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Q: Which hyperbolic groups G have a closed-manifold K(G,1)?

Conjecture (Wall, 1979). closed
G finitely-presented PD(n) group —> K(G,1) ~ manifold.

Relative version.

(G,P) PD(n) pair = K(G,1) ~ compact manifold with
aspherical boundary.
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Theorem (Bestvina-Mess). G a d-hyperbolic group.

G is PD(n) group < H*(dG) = H*(S™)

Examples:

e 0G=8"" = (Gis PD(n)

e 9 = 82 = G is PD(3)

e For Gi1 = ( a,b,c,t | ta=c, tb=ac, tc=0b ),

0 G1 = Menger sponge, so G1 not PD(n)
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Theorem (Bestvina-Mess). G a d-hyperbolic group.
G is PD(n) group < H*(®G) = H*(Sm1)

Theorem (Lafont-T, 2015). n>7.
G hyperbolic, 0 G = S»2 Sierpinski space

—> K(G,1) ~ compact n-manifold with aspherical boundary.

Problem. Extend to relatively hyperbolic groups (G, P).

Remark: G2 = < a,b,t | ‘a=a’b, 'b=ab )
is not hyperbolic, but is relatively hyperbolic.
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Theorem (Bestvina-Mess). G a 6-hyperbolic group.

G is PD(n) group < H*(dG) = H*(S™)

proper, free, cocompact

oo G C XUoG = X
0-hyperbolic Rips complex a “Z-set compactification"
contractible

finite dimensional

simplicial complex

HH G;ZG) = HH(X) = H{X,0G) = H¥(9G) O
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(relatively hyperbolic case)

Theorem (Bestvina-Mess). G a 6-hyperbolic group.

G is PD(3) group = 0G = 5?2

Theorem (Tshishiku-Walsh). (G, P) relatively hyperbolic.

(G,P) is PD(3) pair <« 0(G,P) = 52

Bowditch boundary

Difference in relatively hyperbolic case:
0(G,P) not a Z-set compactification of G.
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FExample
cusp subgroup /2 = P C GQ — < a,b,t | ta:azb, tb—ab >
= m( 53\ figure-8 knot )

free, proper ~ S 2
not cocompact

G C H3U E(G P)

X = H3\ (horoballs) U 0p(G,P) =: X
—
= S Sierpinski carpet

Gs — G x GG has 0p(Gs, P) = “tree of Sierpinski carpets” = §2
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(Questions

1. If 0(G,P) = S°, what are the possible peripheral subgroups?

o virtual niplotent v/
o hyperbolic 3-manifold groups v/
Anything else?

2. When 0(G,P) = §°, does P always have a Z-boundary?



Thank you.



