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An enlightening example: ideal triangle group representations

Consider the subgroup ' generated by reflections along sides of an ideal triangle in H?2.

>~ Ws = (s,s,s3]s?, i =1,2,3)

® \We will equip the group with the peripheral system
defined by the cusps.

® There is a unique discrete and faithful representation of
g W3 in Isom(H?) sending the peripheral subgroups to
parabolic elements.
/" Isom(H?) 2 SO(1,2) — SL3(R), there is a one parameter
=" family of representations of W3 into SL3(R) sending
peripheral subgroups to unipotent matrices.




Constructing the representations (1/2)

We want to find three involutions £2

o; € SL3(R) (i.e., 02 = Id) such that

110

oigj~ (0 1 1
0 01 °
® An involution ¢ is determined by a P1

pair (p, £) € RP? xM (RP?)*.
® 0o is conjugated to a full Jordan
block iff:




Constructing the representations (2/2)

® A triple of flags in general position F;,

i =1,2,3 defines a representation

p: W3 — SL3(R) sending peripheral

elements to unipotents. /
® The relative character variety is /

isomorphic to the space of SL3(R)

3

orbits of triples of flags parametrized
by: -

~ax(we)az(vz)az(vi)
TR(FL P, Fa) = O an(un)as(v2) p




When the triple ratio is positive...

Image of a random flag for s = 0.9, length = 15

08

® (Vinberg) p(W3) acts properly
discontinuosly on a strictly convex
Q C RP%

® When TR(Fi, F2, F3) = 1, the triple of
flags is tangent to a unique ellipsoid.

Image of a random flag for s = 0.4, length = 15

10

® o is relatively Anosov.

Vague goal

Understand the action of p in the
symmetric space of SL3(R).



The submanifold fixed by an involutions acting on the symmetric space

® | et X be the space of unit determinant inner

products (5-dimensional). The group SL3(R) acts
Spacelike

on X, stabilizer of points are maximal compact
subgroup. e g

® X is a non-positively curved manifold.

. : o Lightlik
® Given o € SL3(R) an involution, it fixes a totally e

geodesic submanifold in X (parallel set). It consists \
of inner products for which p is orthogonal to ¢ //

(isometric to H? x R). Timelike
® There is a correspondence between involutions o, N
pairs (p, ¢), and parallel sets.

® The space of parallel sets P is a

pseudo-Riemannian symmetric space.



Spacelike geodesics on the space of parallel sets

® Spacelike geodesics on P are all

isometric.

® These correspond to a one-parameter
family of disjoint parallel sets on the

symmetric space X.

® We call the resulting (4 manifold) in
X a wall, it separates the symmetric
space into two components.



Fundamental domains for the W; action on X

Let p: W3 — SL3(R) be a representation associated to a
triple (F1, Fp, F3) with triple ratio T.

® The walls W; bound a fundamental domain D C X.
® D/p(Ws) fibers over H? /T, with parallel sets as fibers.

® The injectivity radius around the barycenter is:

1 1
inj(X/p(W3), qg) = arccosh 76 13



Final remarks

® When 7 = 1, we recover arccosh(%) the inradius of an ideal triangle in H?.

® For 7 big, inj(X/p(W3), q3) ~ %Iog(T), a bit more work shows hx(p) ~ ﬁ.
® We can construct Lipschitz maps F,, -, : X — X that are (p-,, pr,)—equivariant

acting isometric on the fibers of the fibration.

® The entire construction depends only on a positive triple of flags. Choosing an
ideal triangulation of the surface S;, and a Hitchin representation
p:m1(Sg) = SL3(R) we can decompose X /p(m1(Sg)) into foliated regions like
before. We can quantify the distance between the fibers in terms of the

Fock-Goncharov coordinates of p with respect to this triangulation.



Thanks!
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Sectional Curvature

Let G be semisimple, canonical metric p

(R(X,Y)Y,X)
(X, XMWY, Y)Y — (X, Y)?

K(X,Y) =

» Reduces fully into a polynomial in the entries of X and Y
» Plays a major role in computations of volume in G

How so:

Theorem (Glinther)

(Loosely) The volume of a ball in G is bounded below by the
volume of a ball with the same radius in M, a manifold with
constant sectional curvature

k = sup{K(M)|MN € Gra(g)}



Computational Techniques

This k has been calculated via root systems of G
Leaves a lot of volume on the table ...

> Since sectional curvature expressed as a polynomial, can
compute large dataset quickly

» Can use this to better understand exactly how sectional
curvature is distributed

Application: Minimal Covolumes for Lattices in G
> Key result of H.C. Wang that 3R € R such that

q:G— G/T
is injective on B(e, Rg/2) for all T



How We Generate Data

Key Point: Sectional curvature simplifies for orthonormal
generators of Il

1. Begin with a unit vector v € g
2. Using Gram-Schmidt find a decomposition g = v @ v+
3. lterate through vL, then choose a new v and repeat

Using this estimation technique, have improved previous bounds on
minimal covolume by

10 Orders of Magnitude



Alternative Method

What if we instead consider the action G ~ G/T ...

» The action is strong mixing, which translate to matrix
coefficients vanishing for the restricted representation:
%G — GL(L3(G/T))
Can derive the following expression:
Vol(Bg,)

((xe.&xB) = (X3, & XB))
Use uniform matrix coefficient decay for real rank > 2...

Vol(G/T) =

1/2

Vol(Bg)

V1 - CeAe

Vol(G/T) >
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The L-space knot conjecture

We first recall the famous L-space conjecture:

Conjecture (Boyer-Gordon-Watson, Juhasz)

Let M be a closed, orientable, and irreducible 3-manifold. Then the
following statements are equivalent:

e M is not an L-space (“NLS");
e M admits a co-orientable taut foliation (“CTF");
e m1(M) is left-orderable (“LO").

v

We also recall that a knot K C Y in an L-space is called an L-space knot
if it admits non-trivial L-space surgeries.

Hence if K is not an L-space knot, nontrivial surgeries of K are either
reducible or expected to admit co-orientable taut foliations.

Persistently foliar (1,1) non-L-space knots Qingfeng Lyu




The L-space knot conjecture

Definition

A knot in a 3-manifold is called persistently foliar, if except for one
meridional slope, all boundary slopes of the knot complement are strongly
realized by co-oriented taut foliations.

(That is, to each boundary slope there exists a co-oriented taut foliation of
the knot complement, which intersects the boundary torus transversely in
a linear foliation of that slope.)

Conjecture (Delman-Roberts)

A knot in an L-space is persistently foliar if and only if it has no non-trivial
L-space or reducible surgeries.

Persistently foliar (1,1) non-L-space knots Qingfeng Lyu



Meridional cusps

One of the reasons that we consider persistent foliar-ity of knots is that
there is a special strategy to prove it. This classical construction dates
back to 1960s-70s, and is usually referred to as the “even meridional
cusps” construction.

Suppose we can foliate the knot complement, such that the foliation is
transverse to the boundary torus at some meridional annuli (the “cusps”),
and tangent elsewhere, with co-orientations as below.

When filling in the solid torus, we can view it as a sutured manifold, where
the cusps are the sutures. Then the solid torus is taut sutured unless the
sutures bound disks in the solid torus.

Persistently foliar (1,1) non-L-space knots Qingfeng Lyu



(1,1) non-L-space knots

We use branched surfaces to construct taut foliations. Our construction
relies on a topological description of (1,1) L-space knots by
Greene-Lewallen-Vafaee.

Theorem (Greene-Lewallen-Vafaee)

A reduced (1,1) diagram represents an L-space knot if and only if it is
coherent, that is, all the rainbow arcs are of the same direction.

An incoherent diagram is given below.

1
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For any incoherent reduced (1,1) diagram, we can construct a branched
surface, such that

@ The regular neighborhood of the branched surface is homeomorphic
to the knot complement.

@ The branched surface has 4 meridional cusps and 2 meridional
boundary circles.

Proposition (L.)

If this branched surface fully carries a lamination, then the corresponding
knot is persistently foliar.

@ We can verify that for (1,1) almost L-space knots our branched
surfaces do fully carry laminations.

@ We are working on the general case (work in progress).

Persistently foliar (1,1) non-L-space knots Qingfeng Lyu
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S i surface (inite-type, Euler char. <0)
Mod(S) = Mapping class group of S
ML = {meas. laminations on S}

Mod(S) ~ ML
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S :surface (nite-type, Euler char. < 0)
Mod(S) = Mapping class group of S
ML = {meas. laminations on S}
Mod(S) ~ ML

Theorem (Thurston)
3 Mod(S)-inv. Radon meas. on ML of Leb. class.

“Thurston measure py,”
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S i surface (inite-type, Euler char. <0)
Mod(S) = Mapping class group of S
ML = {meas. laminations on S}

Mod(S) ~ ML

Theorem (Thurston)
3 Mod(S)-inv. Radon meas. on ML of Leb. class.

“Thurston measure py,”

A

Theorem (Masur, Veech)

prn is Mod(S)-ergodic.

N
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Question
Any other ergodic, invariant Radon measure?

Lindenstrauss—Mirzakhani, Hamenstadt:

Classify all Mod(S)-inv. Radon meas. on ML.
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Question
Any other ergodic, invariant Radon measure?

Lindenstrauss—Mirzakhani, Hamenstadt:
Classify all Mod(S)-inv. Radon meas. on ML.
Main step:

Theorem (Lindenstrauss—Mirzakhani, Hamenstadt)
Mod(S) ~ ML is essentially uniquely ergodic, i.e.,

p is erg. Radon meas. on Ryioq(sy == 1 = jrn * const

where Ryjoq(s) C ML consists of “recurrent” meas. lam., i.e.,

assoc. Teich. geod. rays are recurrent in Mod(S)\ Teich(S)

Dongryul M. Kim  (Yale University) Invariant Radon measures on ML GATSBY 2025 Fall 3/6



Maijor inputs:
@ Vol(Mod(S)\ Teich(S)) < 400
@ Minsky—Weiss’ non-div. of unipotent flows.
Question (Lindenstrauss—Mirzakhani)
Can anything be said for subgroups I' < Mod(S) ?
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Maijor inputs:
@ Vol(Mod(S)\ Teich(S)) < 400
@ Minsky—Weiss’ non-div. of unipotent flows.
Question (Lindenstrauss—Mirzakhani)
Can anything be said for subgroups I' < Mod(S) ?

Theorem (Choi—K.)
LetT < Mod(S) be non-elementary.

3 T-inv. Radon meas. ur on ML.
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Maijor inputs:
@ Vol(Mod(S)\ Teich(S)) < 400
@ Minsky—Weiss’ non-div. of unipotent flows.
Question (Lindenstrauss—Mirzakhani)
Can anything be said for subgroups I' < Mod(S) ?

Theorem (Choi—K.)
LetT < Mod(S) be non-elementary.

3 T-inv. Radon meas. ur on ML.

Moreover,

' ~ (ML, pur) is ergodic <=  geod. flow onT'\ Teich(S) is ergodic
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Maijor inputs:
@ Vol(Mod(S)\ Teich(S)) < 400
@ Minsky—Weiss’ non-div. of unipotent flows.
Question (Lindenstrauss—Mirzakhani)
Can anything be said for subgroups I' < Mod(S) ?

Theorem (Choi—K.)
LetT < Mod(S) be non-elementary.

3 T-inv. Radon meas. ur on ML.
Moreover,
' ~ (ML, pur) is ergodic <=  geod. flow onT'\ Teich(S) is ergodic

Finally,

wis erg. Radon meas. onRr = = pur - const

- = = = SaRe

+
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Key in the proof:

Theorem (Minsky’s contraction thm)
In Teich(S), the axis of a pseudo-Anosov mapping class is contracting.

(In fact, contracting holds for more general geodesics)
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Key in the proof:

Theorem (Minsky’s contraction thm)
In Teich(S), the axis of a pseudo-Anosov mapping class is contracting.

(In fact, contracting holds for more general geodesics)
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Corollary (Choi—K.)
LetT < Mod(S) be non-elt. convex cocompact

If uis aT-inv. erg. Radon meas. on ML, then either

MU = UT - const.

or

M = const. * Z DiraC(’)’ o f) for some non-recurrent € € ML
vyel

Dongryul M. Kim  (Yale University) Invariant Radon measures on ML GATSBY 2025 Fall 6/6
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