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Random walks on group a G

Fix S S a finite symmetric generating set

Let g ooo gn be i i d random variables want Uniform S

Wn gig g ne
is a RANDOM WALK on G

What are generic properties of elements quotients
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Def A RANDOM QUOTIENT of G is GN
where N Kwun ooo want and win are independent

Idea GA XSme Gg A xp
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An enlightening example: ideal triangle group representations

Consider the subgroup Γ generated by reflections along sides of an ideal triangle in H2.

Γ ∼= W3 = ⟨s1, s2, s3|s2i , i = 1, 2, 3⟩

• We will equip the group with the peripheral system

defined by the cusps.

• There is a unique discrete and faithful representation of

W3 in Isom(H2) sending the peripheral subgroups to

parabolic elements.

Isom(H2) ∼= SO(1, 2) ↪→ SL3(R), there is a one parameter

family of representations of W3 into SL3(R) sending
peripheral subgroups to unipotent matrices.



Constructing the representations (1/2)

We want to find three involutions

σi ∈ SL3(R) (i.e., σ2
i = Id) such that

σiσj ∼

1 1 0

0 1 1

0 0 1

.

• An involution σ is determined by a

pair (p, ℓ) ∈ RP2 ×⋔ (RP2)∗.

• σiσj is conjugated to a full Jordan

block iff:



Constructing the representations (2/2)

• A triple of flags in general position Fi ,

i = 1, 2, 3 defines a representation

ρ : W3 → SL3(R) sending peripheral

elements to unipotents.

• The relative character variety is

isomorphic to the space of SL3(R)
orbits of triples of flags parametrized

by:

TR(F1,F2,F3) =
α1(v2)α2(v3)α3(v1)

α1(v3)α2(v1)α3(v2)



When the triple ratio is positive...

• (Vinberg) ρ(W3) acts properly

discontinuosly on a strictly convex

Ω ⊂ RP2.

• When TR(F1,F2,F3) = 1, the triple of

flags is tangent to a unique ellipsoid.

• ρ is relatively Anosov.

Vague goal

Understand the action of ρ in the

symmetric space of SL3(R).



The submanifold fixed by an involutions acting on the symmetric space

• Let X be the space of unit determinant inner

products (5-dimensional). The group SL3(R) acts
on X , stabilizer of points are maximal compact

subgroup.

• X is a non-positively curved manifold.

• Given σ ∈ SL3(R) an involution, it fixes a totally

geodesic submanifold in X (parallel set). It consists

of inner products for which p is orthogonal to ℓ

(isometric to H2 × R).
• There is a correspondence between involutions σ,

pairs (p, ℓ), and parallel sets.

• The space of parallel sets P is a

pseudo-Riemannian symmetric space.



Spacelike geodesics on the space of parallel sets

• Spacelike geodesics on P are all

isometric.

• These correspond to a one-parameter

family of disjoint parallel sets on the

symmetric space X .

• We call the resulting (4 manifold) in

X a wall, it separates the symmetric

space into two components.



Fundamental domains for the W3 action on X

Theorem

Let ρ : W3 → SL3(R) be a representation associated to a

triple (F1,F2,F3) with triple ratio τ .

• The walls Wi bound a fundamental domain D ⊂ X.

• D/ρ(W3) fibers over H2/Γ, with parallel sets as fibers.

• The injectivity radius around the barycenter is:

inj(X/ρ(W3), qB) = arccosh


√√√√τ

1
3 + 2τ

1
6 + 2 + 2

τ
1
6
+ 1

τ
1
3

6





Final remarks

• When τ = 1, we recover arccosh( 2√
3
) the inradius of an ideal triangle in H2.

• For τ big, inj(X/ρ(W3), q3) ∼ 2
3 log(τ), a bit more work shows hX (ρ) ∼ 3

2 log τ .

• We can construct Lipschitz maps Fτ1,τ2 : X → X that are (ρτ1 , ρτ2)−equivariant

acting isometric on the fibers of the fibration.

• The entire construction depends only on a positive triple of flags. Choosing an

ideal triangulation of the surface Sg , and a Hitchin representation

ρ : π1(Sg ) → SL3(R) we can decompose X/ρ(π1(Sg )) into foliated regions like

before. We can quantify the distance between the fibers in terms of the

Fock-Goncharov coordinates of ρ with respect to this triangulation.



Thanks!
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Sectional Curvature

Let G be semisimple, canonical metric ρ

K (X ,Y ) =
⟨R(X ,Y )Y ,X ⟩

⟨X ,X ⟩⟨Y ,Y ⟩ − ⟨X ,Y ⟩2

▶ Reduces fully into a polynomial in the entries of X and Y

▶ Plays a major role in computations of volume in G
How so:

Theorem (Günther)

(Loosely) The volume of a ball in G is bounded below by the
volume of a ball with the same radius in Mk , a manifold with
constant sectional curvature

k = sup{K (Π)|Π ∈ Gr2(g)}



Computational Techniques

This k has been calculated via root systems of G
Leaves a lot of volume on the table ...

▶ Since sectional curvature expressed as a polynomial, can
compute large dataset quickly

▶ Can use this to better understand exactly how sectional
curvature is distributed

Application: Minimal Covolumes for Lattices in G
▶ Key result of H.C. Wang that ∃RG ∈ R such that

q : G → G/Γ

is injective on B(e,RG/2) for all Γ



How We Generate Data

Key Point: Sectional curvature simplifies for orthonormal
generators of Π

1. Begin with a unit vector v ∈ g

2. Using Gram-Schmidt find a decomposition g = v ⊕ v⊥

3. Iterate through v⊥, then choose a new v and repeat

Using this estimation technique, have improved previous bounds on
minimal covolume by

10 Orders of Magnitude



Alternative Method

What if we instead consider the action G ↷ G/Γ...

▶ The action is strong mixing, which translate to matrix
coefficients vanishing for the restricted representation:

ρ0 : G → GL(L20(G/Γ))

Can derive the following expression:

Vol(G/Γ) =
Vol(BRG

)

(⟨χB , g · χB⟩ − ⟨χ0
B , g · χ0

B⟩)1/2

Use uniform matrix coefficient decay for real rank ≥ 2...

Vol(G/Γ) ≥ Vol(BR)√
1− CGA

−δG
G
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The L-space knot conjecture

We first recall the famous L-space conjecture:

Conjecture (Boyer-Gordon-Watson, Juhasz)

Let M be a closed, orientable, and irreducible 3-manifold. Then the
following statements are equivalent:

M is not an L-space (“NLS”);

M admits a co-orientable taut foliation (“CTF”);

π1(M) is left-orderable (“LO”).

We also recall that a knot K ⊂ Y in an L-space is called an L-space knot
if it admits non-trivial L-space surgeries.

Hence if K is not an L-space knot, nontrivial surgeries of K are either
reducible or expected to admit co-orientable taut foliations.

Persistently foliar (1,1) non-L-space knots Qingfeng Lyu 2 / 6



The L-space knot conjecture

Definition

A knot in a 3-manifold is called persistently foliar, if except for one
meridional slope, all boundary slopes of the knot complement are strongly
realized by co-oriented taut foliations.
(That is, to each boundary slope there exists a co-oriented taut foliation of
the knot complement, which intersects the boundary torus transversely in
a linear foliation of that slope.)

Conjecture (Delman-Roberts)

A knot in an L-space is persistently foliar if and only if it has no non-trivial
L-space or reducible surgeries.

Persistently foliar (1,1) non-L-space knots Qingfeng Lyu 3 / 6



Meridional cusps

One of the reasons that we consider persistent foliar-ity of knots is that
there is a special strategy to prove it. This classical construction dates
back to 1960s-70s, and is usually referred to as the “even meridional
cusps” construction.

Suppose we can foliate the knot complement, such that the foliation is
transverse to the boundary torus at some meridional annuli (the “cusps”),
and tangent elsewhere, with co-orientations as below.

When filling in the solid torus, we can view it as a sutured manifold, where
the cusps are the sutures. Then the solid torus is taut sutured unless the
sutures bound disks in the solid torus.

Persistently foliar (1,1) non-L-space knots Qingfeng Lyu 4 / 6



(1,1) non-L-space knots

We use branched surfaces to construct taut foliations. Our construction
relies on a topological description of (1,1) L-space knots by
Greene-Lewallen-Vafaee.

Theorem (Greene-Lewallen-Vafaee)

A reduced (1,1) diagram represents an L-space knot if and only if it is
coherent, that is, all the rainbow arcs are of the same direction.

An incoherent diagram is given below.

Persistently foliar (1,1) non-L-space knots Qingfeng Lyu 5 / 6



Laminations?

For any incoherent reduced (1,1) diagram, we can construct a branched
surface, such that

1 The regular neighborhood of the branched surface is homeomorphic
to the knot complement.

2 The branched surface has 4 meridional cusps and 2 meridional
boundary circles.

Proposition (L.)

If this branched surface fully carries a lamination, then the corresponding
knot is persistently foliar.

We can verify that for (1,1) almost L-space knots our branched
surfaces do fully carry laminations.

We are working on the general case (work in progress).

Persistently foliar (1,1) non-L-space knots Qingfeng Lyu 6 / 6
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S : surface (finite-type, Euler char. < 0)

Mod(S) = Mapping class group of S

ML = {meas. laminations on S}

Mod(S) yML

Theorem (Thurston)
∃ Mod(S)-inv. Radon meas. onML of Leb. class.

“Thurston measure µTh”

Theorem (Masur, Veech)

µTh is Mod(S)-ergodic.

Dongryul M. Kim (Yale University) Invariant Radon measures onML GATSBY 2025 Fall 2 / 6



S : surface (finite-type, Euler char. < 0)

Mod(S) = Mapping class group of S

ML = {meas. laminations on S}

Mod(S) yML

Theorem (Thurston)
∃ Mod(S)-inv. Radon meas. onML of Leb. class.

“Thurston measure µTh”

Theorem (Masur, Veech)

µTh is Mod(S)-ergodic.

Dongryul M. Kim (Yale University) Invariant Radon measures onML GATSBY 2025 Fall 2 / 6



S : surface (finite-type, Euler char. < 0)

Mod(S) = Mapping class group of S

ML = {meas. laminations on S}

Mod(S) yML

Theorem (Thurston)
∃ Mod(S)-inv. Radon meas. onML of Leb. class.

“Thurston measure µTh”

Theorem (Masur, Veech)

µTh is Mod(S)-ergodic.

Dongryul M. Kim (Yale University) Invariant Radon measures onML GATSBY 2025 Fall 2 / 6



Question
Any other ergodic, invariant Radon measure?

Lindenstrauss–Mirzakhani, Hamenstädt:

Classify all Mod(S)-inv. Radon meas. onML.

Main step:

Theorem (Lindenstrauss–Mirzakhani, Hamenstädt)
Mod(S) yML is essentially uniquely ergodic, i.e.,

µ is erg. Radon meas. on RMod(S) =⇒ µ = µTh · const.

where RMod(S) ⊂ML consists of “recurrent” meas. lam., i.e.,

assoc. Teich. geod. rays are recurrent in Mod(S)\Teich(S)
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Major inputs:
Vol(Mod(S)\Teich(S)) < +∞
Minsky–Weiss’ non-div. of unipotent flows.

Question (Lindenstrauss–Mirzakhani)
Can anything be said for subgroups Γ < Mod(S)?

Theorem (Choi–K.)
Let Γ < Mod(S) be non-elementary.

∃ Γ-inv. Radon meas. µΓ onML.

Moreover,

Γ y (ML, µΓ) is ergodic ⇐⇒ geod. flow on Γ\Teich(S) is ergodic

Finally,

µ is erg. Radon meas. on RΓ =⇒ µ = µΓ · const.
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Key in the proof:

Theorem (Minsky’s contraction thm)
In Teich(S), the axis of a pseudo-Anosov mapping class is contracting.
(In fact, contracting holds for more general geodesics)

We observe: Actually, something stronger holds... “squeezing”

ε

≥ K(ε)
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Corollary (Choi–K.)
Let Γ < Mod(S) be non-elt. convex cocompact

If µ is a Γ-inv. erg. Radon meas. onML, then either

µ = µΓ · const.

or
µ = const. ·

∑
γ∈Γ

Dirac(γ · ξ) for some non-recurrent ξ ∈ ML

Dongryul M. Kim (Yale University) Invariant Radon measures onML GATSBY 2025 Fall 6 / 6
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