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N, M homeomorphic but not diffeomorphic

Example: N = M#>., where > € ©, exotic n-sphere
N
()

Main Question: How much symmetry does N have?

Specifically, what is the maximum size of a finite subgroup

G<Diff(N)?
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M" hyperbolic, N exotic smooth structure on M

Question: what is the maximum size of a finite subgroup

G<Diff(N)?

(Borel): Any finite G<Diff(N) acts faithfully on mi(N).

i.e. G — Diff(N) — Out(ni(N)) injective
|
Out(mi(M)) = Isom(M) (Mostow)

e.g. Isom(M) is a maximal finite subgroup of Diff(M).

(sample) Question: Does Isom (M) act (faithfully) on N?
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Connection to Nielsen realization

M" hyperbolic, N exotic smooth structure on M

Question: what is maximum size of a finite subgroup

G<Diff(N)?
(Borel): 7 Diff(N)
Any finite G<Diff(N) /O/ g lp

acts faithfully on mi(N). G ¢ > Out(m1(N)) = Isom(M)

(Equivalent) Question: What is the maximum size of a

subgroup of Out(mi(N)) that lifts to Diff(N)?
E.g. does p : Diff(N) — Out(ni(N)) split?
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Example: N = M##X.
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(Farrell-Jones): Fix n with ©,, # 0. M@

Then 3 M" and N=M+#> so that
for every finite G'<Diff(N), | Gls 3 [Tsom ()],

In fact they show: if M stably parallelizable and 2> # 0,
then Im(p)= Isom ' (M).

p : Diff(N) — Out(ni1(V))= Isom(M)

Problem: give example N=M+#Y with no Isom "' (M) action.

(Naive) Conjecture: If Isom(M) acts freely on M, then
G < Isom(M) acts on N=M#3 < |G| divides |X|.
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Theorem (Bustamante-T). Fix n with ©,-1 # 0.
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Example: N = M,

M My, = M\ S'xD™ u S'xD™
Y,P . N
~ ) e : | o
: neighborhood . glue by 1X¢ e Diff (5" x5")
Y ' of geodesic vy where [(p] # 0 in TEoDiﬂ:(Sn_2) — Op 1

Theorem (Bustamante-T). Fix n with 0,1 # 0.

For each d =2, 3 M" and N=M,, so that
for every finite G<Diff(N), |G|< c% Isom(M)|.

Proved by showing Im(p) has index = d in Isom( M)

p : Diff(N) — Out(mi(N))= Isom(M)
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p : Diff(N) — Out(m(N))= Isom(M)
e Step 1 If 3 f eDiff(N) inducing acOut(wi(N))

then My, and Myy),e are concordant smooth structures.

e Step 2 Assume M stably parallelizable.

1-1
maps
{ M — Top/O }/homotopy

smooth structures
on M /concordance

Assume there is homomorphism n; (M) — 7’ with a'(y) — e

Then Myiy),e and My(y),e are not concordant V i,j.
= (w N Im(p) = {1}

e Step 3 Show examples satistying the assumptions exist.
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(Question

Does there exist M with |Isom(M)|>1 and N exotic
smooth structure that is asymmetic, i.e. Diff(N) has no

nontrivial finite order element?

Equivalently, p : Diff(N) — Out(xn) is trivial.



Thank you.



