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Surface Bundles
A surface is one of the most basic objects in topology, but
themathematics of surfaces spills out far beyond its source,
penetrating deeply into fields as diverse as algebraic ge-
ometry, complex analysis, dynamics, hyperbolic geometry,
geometric group theory, etc. In this article we focus on the
mathematics of families of surfaces: surface bundles. While
the basics belong to the study of fiber bundles, we hope
to illustrate how the theory of surface bundles comes into
close contact with a broad range of mathematical ideas.
We focus here on connections with three areas—algebraic
topology, algebraic geometry, and geometric group
theory—and see how the notion of a surface bundle pro-
vides a meeting ground for these fields to interact in beau-
tiful and unexpected ways.
What is a surface bundle? A surface bundle is a fiber bun-
dle 𝜋 ∶ 𝐸 → 𝐵 whose fiber is a 2-dimensional manifold
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𝑆 and whose structure group is the group Diff(𝑆) of dif-
feomorphisms of 𝑆. In particular, 𝐵 is covered by open
sets {𝑈𝛼} on which the bundle is trivial 𝜋−1(𝑈𝛼) ≅ 𝑈𝛼 × 𝑆,
and local trivializations are glued by transition functions
𝑈𝛼 ∩ 𝑈𝛽 → Diff(𝑆).

Although the bundle is locally trivial, any nontrivial
bundle is globally twisted, similar in spirit to the Möbius
strip (Figure 1). This twisting is recorded in an invariant
called the monodromy representation to be discussed in the
section “Monodromy.”

Figure 1. The Möbius strip is the total space of a bundle over
𝑆1 whose fibers are diffeomorphic to [0, 1].
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Figure 2. The mapping torus 𝐸𝑓 of a surface diffeomorphism
𝑓 ∶ 𝑆 → 𝑆. Note that the Möbius strip (Figure 1) can be
constructed in a similar way.

A surface bundle 𝐸 → 𝐵 with fiber 𝑆 is also called an
𝑆-bundle over 𝐵, and 𝐸 is called the total space. Informally,
one thinks of 𝐸 as a family of surfaces parameterized by 𝐵; i.e.,
for each 𝑏 ∈ 𝐵, there is a surface 𝜋−1(𝑏) ≅ 𝑆.
Surface bundles in nature. Surface bundles arise natu-
rally across mathematics. The most basic source of 𝑆-
bundles comes from themapping torus construction. Given
𝑓 ∈ Diff(𝑆), define 𝐸𝑓 as the quotient of [0, 1] × 𝑆 by iden-
tifying {0} × 𝑆 with {1} × 𝑆 by 𝑓; then 𝐸𝑓 is the total space
of an 𝑆-bundle over the circle 𝐸𝑓 → 𝑆1. See Figure 2. Sur-
prisingly, this simple-minded construction is ubiquitous
in the classification of 3-manifolds and in particular hy-
perbolic 3-manifolds. Thurston proved that if 𝑓 is suffi-
ciently complicated (pseudo-Anosov; cf. Theorem 2), then
𝐸𝑓 admits a hyperbolic structure, i.e., a Riemannian metric
with sectional curvature 𝐾 ≡ −1. Furthermore, by work of
Agol, Wise, and Kahn–Markovic, every closed hyperbolic
3-manifold 𝑀 has a finite cover of the form 𝐸𝑓 → 𝑀 for
some 𝑓 ∶ 𝑆 → 𝑆 [Ago13].

Surface bundles also figure prominently in 4-manifold
theory. Donaldson [Don98] proved that every symplec-
tic 4-manifold 𝑀 admits a Lefschetz fibration 𝑀 → ℂ𝑃1,
which can be viewed as a surface bundle where finitely
many fibers are allowed to acquire singularities of a sim-
ple form (so-called nodes).

Surface bundles appear in algebraic geometry, where
they are more commonly known as families of curves.1 Spe-
cial examples can be obtained by simplywriting down fam-
ilies of equations. For instance, let 𝐵 be the space of tuples
𝑏 = (𝑏1, … , 𝑏𝑛) of distinct points in ℂ, fix 𝑑 ≥ 2, and for
𝑏 ∈ 𝐵, consider the surface

𝑆(𝑏) = {(𝑥, 𝑦) ∈ ℂ2 ∶ 𝑦𝑑 = (𝑥 − 𝑏1)⋯ (𝑥 − 𝑏𝑛)}. (1)

1Since Riemann surfaces have complex dimension one, algebraic geometers re-
fer to them as curves.

Then 𝐸 = {(𝑥, 𝑦, 𝑏) ∣ (𝑥, 𝑦) ∈ 𝑆(𝑏)} is the total space of an
𝑆-bundle over 𝐵 under the projection map (𝑥, 𝑦, 𝑏) ↦ 𝑏.
Here 𝐵 is the configuration space of 𝑛 (ordered) points in
ℂ. The study of this single 𝑆-bundle is already incredibly
rich, with connections to representations of braid groups
and geometric structures onmoduli spaces of Riemann sur-
faces [McM13].

Vector bundles are also a source of surface bundles:
given a rank-3 real vector bundle, the associated unit-
sphere bundle is an 𝑆2-bundle. In fact, any 𝑆2-bundle is
obtained from this construction because, by a theorem of
Smale, Diff(𝑆2) is homotopy equivalent to the orthogonal
group 𝑂(3) (this homotopy equivalence implies the bun-
dle statement by the theory of classifying spaces discussed
in “The Classification Problem”). On the other hand, if 𝑆𝑔
is a closed oriented surface of genus 𝑔 ≥ 1, then Diff(𝑆𝑔) is
not homotopy equivalent to a compact Lie group. As such,
the study of 𝑆𝑔-bundles for 𝑔 ≥ 1 is the first instance of a
nonlinear bundle theory. There are many analogies between
the theory of vector bundles and surface bundles, but there
are also many new phenomena, connections, and open
questions.

Conventions. For the remainder of this article we assume,
for simplicity, that 𝑆 = 𝑆𝑔 is a closed, oriented surface of
genus 𝑔 ≥ 1 (and at times 𝑔 ≥ 2). Working with oriented
surfaces, we consider only orientation-preserving diffeo-
morphisms; for brevity, we suppress this from the notation
and will not mention it further.

The mapping class group. Given the wealth of examples
of surface bundles described above, we need a good way
to tell different surface bundles apart. We’ll discuss two
approaches to this—classifying spaces and monodromy—
in “The Classification Problem” and “Monodromy.” Mon-
odromy is a special feature for 𝑆𝑔-bundles compared to
other bundle theories, and it is where the mapping class
group plays a prominent role.

To explain this, consider the mapping torus construc-
tion discussed above (Figure 2). If 𝑓 is isotopic to the iden-
tity (i.e., there is a path from 𝑓 to id in Diff(𝑆𝑔)), then 𝐸𝑓
is just the product bundle 𝑆1 × 𝑆𝑔. More generally, for any
𝑓 ∈ Diff(𝑆𝑔), the bundle 𝐸𝑓 is unchanged if 𝑓 is changed by
an isotopy. Therefore, if we want to understand the differ-
ent bundles obtained as mapping tori, we should start by
considering the quotient Mod(𝑆𝑔) ∶= Diff(𝑆𝑔)/ Diff0(𝑆𝑔)
by the (normal) subgroup of diffeomorphisms isotopic to
the identity. The groupMod(𝑆𝑔) is called the mapping class
group. It is isomorphic to the group 𝜋0Diff(𝑆𝑔) of path
components of Diff(𝑆𝑔).

For example, Mod(𝑇2) ≅ SL2(ℤ). Any 𝐴 ∈ SL2(ℤ) acts
linearly on ℝ2 and descends to 𝑇2, and, conversely, up
to homotopy or isotopy, a diffeomorphism of 𝑇2 is deter-
mined by its action on 𝜋1(𝑇2) ≅ ℤ2. For 𝑔 ≥ 1, Mod(𝑆𝑔)
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is an infinite, finitely presented group. In “Monodromy”
we explain how Mod(𝑆𝑔) plays a central role, not only for
𝑆𝑔-bundles over 𝑆1, but for 𝑆𝑔-bundles over any base.

The Classification Problem
In this section we describe the basic tools and framework
from algebraic topology for studying 𝑆-bundles. As men-
tioned above, we focus on the case 𝑆 = 𝑆𝑔.

Two bundles 𝐸 → 𝐵 and 𝐸′ → 𝐵 are isomorphic if there
is a diffeomorphism 𝐸 → 𝐸′ that sends fibers to fibers and
covers the identity map on 𝐵.

Optimistically, one would like to solve the classifica-
tion problem: for a given 𝐵, determine the set of isomor-
phism classes of 𝑆𝑔-bundles 𝐸 → 𝐵. This problem can be
translated to a homotopy-theoretic problem via classifying
space theory.

Usually the classification problem is too difficult to
solve completely. In practice one wants a rich collection
of invariants that (i) measure topological properties of 𝑆𝑔-
bundles and (ii) enable us to distinguish 𝑆𝑔-bundles found
in nature. In the study of vector bundles, a primary role is
played by characteristic classes. Surface bundles also have a
theory of characteristic classes, but as we explain, these are
fairly coarse invariants.
Classifying space for surface bundles. For a CW-complex
𝐵, let Bun𝑆𝑔(𝐵) be the set of isomorphism classes of 𝑆𝑔-
bundles over 𝐵. For each 𝑔 ≥ 0, there is a space BDiff(𝑆𝑔)
and a bijection

Bun𝑆𝑔(𝐵) ≅ [𝐵, BDiff(𝑆𝑔)] (2)

where the right-hand side is the set of homotopy classes
of maps 𝐵 → BDiff(𝑆𝑔). The space BDiff(𝑆𝑔) is called the
classifying space for 𝑆𝑔-bundles. In the language of homo-
topy theory, the functor 𝐵 ↦ Bun𝑆𝑔(𝐵) is represented, and
BDiff(𝑆𝑔) is the universal element.

The spaceBDiff(𝑆𝑔) is defined uniquely up to homotopy
by the property that there is a principal Diff(𝑆𝑔)-bundle
𝑃 → BDiff(𝑆𝑔) with 𝑃 contractible. In the bijection (2),
given a map 𝐵 → BDiff(𝑆𝑔), the corresponding 𝑆𝑔-bundle
𝐸 → 𝐵 is obtained by pullback:

𝐸
𝑃×𝑆𝑔

Diff(𝑆𝑔)

𝐵 BDiff(𝑆𝑔)

//

� � ��
//

The bundle on the right is known as the universal 𝑆𝑔-bundle.
See [Mor01] for more details.

We want to understand the homotopy type of BDiff(𝑆𝑔).
As mentioned above, there is a fibration Diff(𝑆𝑔) → 𝑃 →
BDiff(𝑆𝑔) where 𝑃 is contractible. Hence the homotopy
types of Diff(𝑆𝑔) and BDiff(𝑆𝑔) are closely related; in-
deed by the long exact sequence of homotopy groups,

𝜋𝑖(BDiff(𝑆𝑔)) ≅ 𝜋𝑖−1(Diff(𝑆𝑔)). When 𝑔 ≥ 2, the homotopy
type of Diff(𝑆𝑔) is as simple as possible.

Theorem 1 (Earle–Eells). If 𝑔 ≥ 2, then the identity compo-
nent Diff0(𝑆𝑔) < Diff(𝑆𝑔) is contractible. Consequently, the
surjection Diff(𝑆𝑔) → Mod(𝑆𝑔) is a homotopy equivalence.

The homotopy type of Diff(𝑆𝑔) for 𝑔 = 0, 1 is also
known: Diff(𝑆2) is homotopy equivalent to 𝑂(3), and
Diff(𝑇2) is homotopy equivalent to 𝑇2 ⋊ SL2(ℤ); see e.g.
[Mor01]. Theorem 1 was originally proved using complex
analysis (Teichmüller theory) and PDE; a purely topologi-
cal proof was given by Gramain (see [Hat]).

By Theorem 1, BDiff(𝑆𝑔) is homotopy equivalent to
BMod(𝑆𝑔) for 𝑔 ≥ 2. Since Mod(𝑆𝑔) is a discrete
group, its classifying space is an Eilenberg–Mac Lane space
BMod(𝑆𝑔) ≅ 𝐾(Mod(𝑆𝑔), 1). Observe that a map 𝑓 ∶
𝐵 → BDiff(𝑆𝑔) ≃ BMod(𝑆𝑔) induces a homomorphism
𝜋1(𝐵) → Mod(𝑆𝑔). This is a fundamental invariant of the
bundle associated to 𝑓, known as the monodromy; we dis-
cuss it further in “Monodromy.”

In practice, it can be useful to have a concrete model
for BDiff(𝑆𝑔). From the point of view of homotopy theory
(as in [MW05,Hat]), the most useful model is the “Grass-
mannian” of surfaces embedded in ℝ∞. Unfortunately it
would be too much of a detour to dwell on this further;
see [Hat].

A second model for BDiff(𝑆𝑔) is known as moduli space
ℳ𝑔. Using Theorem 1 it suffices to give a model for
BMod(𝑆𝑔). For this we need a contractible space with
a free, properly discontinuous action of Mod(𝑆𝑔). To
this end, consider the space ℋ of hyperbolic metrics on
𝑆𝑔. The group Diff(𝑆𝑔) acts by pullback of metrics, and
Diff0(𝑆𝑔) acts freely. Miraculously, the Teichmüller space
𝒯 ∶= ℋ/Diff0(𝑆𝑔) is finite-dimensional and contractible:
𝒯 ≅ ℝ6𝑔−6. There is a natural action of Mod(𝑆𝑔) on 𝒯,
and the quotient ℳ𝑔 ∶= 𝒯/Mod(𝑆𝑔) is the moduli space
of hyperbolic metrics on 𝑆𝑔.

We would like to say that ℳ𝑔 is a model for BMod(𝑆𝑔),
but this is not true becauseMod(𝑆𝑔) does not act freely on
𝒯. Indeed, the stabilizer of [𝜇] ∈ 𝒯 is the isometry group
Isom(𝑆𝑔, 𝜇), which is finite but not necessarily trivial. To
circumvent this issue, we use the fact thatMod(𝑆𝑔) contains
many finite-index, torsion-free subgroups Γ ≤ Mod(𝑆𝑔). For
such a group, 𝒯/Γ is a genuine 𝐾(Γ, 1), and there is a finite
covering 𝒯/Γ → ℳ𝑔 of orbifolds. For this reason, we call
ℳ𝑔 a virtual classifying space for Mod(𝑆𝑔). This is adequate
for many purposes; e.g., there is an isomorphism

𝐻∗(BMod(𝑆𝑔); ℚ) ≅ 𝐻∗(ℳ𝑔; ℚ).

The moduli space ℳ𝑔 is many things at once. In addi-
tion to the set of hyperbolic metrics up to isometry, it is
the set of algebraic curves up to isomorphism and the set
of Riemann surfaces up to biholomorphism. This brings
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the study of 𝑆𝑔-bundles into close contact with hyperbolic
geometry, complex analysis, and algebraic geometry.
Characteristic classes. There are very few spaces 𝐵 for
which Bun𝑆𝑔(𝐵) ≅ [𝐵, BDiff(𝑆𝑔)] has been computed com-
pletely. Instead one can ask for invariants that distinguish
different elements of [𝐵, BDiff(𝑆𝑔)].

A characteristic class for 𝑆𝑔-bundles is a function 𝑐 that
assigns to each 𝑆𝑔-bundle 𝐸 → 𝐵 a cohomology class
𝑐(𝐸) ∈ 𝐻∗(𝐵). In order to be useful, this function should
be natural with respect to bundle pullbacks: given a pull-
back square

𝜙∗(𝐸) 𝐸

𝐵′ 𝐵

//

�� ��
//

𝜙

we require 𝑐(𝜙∗(𝐸)) = 𝜙∗(𝑐(𝐸)) in 𝐻∗(𝐵′). Equivalently,
a characteristic class is a natural transformation 𝑐 ∶
Bun𝑆(⋅) → 𝐻∗(⋅).

Since every 𝑆𝑔-bundle 𝐸 → 𝐵 is obtained by pullback
from the universal 𝑆𝑔-bundle over BDiff(𝑆𝑔), any cohomol-
ogy class 𝑐 ∈ 𝐻∗(BDiff(𝑆𝑔)) defines a characteristic class;
conversely, every characteristic class is of this form (evalu-
ate on the universal bundle). In other words, 𝐻∗(BDiff(𝑆𝑔))
is the set (or ring) of all characteristic classes of 𝑆𝑔-bundles.

Computing 𝐻∗(BDiff(𝑆𝑔)) is of fundamental impor-
tance for studying 𝑆𝑔-bundles, but it is also of interest in
other fields. By the preceding discussion,

𝐻∗(BDiff(𝑆𝑔); ℚ) ≅ 𝐻∗(BMod(𝑆𝑔); ℚ)
≅ 𝐻∗(ℳ𝑔; ℚ).

For our purpose, it is noteworthy that elements in the
cohomology of Mod(𝑆𝑔) and ℳ𝑔 give characteristic classes of
𝑆𝑔-bundles.

Observe that the space BDiff(𝑆𝑔), the group Mod(𝑆𝑔),
and the moduli space ℳ𝑔 are most naturally objects of al-
gebraic topology, geometric group theory, and algebraic
geometry, respectively. There has been a fertile exchange
of ideas, tools, and techniques between these areas. To
show this interaction, we briefly mention some of what
is known about 𝐻∗(BDiff(𝑆𝑔); ℚ). Much of this is dis-
cussed in [Mor01] and references therein. The groups
𝐻∗(BMod(𝑆𝑔)) satisfy homological stability, meaning that for
each 𝑖 ≥ 0, 𝐻𝑖(BMod(𝑆𝑔)) is independent of 𝑔 when 𝑔 ≫ 𝑖.
This was proved by Harer in the early 1980s. Around the
same time, Morita and Miller defined certain characteris-
tic classes 𝑒𝑖 ∈ 𝐻2𝑖(BDiff(𝑆𝑔)), and Mumford defined anal-
ogous classes in the Chow ring of ℳ𝑔. Collectively these
are known as MMM classes or as 𝜅 classes. Mumford con-
jectured that these classes generate the cohomology in de-
grees 𝑖 ≪ 𝑔, and this was proved in 2002 byMadsen–Weiss,
who determined the homotopy type of BDiff(𝑆𝑔) “in the
limit” as 𝑔 → ∞ [MW05].

Despite all of this progress, 𝐻∗(BDiff(𝑆𝑔); ℚ) is still
mostly unknown. By an Euler characteristic computation
for ℳ𝑔 by Harer–Zagier, the MMM classes account for a
small fraction of the total cohomology. We have only
scratched the surface.

We conclude this section with a simple geometric ar-
gument that shows 𝐻1(BMod(𝑆𝑔); ℤ) = 0 for 𝑔 ≥ 3. Re-
calling that 𝐻1(𝐵𝐺) is the abelianization 𝐺ab, it suffices to
show Mod(𝑆𝑔)ab = 0. Dehn proved that Mod(𝑆𝑔) is gen-
erated by mapping classes known as Dehn twists that are
supported on an annulus in 𝑆𝑔 whose complement is con-
nected. Any two such Dehn twists are conjugate.2 There-
fore, Mod(𝑆𝑔)ab is a quotient of ℤ, generated by the image
of any Dehn twist 𝐴. There is a relation 𝐴𝐵𝐶 = 𝐷𝐸𝐹𝐺 be-
tween seven Dehn twists known as the lantern relation (Fig-
ure 3). For 𝑔 ≥ 3 all seven annuli can be chosen to have
connected complement, so that the image of this relation
inMod(𝑆𝑔)ab proves 3𝐴 = 4𝐴 or 𝐴 = 0. This concludes the
proof. See also [FM12, §5.1].

C B

A

D

F G

E

Figure 3. Dehn twists about these curves satisfy the lantern
relation 𝐴𝐵𝐶 = 𝐷𝐸𝐹𝐺.

Monodromy
In “Surface Bundles” we saw that the mapping torus con-
struction provides a rich supply of 𝑆𝑔-bundles over 𝑆1, but
the argument of the preceding paragraph shows that none
of these bundles are distinguished by characteristic classes!

2To see this, cut 𝑆𝑔 along either annulus. By the classification of surfaces, the
cut-open surfaces are seen to be homeomorphic. This homeomorphism can be
extended via the identity across the annuli, yielding a map of 𝑆𝑔 taking one an-
nulus to the other.
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In this section we discuss the monodromy representation of
an 𝑆𝑔-bundle. We will see that this is a complete invariant,
so that in some sense we face the opposite problem: the
challenge is to distill practical, computable information
from the monodromy.

Throughout this section we assume 𝑔 ≥ 2. By the bijec-
tion (2), associated to an 𝑆𝑔-bundle 𝐸 → 𝐵, there is a map
𝐵 → BDiff(𝑆𝑔), unique up to homotopy. The induced map
on fundamental groups

𝜋1(𝐵) → 𝜋1(BDiff(𝑆𝑔)) ≅ 𝜋0(Diff(𝑆𝑔)) ≡ Mod(𝑆𝑔)

is called the monodromy representation of 𝐸 → 𝐵.
The monodromy representation can be described con-

cretely as follows: given [𝛾] ∈ 𝜋1(𝐵) represented by 𝛾 ∶
𝑆1 → 𝐵, consider the pullback 𝛾∗(𝐸) → 𝑆1. Any bundle
over the circle is obtained from the mapping torus con-
struction (remove one fiber to get a bundle over the inter-
val, which is trivial because any map [0, 1] → BDiff(𝑆𝑔) is
null-homotopic), so 𝛾∗(𝐸) ≅ 𝐸𝑓𝛾 for some 𝑓𝛾 ∈ Diff(𝑆𝑔)
whose isotopy class [𝑓𝛾] ∈ Mod(𝑆𝑔) is independent of the
choice of representative of [𝛾]. The monodromy represen-
tation is the map [𝛾] ↦ [𝑓𝛾]. It measures how the “picture”
of the fiber changes under the transition maps along the
loop 𝛾.
Monodromy as a complete invariant. By equation (2)
and Theorem 1 for 𝑔 ≥ 2,

Bun𝑆𝑔(𝐵) ≅ [𝐵, BDiff(𝑆𝑔)] ≅ [𝐵, BMod(𝑆𝑔)].

From 𝐾(𝜋, 1)-theory, a map to BMod(𝑆𝑔) is determined
by the induced map on 𝜋1, up to based homotopy.
Hence [𝐵, BMod(𝑆𝑔)] is isomorphic to the quotient of
Hom(𝜋1(𝐵),Mod(𝑆𝑔)) by the action of Mod(𝑆𝑔) by conju-
gation.

In summary, for 𝑔 ≥ 2 the isomorphism class of an 𝑆𝑔-
bundle is determined uniquely by its monodromy representation.
The monodromy is a complete invariant! Next we give ex-
amples of 𝐵 where this can be used to completely deter-
mine Bun𝑆𝑔(𝐵).

As a trivial example, if 𝜋1(𝐵) = 0, then the only 𝑆𝑔-
bundle over 𝐵 is the trivial bundle 𝐵×𝑆𝑔. (Here it is impor-
tant to remember that 𝑔 ≥ 2.) This illustrates a stark differ-
ence between 𝑆𝑔-bundles and vector bundles; for example,
there are many nontrivial vector bundles over spheres 𝑆𝑘
with 𝑘 ≥ 2.

As a second example, for 𝐵 = 𝑆1, isomorphism classes
of 𝑆𝑔-bundles over 𝑆1 are in bijection with homomor-
phisms ℤ → Mod(𝑆𝑔) up to conjugation, i.e., with con-
jugacy classes of elements of Mod(𝑆𝑔). Here we clearly see
why conjugation is relevant: to identify 𝐸 → 𝑆1 with 𝐸𝑓,
we must first choose a homeomorphism between the fiber
over the basepoint and 𝑆𝑔. Different choices change 𝑓 by
conjugation.

The surprising part of the statement “monodromy is a
complete invariant” is that for any homomorphism 𝜌 ∶
𝜋1(𝐵) → Mod(𝑆𝑔), there is a bundle 𝐸(𝜌) → 𝐵 whose mon-
odromy is 𝜌. It’s not at all obvious how to explicitly con-
struct 𝐸(𝜌) from 𝜌. This is the power of Theorem 1. We
note however that the monodromy is not a complete in-
variant of the total space up to homeomorphism, since a
given 3-manifold may fiber as an 𝑆𝑔-bundle in more than
one way. See [Thu86].
The monodromy-topology dictionary. Let’s think more
about the bijection

Bun𝑆𝑔(𝐵) ≅ Hom(𝜋1(𝐵),Mod(𝑆𝑔))/conjugation. (3)

In the previous section we gave examples where the left-
hand side could be explicitly computed using the right-
hand side, but usually this is an unreasonable task. Even
when 𝐵 = 𝑆ℎ is also a closed surface, there is no known
classification of homomorphisms 𝜋1(𝑆ℎ) → Mod(𝑆𝑔).

We would like to emphasize a different perspective on
(3) that leads to interesting problems. Observe that the
left-hand side of (3) is topological, while the right-hand
side is group-theoretic. Understanding how geometric or
topological properties of 𝑆𝑔-bundles translate to proper-
ties of the monodromy and vice versa leads to a dictionary.
Below we mention a couple of entries of this dictionary.
Geometric classification of mapping tori. The precise
conjugacy classification of elements of Mod(𝑆𝑔) is well
known. According to the Nielsen–Thurston classification,
there are three types of conjugacy classes: periodic, reducible,
and pseudo-Anosov. “Periodic” is synonymous with “finite-
order”; a reducible element preserves (setwise) some finite
collection of curves up to isotopy. Thus a pseudo-Anosov
element is simply any element with neither of these special
properties. The miracle of the Nielsen–Thurston classifica-
tion is that every pseudo-Anosov element nevertheless has
a very tightly controlled form; see [FM12, §13].

Thurston used this classification to describe the geome-
try of mapping tori.

Theorem 2 (Thurston). Fix 𝑔 ≥ 2 and fix [𝑓] ∈ Mod(𝑆𝑔).
Then [𝑓] is

(a) periodic if and only if 𝐸𝑓 admits a Riemannian metric
locally isometric to ℍ2 × ℝ;

(b) reducible if and only if 𝐸𝑓 contains an incompressible
torus;

(c) pseudo-Anosov if and only if 𝐸𝑓 admits a hyperbolic
metric.

A geometric restriction on the bundle gives an algebraic
restriction on the monodromy and vice versa. The most
striking and difficult part of the theorem is: if [𝑓] is pseudo-
Anosov, then 𝐸𝑓 is hyperbolic. We remark that a mapping
class can be both periodic and reducible, so (a) and (b) are
not mutually exclusive.
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Given Thurston’s theorem, it is natural to ask for condi-
tions on the monodromy of a bundle 𝐸 → 𝐵 with dim𝐵 ≥
2 that guarantee that 𝐸 has negative curvature. This seems
to be a subtle question. It is not hard to see that it is neces-
sary for every nontrivial element of the monodromy group
to be pseudo-Anosov [FM02], but the converse is not gen-
erally known. It is a well-known open question whether
or not there exists a homomorphism 𝜋1(𝑆ℎ) → Mod(𝑆𝑔)
such that the image of every nontrivial element is pseudo-
Anosov.
Complex structures on 𝑆𝑔-bundles over surfaces. When
𝐵 = 𝑆ℎ is a closed surface, the total space 𝐸 of any 𝑆𝑔-
bundle over 𝐵 is a compact 4-manifold and thus can po-
tentially be diffeomorphic to a complex surface. Further-
more, it is possible for the bundle projection 𝐸 → 𝐵 to be
holomorphic with respect to some complex structure on 𝐵.
Since the monodromy 𝜌 of 𝐸 → 𝐵 determines the topol-
ogy of 𝐸, this information is encoded inside 𝜌, albeit in a
highly nontrivial way. In “Sections of 𝑆𝑔-bundles,” we will
discuss the geometric Shafarevich problem, which shows that
holomorphic families are exceedingly rare. Here, we men-
tion some entries in the monodromy-topology dictionary
concerned with the (non)existence of a complex structure
on 𝐸.

Hodge theory provides one major source of obstruc-
tions. This is at its most powerful when the space under
study is Kähler and not merely complex. It follows quickly
from the Enriques–Kodaira classification that if 𝐸 is a com-
pact complex surface that fibers over a surface, then 𝐸 is
of general type and hence Kähler. Thus the basic “Käh-
ler package” imposes nontrivial constraints on the coho-
mology algebra of 𝐸. By (3), the structure of 𝐻∗(𝐸; ℤ) (as
a ring) can be obtained from 𝜌. In fact, the cup prod-
uct structure on an 𝑆𝑔-bundle is encoded as a certain fam-
ily of characteristic classes with “twisted coefficients”; see
[Sal18]. Another Hodge-theoretic obstruction is provided
by Deligne’s semisimplicity theorem, which places strong re-
strictions on how 𝜌 can act on the homology of the fiber
[Del87].

To close this discussion we mention a theorem of Shiga
[Shi97] providing another constraint on the monodromy
of a holomorphic 𝑆𝑔-bundle 𝐸 → 𝐵 over a compact Rie-
mann surface 𝐵. Shiga’s theorem asserts that in this setting,
either all the fibers are biholomorphic or else the mon-
odromy is geometrically irreducible, meaning that there is
no simple closed curve globally fixed by the monodromy.

To further illuminate the themes under development
(especially the monodromy-topology dictionary and inter-
actions with algebraic geometry), in the final two sections
we take a closer look at two topics: sections of 𝑆𝑔-bundles
and 𝑆𝑔-bundles over surfaces.

Sections of 𝑆𝑔-bundles
A basic notion in any fiber bundle theory is that of a section:
if 𝑝 ∶ 𝐸 → 𝐵 is a bundlemap, then 𝑠 ∶ 𝐵 → 𝐸 is called a sec-
tion if 𝑝∘𝑠 = id. In other words, a section is a continuously
varying choice of distinguished point in each fiber. Given
an 𝑆𝑔-bundle 𝑝 ∶ 𝐸 → 𝐵 with corresponding monodromy
representation 𝜌 ∶ 𝜋1(𝐵) → Mod(𝑆𝑔), there is a simple
characterization of the homotopy classes of sections of 𝑝.
Such sections are in correspondence with liftings ̃𝜌 of 𝜌 as
encoded in the diagram below:

Mod(𝑆𝑔, ∗)

𝜋1(𝐵) Mod(𝑆𝑔)

99rrrrrrr

̃𝜌
��

//
𝜌

(4)

HereMod(𝑆𝑔, ∗) is the based mapping class group, defined as
the group of diffeomorphisms fixing a distinguished point
∗ ∈ 𝑆𝑔, modulo isotopies fixing ∗.
Sections of 𝑆𝑔-bundles in algebraic geometry and num-
ber theory. Before we discuss some of the tools used
to construct and obstruct sections of 𝑆𝑔-bundles, it is
worthwhile to mention some applications. Sections of 𝑆𝑔-
bundles are often of interest in problems of an algebro-
geometric flavor. One notable instance of this concerns
the geometric Mordell problem. Loosely speaking, this asks
for an enumeration of holomorphic sections of 𝑆𝑔-bundles
over surfaces in the case where the total space has a com-
plex structure. Arakelov and Parshin showed that the num-
ber of such sections is always finite. In fact, this is obtained
from the geometric Shafarevich problem alluded to in “Mon-
odromy.” For simplicity we state the version obtained by
Parshin; Arakelov treats the more general case when 𝐵 is
a compact Riemann surface with finitely many points re-
moved. See e.g. [McM00].

Theorem 3 (Geometric Shafarevich). Let 𝐵 be a compact
Riemann surface. For 𝑔 ≥ 2, there are only finitely many truly
varying families 𝑝 ∶ 𝐸 → 𝐵 of Riemann surfaces of genus 𝑔.

A truly varying family 𝑝 ∶ 𝐸 → 𝐵 is an 𝑆𝑔-bundle where
𝐸 has a complex structure, 𝑝 is holomorphic, and the
fibers are not all biholomorphic. The geometric Mordell
problem follows from geometric Shafarevich by way of the
“Parshin trick.” The idea is that each section 𝑠 ∶ 𝐵 → 𝐸 of
a truly varying family can be used to construct a new truly
varying family over 𝐵 by constructing a branched cover of
𝐸 branched along 𝑠(𝐵). This construction will be discussed
further in “Bundles and Branched Covers” in the context of
Atiyah–Kodaira bundles. Moreover, the genus of the fibers
in the new family depends only on the genus of the orig-
inal. Finiteness of families over 𝐵 (Shafarevich) then im-
plies finiteness of sections (Mordell).

As explained by McMullen in [McM00], the geometric
Mordell problem is actually the complex-geometric ana-
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logue of Faltings’s theorem in number theory. Faltings’s
theorem concerns Diophantine equations 𝐹(𝑥, 𝑦, 𝑧) such
as 𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛 = 0 (𝑛 ≥ 3) whose complex points de-
termine a Riemann surface of genus at least 2; it asserts
that such an equation has only finitely many rational so-
lutions. Scheme-theoretically, one can view such a Dio-
phantine equation as a “surface bundle” over3 Spec(ℤ),
where the “fibers” consist of the reductions of 𝐹 mod 𝑝.
From this point of view, a rational solution (𝑥, 𝑦, 𝑧) of 𝐹
determines a section of this bundle by assigning the distin-
guished point (𝑥, 𝑦, 𝑧) (mod 𝑝) to the fiber 𝐹 (mod 𝑝) over
𝑝 ∈ Spec(ℤ). McMullen explains how Faltings’s arguments
have direct analogues in the setting of complex geometry,
leading to the proof of the geometric Shafarevich problem
given by Imayoshi–Shiga. In fact, the connections between
𝑆𝑔-bundles and number theory go beyond mere analogies.
Recently, Lawrence–Venkatesh [LV] gave a new proof of
Faltings’s theorem that involves a topological analysis of
the monodromy of certain 𝑆𝑔-bundles over surfaces.
Sections of tautological bundles. Another application of
the theory of sections of 𝑆𝑔-bundles occurs in studying
the existence and classification of sections of “naturally oc-
curring” 𝑆𝑔-bundles. The most “natural” of all such bun-
dles is the universal curve ℳ𝑔,∗ → ℳ𝑔 whose fiber over a
point 𝑥 ∈ ℳ𝑔 is the Riemann surface corresponding to
𝑥. The section question in this case simply asks if there
is a way to continuously choose a distinguished point
on all Riemann surfaces simultaneously. Unsurprisingly,
ℳ𝑔,∗ →ℳ𝑔 does not have a section for 𝑔 ≥ 2. However, it
is possible to choose a continuously varying family of six
everywhere-distinct points on the universal curve in genus
2, furnished by the so-called Weierstrass points (Figure 4).
Thus a more sophisticated version of the section question

Figure 4. The blue set forms the real solutions of
𝑦2 = −(𝑥2 − 1)(𝑥2 − 4)(𝑥2 − 9), plotted in ℝ2 on the left. The red
dots are the Weierstrass points. After projectivizing, the
complex solutions are homeomorphic to a surface of genus 2.

asks if it is possible to choose, for any 𝑛 ≥ 1, a “multi-
section” of 𝑛 everywhere-distinct points. If one restricts
attention to holomorphic multisections, work of Hubbard
[Hub76] shows that this is impossible, but this does not
preclude the possibility that some merely continuous mul-
tisection could exist. For the universal curve ℳ𝑔,∗, it was
only recently shown that no continuous multisection ex-

3For simplicity we are ignoring issues of good/bad reduction.

ists for 𝑔 ≥ 4 by L. Chen and the first author [CS], building
off ideas of Mess. The basic tool is the theory of canonical
reduction systems, described below, which can be viewed as
a version of the Jordan normal form for mapping classes.
Sections: Toolkit. The study of sections of 𝑆𝑔-bundles
again incorporates themes and tools from a variety of
mathematical disciplines. A first question is whether a
given bundle admits any sections at all. Unlike in the the-
ory of vector bundles, where the “zero-section” provides
a quick affirmative answer to this question, an 𝑆𝑔-bundle
may ormay not admit a section. This is similar to the situa-
tion one encounters when studying nowhere-vanishing sec-
tions of vector bundles. The standard machinery in the
latter setting is obstruction theory, which manufactures co-
homological invariants that obstruct the existence of sec-
tions. However, obstruction theory breaks down when the
fibers are 𝐾(𝜋, 1) spaces with 𝜋 a group with trivial cen-
ter, as is the case for 𝑆𝑔-bundles. Thus, by-and-large, the
study of sections of 𝑆𝑔-bundles takes on a quintessentially
geometric-group-theoretic flavor governed by the study of
liftings ̃𝜌 as in (4).

Given 𝜌 ∶ 𝜋1(𝐵) → Mod(𝑆𝑔), how could one obstruct
or classify the lifts ̃𝜌 ∶ 𝜋1(𝐵) → Mod(𝑆𝑔, ∗)? The theory
of canonical reduction systems provides one approach. Here
we provide only a casual overview of how arguments using
these ideas work; for a more precise discussion (including
an actual definition of a canonical reduction system), see
e.g. [FM12, §13.2]. In keeping with the basic philosophy
of geometric group theory, the method is to consider the
action of 𝜋1(𝐵) on the set of simple closed curves on 𝑆𝑔 af-
forded by the monodromy 𝜌. If one finds an ample supply
of “simple” elements in the image of 𝜌 (e.g. elements with
large centralizers in Mod(𝑆𝑔)), one can profitably under-
stand the dynamics of this group action from the point of
view of how 𝜋1(𝐵) shuffles around simple closed curves on
the surface. This information can be used to classify and
obstruct sections: one asks where a distinguished point
could be placed in relation to the simple closed curves un-
der study, and in favorable circumstances one can see (e.g.
by exploiting relations in 𝜋1(𝐵) and/orMod(𝑆𝑔)) that there
is simply no place to put a distinguished point that is com-
patible with the known dynamics of the action.

One shortcoming of this approach is that current tech-
niques apply only when 𝐵 has a fundamental group with
certain properties. In many common situations (e.g. when
𝐵 = 𝑆ℎ is itself a surface), there are not enough commut-
ing elements of 𝜋1(𝐵) to be able to implement the above
ideas. Our knowledge of sections of 𝑆𝑔-bundles over sur-
faces is extremely limited—in fact, the question of Mess
[Kir78, Problem 2.17] from 1990 asking if every 𝑆𝑔-bundle
over a surface admits a multisection is still open.
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Bundles and Branched Covers
The main goal of this section is to describe a construction
due to Atiyah and Kodaira of 𝑆𝑔-bundles over surfaces ob-
tained by branched coverings. In contrast to the effortless
way that 𝑆𝑔-bundles over 𝑆1 are constructed (Figure 2), con-
structing interesting 𝑆𝑔-bundles over surfaces takes work,
and the branched covering constructions we discuss here
have many interesting applications.

Before we begin, we mention that the bundle 𝐸 → 𝐵
over the configuration space from (1) in “Surface Bundles”
is obtained via branched covers: the map 𝑆(𝑏) ∋ (𝑥, 𝑦) ↦
𝑥 ∈ ℂ is a 𝑑-fold cover branched over 𝑏1, … , 𝑏𝑛. Thus 𝐵
is parameterizing a family of branched covers of ℂ with
moving branched points. The Atiyah–Kodaira construc-
tion works similarly.
Atiyah–Kodaira bundles. We start with the basics of the
construction, which we explain in one of the simplest
cases. Consider the surface 𝑆3, and let 𝜎 ∶ 𝑆3 → 𝑆3 be a free
involution (Figure 5). The product 𝑆3 × 𝑆3 contains a (dis-
connected) surface Σ, defined as the union of the graphs
of the identity and 𝜎. We would like to take a 2-fold cover
𝐸 → 𝑆3 × 𝑆3, branched over Σ.

x

σ(x)

σ
Figure 5. Free involution on surface of genus 3. Cut along the
dotted line and double to obtain a 2-fold branched cover
𝑆6 → 𝑆3.

Before explaining more details, let’s skip ahead to the
output: the construction produces an 𝑆6-bundle 𝐸 → 𝑆129.

Where do these numbers come from? For the fiber 𝑆6,
first observe that Σ ⊂ 𝑆3 × 𝑆3 meets {𝑥} × 𝑆3 in two points
(𝑥, 𝑥) and (𝑥, 𝜎(𝑥)), so under a double cover 𝐸 → 𝑆3 × 𝑆3
branched over Σ, the preimage of {𝑥} × 𝑆3 is a 2-fold cover
𝑆6 → 𝑆3 branched over two points.

Now we explain the base 𝑆129. The issue is that the
branched cover 𝐸 → 𝑆3 × 𝑆3 is not guaranteed to exist.
A sufficient condition for the existence is that the homol-
ogy class [Σ] ∈ 𝐻2(𝑆3 × 𝑆3) is even.4 Unfortunately, [Σ] is
not even. To fix this, we first pass to the 26-sheeted cover
𝑆129 → 𝑆3 with deck group 𝐻1(𝑆3; ℤ/2ℤ). The preimage of

4A class 𝑥 is even if 𝑥 = 2𝑦 for some other class 𝑦.

Σ under 𝑆129 ×𝑆3 → 𝑆3 ×𝑆3 determines an even homology
class, and 𝐸 is defined as a branched cover of 𝑆129 × 𝑆3.

This construction can be done very generally: given
a surface bundle 𝐸 → 𝐵 over a manifold and a
multisection—viewed as a codimension-2 submanifold
Σ ⊂ 𝐸 that projects to 𝐵 as a covering space—after replac-
ing 𝐵 with a finite cover, there is a cover 𝐸′ → 𝐸 branched
along Σ. If 𝐸 → 𝐵 and Σ ⊂ 𝐸 are both holomorphic,
then the resulting bundle is also holomorphic. This is the
essence of the Parshin trick discussed in “Sections of 𝑆𝑔-
bundles.”

The Atiyah–Kodaira examples exhibit many interesting
phenomena, and they appear in surprisingly many situ-
ations. A variant of the Atiyah–Kodaira construction ap-
pears in the work of Lawrence–Venkatesh [LV] mentioned
in “Sections of 𝑆𝑔-bundles.” We close by mentioning a
sampling of other applications of the construction.

Signature. The total space 𝐸 of an Atiyah–Kodaira bundle
is a closed, oriented 4-manifold and therefore has a signa-
ture sig(𝐸), defined as the signature of the intersection form
𝐻2(𝐸)×𝐻2(𝐸) → ℤ. Under a branched cover, the signature
is multiplied by the degree of the cover with a correction
term that is proportional to the self-intersection number
of the branching locus. Thus, although sig(𝑆3 × 𝑆129) = 0,
we have sig(𝐸) = 256. These were the first examples con-
structed of 𝑆𝑔-bundles over surfaces with nonzero signa-
ture.

Consequently, the MMM class 𝑒1 ∈ 𝐻2(BDiff(𝑆𝑔)) is
nontrivial for 𝑔 = 6 (and hence for 𝑔 ≥ 6 by Harer stabil-
ity). To see this, we remark that the function that assigns
to an 𝑆𝑔-bundle 𝐸 → 𝑆ℎ the value sig(𝐸) ∈ ℤ can be viewed
as a characteristic class. Specifically, there is a homomor-
phism 𝐻2(BDiff(𝑆𝑔)) → ℚ that sends a cycle represented
by 𝑆ℎ → BDiff(𝑆𝑔) to the signature of the associated bun-
dle. This is well defined because signature is a cobordism
invariant. From the Atiyah–Kodaira construction [sig] ≠ 0
in𝐻2(BDiff(𝑆6); ℚ), and since 𝑒1 = 3⋅[sig] (byHirzebruch’s
signature theorem), we conclude 𝑒1 ≠ 0. In fact, the class
[sig] ∈ 𝐻2(BDiff(𝑆𝑔); ℚ) is nontrivial and generates this
group when 𝑔 ≥ 3.
Nontriviality of MMM classes. Morita generalized the pre-
ceding argument to prove that all the MMM classes are
nontrivial. More precisely, for each fixed 𝑖, there is 𝑔 ≫ 𝑖
so that 𝑒𝑖 ≠ 0 ∈ 𝐻2𝑖(BDiff(𝑆𝑔); ℚ). He proved this by iter-
ating the Atiyah–Kodaira construction: for example, given
the Atiyah–Kodaira bundle 𝑝 ∶ 𝐸 → 𝑆129, consider the
pullback to an 𝑆6-bundle 𝑝∗(𝐸) → 𝐸. This bundle has
a tautological section over which one can branch; in this
way Morita obtained a bundle over a finite cover of 𝐸 with
𝑒2 ≠ 0. See [Mor01, §4.4] for more details.

In other directions, the Atiyah–Kodaira construction
has also been used to give examples of inequivalent
symplectic structures on 4-manifolds [LeB00] and exam-
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ples of CAT(0) metrics with no Riemannian smoothings
[Sta15]. A variant of the construction has also been used to
study the geography problem for symplectic 4-manifolds
[BNOP19].
Conclusion. There are many ways to arrive at the the-
ory of surface bundles: as a nonlinear bundle theory (al-
gebraic topology), as a source for interesting 3- and 4-
dimensional manifolds (low-dimensional topology and
geometric group theory), or as objects naturally arising
from moduli of Riemann surfaces (algebraic geometry).
Each area brings to surface-bundle theory its own collec-
tion of ideas and techniques. This leads to a rich interac-
tion where questions in one area motivate results in an-
other. The interactions that we have discussed above rep-
resent only a small fraction of what is known and what is
left to be discovered.
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