(G; \mathrm{Z}G) \simeq \mathrm{H}^{k}_{\mathrm{c}}(H) \simeq \mathrm{H}^{k}(\overline{H}, \partial G) \simeq \widetilde{\mathrm{H}}^{k-1}(\partial \mathrm{G})$$

<u>Theorem</u> (Bestvina-Mess). G a δ -hyperbolic group.

<u>Theorem</u> (Bestvina-Mess). G a δ -hyperbolic group.

G is PD(n) group

<u>Theorem</u> (Bestvina-Mess). G a δ -hyperbolic group.

 $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \simeq H^*(S^{n-1})$

<u>Theorem</u> (Bestvina-Mess). G a δ -hyperbolic group.

 $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \simeq H^*(S^{n-1})$

Examples:

<u>Theorem</u> (Bestvina-Mess). G a δ -hyperbolic group.

 $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \simeq H^*(S^{n-1})$

Examples:

• $\partial G = S^{n-1} \implies G \text{ is } PD(n)$

<u>Theorem</u> (Bestvina-Mess). G a δ -hyperbolic group.

 $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \simeq H^*(S^{n-1})$

Examples:

- $\partial G = S^{n-1} \implies G \text{ is } PD(n)$
- $\partial G \approx S^2 \iff G \text{ is PD}(3)$

<u>Theorem</u> (Bestvina-Mess). G a δ -hyperbolic group.

 $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \simeq H^*(S^{n-1})$

Examples:

- $\partial G = S^{n-1} \implies G \text{ is } PD(n)$
- $\partial G \approx S^2 \iff G \text{ is PD}(3)$
- For $G_1 = \langle a, b, c, t \mid ta = c, tb = ac, tc = b \rangle$, $\partial G_1 \approx$ Menger sponge, so G_1 not PD(n)

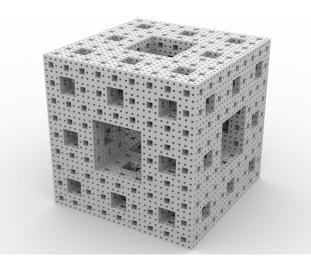
<u>Theorem</u> (Bestvina-Mess). G a δ -hyperbolic group.

 $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \simeq H^*(S^{n-1})$

Examples:

- $\partial G = S^{n-1} \implies G \text{ is } PD(n)$
- $\partial G \simeq S^2 \iff G \text{ is PD}(3)$
- For $G_1 = \langle a, b, c, t \mid {}^ta = c, {}^tb = ac, {}^tc = b \rangle$,

 $\partial G_1 \simeq \text{Menger sponge}$, so $G_1 \text{ not } PD(n)$



Wall conjecture success

Wall conjecture success

<u>Theorem</u> (Bartels-Luck-Weinberger, 2010).

<u>Theorem</u> (Bartels-Luck-Weinberger, 2010). *G* hyperbolic, $\partial G \simeq S^{n-1}$

<u>Theorem</u> (Bartels-Luck-Weinberger, 2010). *G* hyperbolic, $\partial G \simeq S^{n-1} \Longrightarrow K(G,1) \sim \text{closed } n\text{-manifold.}$

<u>Theorem</u> (Bartels-Luck-Weinberger, 2010). $n \ge 6$. *G* hyperbolic, $\partial G \simeq S^{n-1} \Longrightarrow K(G,1) \sim \text{closed } n\text{-manifold.}$

<u>Theorem</u> (Bartels-Luck-Weinberger, 2010). $n \ge 6$. *G* hyperbolic, $\partial G \approx S^{n-1} \Longrightarrow K(G,1) \sim \text{closed } n\text{-manifold.}$

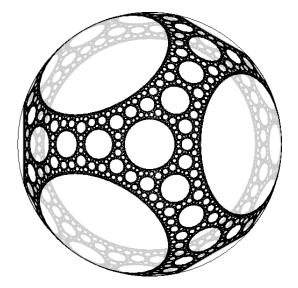
Theorem (Lafont-T, 2015).

<u>Theorem</u> (Bartels-Luck-Weinberger, 2010). $n \ge 6$. *G* hyperbolic, $\partial G \approx S^{n-1} \Longrightarrow K(G,1) \sim \text{closed } n\text{-manifold.}$

 $\label{eq:Gamma} \underline{\text{Theorem}} \ (\text{Lafont-T}, \ 2015).$ $G \ \text{hyperbolic}, \ \pmb{\partial} \ G \ \simeq \ \mathcal{S}^{n-2} \ \text{Sierpinski space}$

<u>Theorem</u> (Bartels-Luck-Weinberger, 2010). $n \ge 6$. *G* hyperbolic, $\partial G \simeq S^{n-1} \Longrightarrow K(G,1) \sim \text{closed } n\text{-manifold.}$

 $\frac{\text{Theorem}}{G} \text{ (Lafont-T, 2015)}.$ $G \text{ hyperbolic, } \partial G \simeq S^{n-2} \text{ Sierpinski space}$

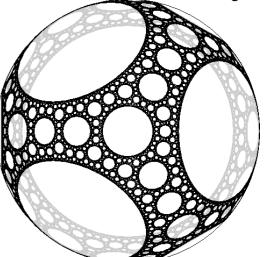


<u>Theorem</u> (Bartels-Luck-Weinberger, 2010). $n \ge 6$. *G* hyperbolic, $\partial G \simeq S^{n-1} \Longrightarrow K(G,1) \sim \text{closed } n\text{-manifold.}$

Theorem (Lafont-T, 2015).

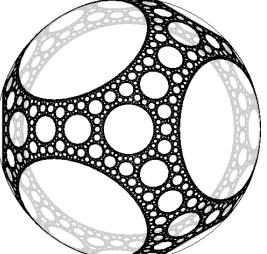
G hyperbolic, $\partial G \simeq S^{n-2}$ Sierpinski space

 \implies K(G,1) ~ compact *n*-manifold with aspherical boundary.



<u>Theorem</u> (Bartels-Luck-Weinberger, 2010). n≥6. *G* hyperbolic, $\partial G \simeq S^{n-1} \Longrightarrow K(G,1) \sim \text{closed } n\text{-manifold.}$

<u>Theorem</u> (Lafont-T, 2015). n≥7. *G* hyperbolic, $\partial G \approx S^{n-2}$ Sierpinski space $\implies K(G,1) \sim \text{compact } n\text{-manifold with aspherical boundary.}$



<u>Theorem</u> (Bestvina-Mess). G a δ -hyperbolic group.

 $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \simeq H^*(S^{n-1})$

<u>Theorem</u> (Lafont-T, 2015). n≥7. *G* hyperbolic, $\partial G \simeq S^{n-2}$ Sierpinski space $\implies K(G,1) \sim \text{compact } n\text{-manifold with aspherical boundary.}$

- <u>Theorem</u> (Bestvina-Mess). G a δ -hyperbolic group.
- $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \simeq H^*(S^{n-1})$
- <u>Theorem</u> (Lafont-T, 2015). n≥7. *G* hyperbolic, $\partial G \approx S^{n-2}$ Sierpinski space $\implies K(G,1) \sim \text{compact } n\text{-manifold with aspherical boundary.}$

<u>Problem</u>. Extend to relatively hyperbolic groups (G, P).

<u>Theorem</u> (Bestvina-Mess). $G = \delta$ -hyperbolic group. $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \simeq H^*(S^{n-1})$ <u>Theorem</u> (Lafont-T, 2015). $n \ge 7$. G hyperbolic, $\partial G \simeq S^{n-2}$ Sierpinski space \implies K(G,1) ~ compact *n*-manifold with aspherical boundary. <u>**Problem</u></u>. Extend to relatively hyperbolic groups (G, P).</u>** Remark: $G_2 = \langle a, b, t | ta = a^2b, tb = ab \rangle$

is not hyperbolic, but is *relatively hyperbolic*.

<u>Theorem</u> (Bestvina-Mess). $G \neq \delta$ -hyperbolic group. $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \approx H^*(S^{n-1})$

<u>Theorem</u> (Bestvina-Mess). $G \neq \delta$ -hyperbolic group. $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \approx H^*(S^{n-1})$

<u>Theorem</u> (T-Walsh). (G,P) relatively hyperbolic.

(G,P) is PD(3) pair

<u>Theorem</u> (Bestvina-Mess). $G \neq \delta$ -hyperbolic group. $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \approx H^*(S^{n-1})$

<u>Theorem</u> (T-Walsh). (G,P) relatively hyperbolic.

(G,P) is PD(3) pair \iff

<u>Theorem</u> (Bestvina-Mess). $G \neq \delta$ -hyperbolic group. $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \approx H^*(S^{n-1})$

<u>Theorem</u> (T-Walsh). (G,P) relatively hyperbolic.

(G,P) is PD(3) pair \iff

 $\partial(G,P)$

Bowditch boundary

<u>Theorem</u> (Bestvina-Mess). $G \neq \delta$ -hyperbolic group. $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \approx H^*(S^{n-1})$

<u>Theorem</u> (T-Walsh). (G,P) relatively hyperbolic.

(G,P) is PD(3) pair \iff

 $\partial(G,P) \simeq S^2$

Bowditch boundary

<u>Theorem</u> (Bestvina-Mess). G a δ -hyperbolic group.

 $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \simeq H^*(S^{n-1})$

<u>Theorem</u> (Bestvina-Mess). G a δ -hyperbolic group.

 $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \simeq H^*(S^{n-1})$

Proof:

<u>Theorem</u> (Bestvina-Mess). G a δ -hyperbolic group.

 $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \simeq H^*(S^{n-1})$

Proof:

δ-hyperbolic

 $\left(\begin{array}{c} \gamma \\ \tau \end{array} \right)$

<u>Theorem</u> (Bestvina-Mess). G a δ -hyperbolic group.

 $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \simeq H^*(S^{n-1})$

Proof:

G X

 δ-hyperbolic Rips complex contractible finite dimensional simplicial complex

<u>Theorem</u> (Bestvina-Mess). G a δ -hyperbolic group.

 $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \simeq H^*(S^{n-1})$

Proof:

proper, free, cocompact

 $G \subset X$

 δ-hyperbolic Rips complex contractible finite dimensional simplicial complex

<u>Theorem</u> (Bestvina-Mess). G a δ -hyperbolic group.

 $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \simeq H^*(S^{n-1})$

Proof:

proper, free, cocompact $G \ C \ X \cup \partial G =: \overline{X}$

δ-hyperbolicRips complexa "Z-set compactification"contractiblefinite dimensionalsimplicial complex

<u>Theorem</u> (Bestvina-Mess). G a δ -hyperbolic group.

 $G \text{ is } PD(n) \text{ group} \iff H^*(\partial G) \simeq H^*(S^{n-1})$

Proof:

proper, free, cocompact $G \ C \ X \cup \partial G =: \overline{X}$

 δ-hyperbolic Rips complex a "Z-set compactification" contractible finite dimensional simplicial complex

 $\mathrm{H}^{k}(G; \mathbb{Z}G) \simeq \mathrm{H}^{k}_{\mathrm{c}}(X) \simeq \check{\mathrm{H}}^{k}(\overline{X}, \partial G) \simeq \check{\mathrm{H}}^{k-1}(\partial G) \square$

Duality and the boundary (relatively hyperbolic case) <u>Theorem</u> (Bestvina-Mess). G a δ -hyperbolic group. G is PD(3) group $\partial G \simeq S^2$ \iff <u>Theorem</u> (Tshishiku-Walsh). (G,P) relatively hyperbolic. (G,P) is PD(3) pair \iff $\partial(G,P) \simeq S^2$ Bowditch boundary

Duality and the boundary (relatively hyperbolic case) <u>Theorem</u> (Bestvina-Mess). G a δ -hyperbolic group. G is PD(3) group $\partial G \simeq S^2$ \Leftrightarrow <u>Theorem</u> (Tshishiku-Walsh). (G,P) relatively hyperbolic. (G,P) is PD(3) pair \iff $\partial(G,P) \simeq S^2$ Bowditch boundary Difference in relatively hyperbolic case:

 $\partial(G,P)$ not a Z-set compactification of G.

<u>Theorem</u> (T-Walsh). (G,P) relatively hyperbolic.

 $\partial(G,P) \simeq S^2 \implies (G,P) \text{ is PD}(3) \text{ pair}$

<u>Theorem</u> (T-Walsh). (G,P) relatively hyperbolic.

$$\partial(G,P) \simeq S^2 \implies (G,P) \text{ is PD}(3) \text{ pair}$$

• A "blow up" of Bowditch boundary $\partial_{D}(G,P) \rightarrow \partial(G,P)$ (defined by Dahmani) gives a Z-compactification of G.

<u>Theorem</u> (T-Walsh). (G,P) relatively hyperbolic.

$$\partial(G,P) \approx S^2 \implies (G,P) \text{ is PD}(3) \text{ pair}$$

- A "blow up" of Bowditch boundary $\partial_{D}(G,P) \rightarrow \partial(G,P)$ (defined by Dahmani) gives a Z-compactification of G.
- (G,P) is PD(3) pair \iff the *double* G_{δ} is a PD(3) group

<u>Theorem</u> (T-Walsh). (G,P) relatively hyperbolic.

$$\partial(G,P) \simeq S^2 \implies (G,P) \text{ is PD}(3) \text{ pair}$$

- A "blow up" of Bowditch boundary $\partial_{D}(G,P) \rightarrow \partial(G,P)$ (defined by Dahmani) gives a Z-compactification of G.
- (G,P) is PD(3) pair \iff the *double* G_{δ} is a PD(3) group
- $\partial(G,P) \simeq S^2 \Longrightarrow \partial_D(G,P) \simeq S^1 \Longrightarrow \partial_D(G_{\delta},P) \simeq S^2$

<u>Theorem</u> (T-Walsh). (G,P) relatively hyperbolic.

$$\partial(G,P) \simeq S^2 \implies (G,P) \text{ is PD}(3) \text{ pair}$$

- A "blow up" of Bowditch boundary $\partial_{D}(G,P) \rightarrow \partial(G,P)$ (defined by Dahmani) gives a Z-compactification of G.
- (G,P) is PD(3) pair \iff the *double* G_{δ} is a PD(3) group
- $\partial(G,P) \simeq S^2 \Longrightarrow \partial_D(G,P) \simeq S^1 \Longrightarrow \partial_D(G_{\delta},P) \simeq S^2$

Example $G_2 = \langle a, b, t \mid ta = a^2b, tb = ab \rangle$

$egin{aligned} \mathbf{Example} \ G_2 &= \langle \ a,b,t \ | \ {}^ta &= a^2b, \ {}^tb &= ab \ angle \ &= \pi_1(\ S^3 \setminus ext{figure-8 knot} \) \end{aligned}$

cusp subgroup $Z^2 \simeq P \subset G_2 = \langle a, b, t \mid ta = a^2b, tb = ab \rangle$ = $\pi_1(S^3 \setminus \text{figure-8 knot})$

cusp subgroup $Z^2 \simeq P \subset G_2 = \langle a, b, t \mid ta = a^2b, tb = ab \rangle$ = $\pi_1(S^3 \setminus \text{figure-8 knot})$

> free, proper not cocompact $G \ C \ H^3$

cusp subgroup $Z^2 \simeq P \subset G_2 = \langle a, b, t \mid ta = a^2b, tb = ab \rangle$ = $\pi_1(S^3 \setminus \text{figure-8 knot})$

> free, proper *not* cocompact $\widetilde{G} C H^3 \cup \partial(G, P)$

cusp subgroup $Z^2 \simeq P \subset G_2 = \langle a, b, t \mid ta = a^2b, tb = ab \rangle$ = $\pi_1(S^3 \setminus \text{figure-8 knot})$

> free, proper not cocompact $\widetilde{\mathcal{G}} \mathcal{C} H^3 \cup \partial(\mathcal{G}, P)$

 $X = H^3 \setminus (\text{horoballs})$

cusp subgroup $Z^2 \simeq P \subset G_2 = \langle a, b, t \mid ta = a^2b, tb = ab \rangle$ = $\pi_1(S^3 \setminus \text{figure-8 knot})$

> free, proper *not* cocompact $\widetilde{G} C H^3 \cup \partial(G, P)$

 $X = H^3 \setminus \text{(horoballs)} \cup \mathcal{D}_D(G, P) =: \overline{X}$ $\simeq S^1 \text{Sierpinski carpet}$

cusp subgroup $Z^2 \simeq P \subset G_2 = \langle a, b, t \mid ta = a^2b, tb = ab \rangle$ = $\pi_1(S^3 \setminus \text{figure-8 knot})$

> free, proper not cocompact $G \ C \ H^3 \cup \partial(G,P)$

$$X = H^3 \setminus \text{(horoballs)} \cup \partial_{D}(G,P) =: \overline{X}$$

 $\simeq S^1 \text{Sierpinski carpet}$

 $G_{\delta} = G_{P}^{*}G$ has $\partial_{D}(G_{\delta}, P) \simeq$ "tree of Sierpinski carpets" $\simeq S^{2}$

1. If $\partial(G,P) \simeq S^3$, what are the possible peripheral subgroups?

1. If $\partial(G,P) \simeq S^3$, what are the possible peripheral subgroups?

- virtual niplotent \checkmark

1. If $\partial(G,P) \simeq S^3$, what are the possible peripheral subgroups?

- virtual niplotent \checkmark
- hyperbolic 3-manifold groups \checkmark

1. If $\partial(G,P) \simeq S^3$, what are the possible peripheral subgroups?

- virtual niplotent \checkmark
- hyperbolic 3-manifold groups \checkmark

Anything else?

1. If $\partial(G,P) \simeq S^3$, what are the possible peripheral subgroups?

- virtual niplotent \checkmark
- hyperbolic 3-manifold groups \checkmark

Anything else?

2. When $\partial(G,P) \simeq S^3$, does P always have a Z-boundary?

Thank you.