HOMOTOPY-ANOSOV \mathbb{Z}^2 ACTIONS ON EXOTIC TORI

MAURICIO BUSTAMANTE AND BENA TSHISHIKU

ABSTRACT. We give examples of Anosov actions of \mathbb{Z}^2 on the d-torus T^d that cannot be homotoped to a smooth action on $T^d\#\Sigma$, for certain exotic d-spheres Σ . This is deduced using work of Krannich, Kupers, and the authors that, in particular, computes the mapping class group of $T^d\#\Sigma$.

1. The result

An exotic d-torus \mathfrak{T} is a closed smooth manifold that is homeomorphic but not diffeomorphic to the standard torus $T^d = \mathbb{R}^d/\mathbb{Z}^d$. For example, the connected sum $T^d \# \Sigma$ of T^d with an exotic d-sphere Σ is an exotic torus.

In this note we are interested in smooth group actions on exotic tori.

Question 1. Given an exotic torus \mathfrak{T} and an action $G \curvearrowright T^d$ on the standard torus, is there an action of G on \mathfrak{T} that induces the same action on the fundamental group $\pi_1(\mathfrak{T}) \cong \mathbb{Z}^d \cong \pi_1(T^d)$? If so, we say the two actions are π_1 -equivalent.

For example, if $\mathfrak{T} = T^d \# \Sigma$ and $G = \mathbb{Z}$, then for every action of \mathbb{Z} on T^d , there exists a π_1 -equivalent action of \mathbb{Z} on \mathfrak{T} (c.f. Remark 5). In contrast, for $G = \mathrm{SL}_d(\mathbb{Z})$ there exist $\mathfrak{T} = T^d \# \Sigma$ for which there is no action of $\mathrm{SL}_d(\mathbb{Z})$ on $T^d \# \Sigma$ that is π_1 -equivalent to the linear action $\mathrm{SL}_d(\mathbb{Z}) \curvearrowright T^d$; this is shown by Krannich, Kupers, and the authors [BKKT23, Cor. C].

Below, for $G = \mathbb{Z}^2$, we show that not every action $\mathbb{Z}^2 \curvearrowright T^d$ is π_1 -equivalent to an action on $T^d \# \Sigma$. For our examples, we can take the action $\mathbb{Z}^2 \curvearrowright T^d$ to be Anosov, i.e. some $g \in \mathbb{Z}^2$ acts as an Anosov diffeomorphism.

Theorem 2. There exist exotic tori $\mathfrak{T} = T^d \# \Sigma$ and Anosov actions $\mathbb{Z}^2 \curvearrowright T^d$ for which there is no smooth \mathbb{Z}^2 action on \mathfrak{T} that is π_1 -equivalent to the given action $\mathbb{Z}^2 \curvearrowright T^d$.

Theorem 2 is a direct consequence of Theorem 3 below. To state it, let Θ_d denote the Milnor–Kervaire group of homotopy d-spheres, let $\eta \in \pi_1^s \cong \mathbb{Z}/2$ denote the generator of the first stable homotopy group of spheres, and write $\eta \cdot \Sigma$ for the Milnor–Munkres–Novikov pairing $\pi_1^s \times \Theta_d \to \Theta_{d+1}$; see [Bre67] and also [BKKT23, §1.3.2].

Date: August 15, 2024.

Fixing a isomorphism $\pi_1(\mathfrak{T}) \cong \mathbb{Z}^d$, we write $\ell : \mathrm{Diff}^+(\mathfrak{T}) \to \mathrm{SL}_d(\mathbb{Z})$ for the homomorphism induced by the action on π_1 . Recall that $A \in \mathrm{SL}_d(\mathbb{Z})$ is called hyperbolic if it has no eigenvalues on the unit circle.

Theorem 3. Fix $d \geq 7$. Assume $\Sigma \in \Theta_d$ is a homotopy sphere such that $\eta \cdot \Sigma$ is not divisible by 2 in Θ_{d+1} . Then there exist infinitely many conjugacy classes of subgroups $G \cong \mathbb{Z}^2 < \operatorname{SL}_d(\mathbb{Z})$ such that (i) G is generated by hyperbolic matrices, and (ii) the homomorphism $\ell : \operatorname{Diff}^+(T^d \# \Sigma) \to \operatorname{SL}_d(\mathbb{Z})$ does not split over G.

Remark 4. The condition that $\eta \cdot \Sigma$ is not divisible by 2 in Θ_{d+1} holds for exotic spheres Σ in infinitely many dimensions d; see [BKKT23, Rmk. 1.10].

We prove Theorem 3 in §2. To deduce Theorem 2 from Theorem 3, assume Σ and $G < \mathrm{SL}_d(\mathbb{Z})$ satisfy the conditions in Theorem 3. The linear action of $G < \mathrm{SL}_d(\mathbb{Z})$ on T^d is Anosov because $G < \mathrm{SL}_d(\mathbb{Z})$ contains a hyperbolic matrix. If this action $G \curvearrowright T^d$ is π_1 -equivalent to an action on $T^d \# \Sigma$, then $\mathrm{Diff}^+(T^d \# \Sigma) \to \mathrm{SL}_d(\mathbb{Z})$ splits over G, contradicting the assumption on G.

Remark 5. In contrast to the case $\mathfrak{T} = T^d \# \Sigma$, if one considers exotic tori of the form $\mathfrak{T} \cong (T^{d-1} \# \Sigma^{d-1}) \times S^1$, then it is possible to give examples of (Anosov) $G \cong \mathbb{Z}$ acting on T^d that are not π_1 -equivalent to any smooth action on \mathfrak{T} . This is because the homomorphism $\mathrm{Diff}^+(\mathfrak{T}) \to \mathrm{SL}_d(\mathbb{Z})$ is not surjective [BKKT23, Lem. 3.1] (and one can choose G generated by a hyperbolic matrix not in the image).

Remark 6. The G constructed in the proof of Theorem 3 are without rankone factors, c.f. [RHW14, Defn. 2.8]. Rodriguez-Hertz-Wang [RHW14, Cor. 1.2] show that if $G < \mathrm{SL}_d(\mathbb{Z})$ contains a hyperbolic element and is without rank-one factors, then no exotic d-torus \mathfrak{T} has an Anosov action that is π_1 -equivalent to the linear action of $G < \mathrm{SL}_d(\mathbb{Z})$ on T^d . Theorem 2 gives a stronger conclusion, with "Anosov" replaced by "smooth", albeit with additional assumptions on Σ and G. Related to [RHW14], we remark that there are examples of Anosov actions of \mathbb{Z} on exotic tori $T^d \# \Sigma$, due to Farrell-Jones and Farrell-Gogolev [FJ78, FG12].

Remark 7. With the same assumption on Σ as in Theorem 3, Krannich, Kupers, and the authors show that the surjection $\mathrm{Diff}^+(T^d\#\Sigma) \twoheadrightarrow \mathrm{SL}_d(\mathbb{Z})$ does not split; in fact, there is no splitting of $\mathrm{Mod}(T^d\#\Sigma) \twoheadrightarrow \mathrm{SL}_d(\mathbb{Z})$, where $\mathrm{Mod}(-) = \pi_0 \, \mathrm{Diff}(-)$ is the mapping class group [BKKT23, Thm. A]. Theorem 3 is proved by finding $G \cong \mathbb{Z}^2 < \mathrm{SL}_d(\mathbb{Z})$ that are generated by hyperbolic matrices and such that the map $\mathrm{Mod}(T^d\#\Sigma) \to \mathrm{SL}_d(\mathbb{Z})$ does not split over G.

Acknowledgements. We thank Andrey Gogolev for asking us a question that motivated our main result and thank S. Hurtado for commenting on a draft. MB is supported by ANID Fondecyt Iniciación en Investigación grant 11220330. BT is supported by NSF grant DMS-2104346.

2. The proof

Fix $\Sigma \in \Theta_d$ as in the statement of the Theorem, and set $\mathfrak{T} := T^d \# \Sigma$. To show $\mathrm{Diff}^+(\mathfrak{T}) \to \mathrm{SL}_d(\mathbb{Z})$ does not split over $G < \mathrm{SL}_d(\mathbb{Z})$, it suffices to show that $\mathrm{Mod}(\mathfrak{T}) \to \mathrm{SL}_d(\mathbb{Z})$ does not split over G, where $\mathrm{Mod}(\mathfrak{T}) := \pi_0 \, \mathrm{Diff}^+(\mathfrak{T})$ is the mapping class group. We proceed in three steps.

Step 1: Lie group reduction. Fix $d \geq 3$. To show that $\operatorname{Mod}(\mathfrak{T}) \twoheadrightarrow \operatorname{SL}_d(\mathbb{Z})$ does not split over $G < \operatorname{SL}_d(\mathbb{Z})$ it suffices to show that the universal cover short exact sequence

(1)
$$1 \to \mathbb{Z}/2\mathbb{Z} \to \widetilde{\mathrm{SL}_d(\mathbb{R})} \to \mathrm{SL}_d(\mathbb{R}) \to 1$$

does not split over $G < \mathrm{SL}_d(\mathbb{Z}) \hookrightarrow \mathrm{SL}_d(\mathbb{R})$. To explain this reduction, let

$$1 \to \mathbb{Z}/2\mathbb{Z} \to \widetilde{\mathrm{SL}}_d(\mathbb{Z}) \to \mathrm{SL}_d(\mathbb{Z}) \to 1$$

be the short exact sequence obtained by pullback of (1) along the inclusion $SL_d(\mathbb{Z}) \hookrightarrow SL_d(\mathbb{R})$. By [BKKT23, Thm. D], when $\eta \cdot \Sigma$ is not divisible by 2, there is an isomorphism $Mod(\mathfrak{T}) \cong K \rtimes \widetilde{SL}_d(\mathbb{Z})$ (where K is a group whose precise form is not important here), and there is a commutative diagram

$$K \rtimes \widetilde{\operatorname{SL}}_d(\mathbb{Z}) \cong \operatorname{Mod}(\mathfrak{T})$$

$$\widetilde{\operatorname{SL}}_d(\mathbb{Z}) \longrightarrow \operatorname{SL}_d(\mathbb{Z})$$

This implies that if $\operatorname{Mod}(\mathfrak{T}) \to \operatorname{SL}_d(\mathbb{Z})$ splits over G, then $\widetilde{\operatorname{SL}}_d(\mathbb{Z}) \to \operatorname{SL}_d(\mathbb{Z})$ and hence also $\widetilde{\operatorname{SL}}_d(\mathbb{R}) \to \operatorname{SL}_d(\mathbb{R})$ split over G.

Step 2: a particular \mathbb{Z}^2 subgroup of $\operatorname{SL}_d(\mathbb{Z})$. For each $d \geq 3$, we give a particular recipe for a pair of commuting hyperbolic matrices $A_1, A_2 \in \operatorname{SL}_d(\mathbb{Z})$ that generate a subgroup isomorphic to \mathbb{Z}^2 ; in Step 3 we prove that $\widetilde{\operatorname{SL}}_d(\mathbb{Z}) \to \operatorname{SL}_d(\mathbb{Z})$ does not split over $G = \langle A_1, A_2 \rangle$. Briefly, given $d \geq 3$, we write d = n + 3, and we define A_i to be a block diagonal matrix $\binom{B_i}{C_i}$, where $B_i \in \operatorname{SL}_3(\mathbb{Z})$ and $C_i \in \operatorname{SL}_n(\mathbb{Z})$ are hyperbolic matrices as defined in the following paragraphs.

First we construct commuting hyperbolic matrices $B_1, B_2 \in SL_3(\mathbb{Z})$ that are conjugate in $SL_3(\mathbb{R})$ to diagonal matrices of the form

(2)
$$\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \frac{1}{\lambda_1 \lambda_2} \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} \frac{1}{\mu_1 \mu_2} & 0 & 0 \\ 0 & \mu_1 & 0 \\ 0 & 0 & \mu_2 \end{pmatrix}$$

respectively, where $\lambda_1, \lambda_2, \mu_1, \mu_2$ are all negative and different from -1. As an explicit example, consider the polynomial $\xi = x^3 + x^2 - 2x - 1$. The totally real cubic field $K = \mathbb{Q}[x]/(\xi)$ has discriminant 49 (the smallest possible). Fixing a root α of ξ in K, the group of units \mathcal{O}_K^{\times} , modulo its

torsion subgroup (which is isomorphic to $\mathbb{Z}/2\mathbb{Z}$, generated by -1), is freely generated by $\epsilon_1 := \alpha^2 + \alpha - 1$ and $\epsilon_2 := -\alpha^2 + 2$. The action of the units $-\epsilon_1$ and $\epsilon_1 \epsilon_2$ on the ring of integers \mathcal{O}_K with the basis $\mathcal{O}_K \cong \mathbb{Z}\{1, \alpha, \alpha^2\}$ gives matrices as in (2). These claims are about this number field are contained in [Coh93, §B.4].

Next we recall that for each $n \geq 3$, there exists a subgroup $\mathbb{Z}^2 < \operatorname{SL}_n(\mathbb{Z})$ generated by hyperbolic matrices C_1, C_2 such that all eigenvalues of C_1 and C_2 are real and positive. Indeed, let K/\mathbb{Q} be a degree n totally real number field. Choose linearly independent units $\alpha_1, \alpha_2 \in \mathcal{O}_K^{\times}$, and let C_i be the matrix for multiplication by α_i on $\mathcal{O}_K \cong \mathbb{Z}^n$ (with respect to any basis). Since the Galois conjugates of the α_i are real and not equal to ± 1 , they do not lie on the unit circle, so the matrices C_i are hyperbolic. Furthermore, after replacing α_i by α_i^2 , we can ensure that the eigenvalues of C_i are positive.

Step 3: computing the obstruction to splitting. Let $G = \langle A_1, A_2 \rangle \cong \mathbb{Z}^2$ be the subgroup of $\mathrm{SL}_d(\mathbb{Z})$ defined in Step 2 above. To complete the proof of the Theorem, it remains to show that the short exact sequence

(3)
$$1 \to \mathbb{Z}/2\mathbb{Z} \to \widetilde{\mathrm{SL}_d(\mathbb{R})} \to \mathrm{SL}_d(\mathbb{R}) \to 1$$

does not split over G.

Recall the following algorithm for deciding if the sequence (3) splits over $G \cong \mathbb{Z}^2 \hookrightarrow \mathrm{SL}_d(\mathbb{R})$. Compare with [Han92].

- (i) Choose lifts $A_1, A_2 \in \mathrm{SL}_d(\mathbb{R})$ of the generators of G. Using the definition of the universal cover as a set of paths, choosing lifts amounts to choosing paths from A_i to the identity in $\mathrm{SL}_d(\mathbb{R})$.
- (ii) Compute the commutator $[\widetilde{A}_1, \widetilde{A}_2]$; this element belongs to the kernel group $\mathbb{Z}/2\mathbb{Z}$, which can be identified with $\pi_1(\operatorname{SL}_d(\mathbb{R}))$ (the commutator defines a loop in $\operatorname{SL}_d(\mathbb{R})$ based at the identity). The sequence (3) splits over G if and only if the loop $[\widetilde{A}_1, \widetilde{A}_2]$ represents the trivial element of $\pi_1(\operatorname{SL}_d(\mathbb{R}))$.

To apply this algorithm, we first define particular paths \widetilde{A}_i from A_i to the identity for which the obstruction $[\widetilde{A}_1, \widetilde{A}_2]$ is easy to compute. First, by conjugating, we may assume A_1, A_2 are diagonal (note that commuting hyperbolic matrices are simultaneously diagonalizable). Next we choose paths $\gamma_1(t)$ and $\gamma_2(t)$, $0 \le t \le 1$, within the group of diagonal matrices between A_1 and A_2 and $D_1 = (-1, -1, 1, 1, \dots, 1)$ and $D_2 = (1, -1, -1, 1, \dots, 1)$, respectively (recall how A_1, A_2 were defined in Step 2). We orient the paths γ_i so that $\gamma_i(0) = D_i$ and $\gamma_i(1) = A_i$. The matrices D_i belong to $SO(3) < SL_3(\mathbb{R}) < SL_d(\mathbb{R})$. Next consider the paths $\eta_i(t)$, $0 \le t \le 1$,

$$\eta_1(t) = \begin{pmatrix} \cos(\pi t) & -\sin(\pi t) & 0\\ \sin(\pi t) & \cos(\pi t) & 0\\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad \eta_2(t) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos(\pi t) & -\sin(\pi t)\\ 0 & \sin(\pi t) & \cos(\pi t) \end{pmatrix}.$$

The concatenation $\eta_i * \gamma_i$ is a path in $SL_d(\mathbb{R})$ from the identity to A_i and is our specified lift $\widetilde{A}_i \in \widetilde{SL_d(\mathbb{R})}$.

Having chosen \widetilde{A}_i , we compute the commutator $[\widetilde{A}_1, \widetilde{A}_2]$. Recall that the multiplication in $\widetilde{\mathrm{SL}}_d(\mathbb{R})$ of two paths $\lambda(t), \mu(t)$ in $\mathrm{SL}_d(\mathbb{R})$ based at the identity is the pointwise product path $t \mapsto \lambda(t) \cdot \mu(t)$ (this holds in any Lie group). Since $\widetilde{A}_i = \eta_i * \gamma_i$ and the paths γ_1, γ_2 pointwise commute (being contained in the diagonal group), it suffices to compute the commutator $[\eta_1, \eta_2]$ for the paths η_i from the identity to D_i . For this, it is helpful to recall that the pointwise product of paths λ, μ is homotopic to the concatenation $\lambda*(\lambda(1)\cdot\eta)$ of λ with the path $t\mapsto \lambda(1)\cdot\eta(t)$ (again this holds in any Lie group). Consequently, the path $\eta_1\eta_2\eta_1^{-1}\eta_2^{-1}$ is homotopic to the concatenation of paths

$$\eta_1 * (D_1 \cdot \eta_2) * (D_1 D_2 \cdot \eta_1^{-1}) * (D_1 D_2 D_1^{-1} \cdot \eta_2^{-1}).$$

Note that $D_1D_2D_1^{-1} = D_2$. One can compute directly that this loop represents a generator of $\pi_1(SO(3)) \cong \mathbb{Z}/2\mathbb{Z}$. A picture of this path is given in Figure 1.

This shows that $G = \langle A_1, A_2 \rangle \hookrightarrow \operatorname{SL}_d(\mathbb{R})$ does not lift to $\operatorname{SL}_d(\mathbb{R})$, as desired. This concludes the proof of Theorem 3.

FIGURE 1. Loop homotopic to $[\eta_1, \eta_2]$ in SO(3) $\cong \mathbb{R}P^3$, viewed as the quotient of the unit 3-ball by the antipodal map on its boundary. A point v in the ball corresponds to the rotation with axis v and angle $|v|\pi$ (counterclockwise according to the right-hand rule). The pictured loop is homotopically nontrivial.

REFERENCES

[BKKT23] M. Bustamante, M. Krannich, A. Kupers, and B. Tshishiku, *Mapping class groups of exotic tori and actions by* $SL_d(Z)$, arxiv:2305.08065. To appear in Transactions of the AMS, 2023. 1, 2, 3

[Bre67] G. E. Bredon, A Π_* -module structure for Θ_* and applications to transformation groups, Ann. of Math. (2) **86** (1967), 434–448. MR 221518 2

- [Coh93] H. Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206 4
- [FG12] F. T. Farrell and A. Gogolev, Anosov diffeomorphisms constructed from $\pi_k(\text{Diff}(S^n))$, J. Topol. 5 (2012), no. 2, 276–292. MR 2928077 2
- [FJ78] F. T. Farrell and L. E. Jones, Anosov diffeomorphisms constructed from π_1 Diff (S^n) , Topology **17** (1978), no. 3, 273–282. MR 508890 2
- [Han92] M. Handel, Commuting homeomorphisms of S^2 , Topology **31** (1992), no. 2, 293–303. MR 1167171 4
- [RHW14] Federico Rodriguez Hertz and Zhiren Wang, Global rigidity of higher rank abelian Anosov algebraic actions, Invent. Math. 198 (2014), no. 1, 165–209. MR 3260859 2

Mauricio Bustamante

Departamento de Matemáticas, Pontificia Universidad Católica de Chile mauricio.bustamante@uc.cl

Bena Tshishiku Department of Mathematics, Brown University bena_tshishiku@brown.edu