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Minimal Volume Entropy in Dimension One

Volume Entropy of a Graph

Definition

Let X be a finite graph and g be a metric on X so that edges are

isometric to segments in R. The volume entropy of (X, g) is

ent(X,g) = lim

log(#S(x0, n))
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Example

Calculate ent(X, g) for (X,g) = |<D|
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Definition

If X is a finite graph, then the minimal volume entropy of X is

ent(X) = inf{ent(X, g)Vol(X, g) | g is a metric on X}.
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Lim calculates the minimal volume entropy of every finite graph.



Minimal Volume Entropy in Dimension One

Definition
If X is a finite graph, then the minimal volume entropy of X is

ent(X) = inf{ent(X,g)Vol(X,g) | g is a metric on X}.

Theorem
Lim calculates the minimal volume entropy of every finite graph.

Example

ent( CD) — ent(|®|) VO/(|<D|) — 3l0g(2)
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Lemma
Let G be a virtually free group with index—k free subgroup F,,.

Then

Fn €o
ent(G) = ent/(( ) = G~ T3

Theorem (Z)
If G is a virtually free group

G has a graph of groups decomposition

geo

G I3 <— which satisfies the
link subgroup series condition

Theorem
Every virtually free right angled Coxeter group acts geometrically
on T3.
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Pointed hyperbolic 3-manifolds

( M complete oriented)

H = < (M, p) : hyperbolic 3-manifold, /pointed Isometry
peM )

\

Definition (The geometric topology on H, informally)

Pointed manifolds are close in the geometric topology on H if
they are almost isometric on large neighborhoods of their
basepoints.



Connected components

Def: For a fixed hyperbolic 3-manifold M, the leaf of H
corresponding to M is

t(M) = {(M,p) e H| pe Mj.



Connected components

Def: For a fixed hyperbolic 3-manifold M, the leaf of H
corresponding to M is

t(M) = {(M,p) e H| pe Mj.

Theorem (Z.)

The connected components of H are
¢(M) for each M with vol(M) < oo
Hoo :={(N,p) € H | vol(N) = oco}.

Idea of proof: Use the density theorem of Namazi-Souto and
Ohshika to construct a dense path connected subset of H .



Path connectivity

Theorem (Z.)

Hoo IS not path connected. In particular, there exists a hyperbolic
3-manifold M such that £(M) is a path component of H .

Here, Hoo = {(N,p) € H | vol(N) = oo}.



Construction of M

Construction of M with /(M) a path component of H.:
Building block: Let N be a connected, compact, oriented
hyperbolic 3-manifold with two totally geodesic isometric boundary
components 51, 5S> with an isometry 7: 55 — 5.

T somerry

N /// €259
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Construction of M

Construction of M with /(M) a path component of H.:
Building block: Let N be a connected, compact, oriented
hyperbolic 3-manifold with two totally geodesic isometric boundary
components 51, 5S> with an isometry 7: 55 — 5.

T somerry

N /// €259
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Gluing: For i € Z enumerate copies N; of N with ON; = SiuSh
For all i € Z, glue S} to Si*! via 7. The result is M.
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The Basic Goal

Suppose afinite group G acts on a (closed, oriented) manifold M.



The Basic Goal

Suppose afinite group G acts on a (closed, oriented) manifold M.

Broad goal: Understand the group Homeo; (M).
\ l
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Path Components

Homeo;(M) - Homeo(M)

4

P:mo(Homeoz(M)) - my(Homeo(M))
\ ]\ l

| |
G-equivariant Isotopy classes
isotopy classes (mapping class group)

Today’s Question: Is P ?



For surfaces: yes!

Birman-Hilden, MacLachlan-Harvey (70s): If M is a hyperbolic
surface, then P: nO(HomeOG (M)) — nO(Homeo(M)) is injective.
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For surfaces: yes!

Birman-Hilden, MacLachlan-Harvey (70s): If M is a hyperbolic
surface, then P: nO(HomeOG (M)) — nO(Homeo(M)) is injective.

Ex:
L
S7 —<\<>/ \O}D

\ Birman-Hilden: There’s a SES

Z, © 1, (Homeo(Sz)) - 1T, (Homeo(Soﬁ))




For 3-manifolds: no!

Theorem (L.): For most group actions on ,
P:1o(Homeog(M)) - my(Homeo(M)) is not injective.
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For 3-manifolds: no!

Theorem (L.): For most group actions on 3-manifolds,
P:1o(Homeog(M)) - my(Homeo(M)) is not injective.

Ex:
2
(Sl X SZ)#Z I(swap)
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For 3-manifolds: no!

Need:
. * ( doesnotact
Theorem (L.): For most group actions on , freely
. . ¢ . * M/G has at least 3
P:1o(Homeog(M)) - my(Homeo(M)) is not injective. e fastors
Ex:
(Y ) )
Next step: What is Ker(P)?
(Sl X SZ)#Z "
e For(S!xS52%)"2 - §3, Ker(P) = F,, X Z,.
e Theorem (L.): For (S x §2)#* — §3,
Ker(®P) is normal closure of a single
l element.
5



For 3-manifolds: no!

Theorem (L.): For most group actions on ,
P:1o(Homeog(M)) - my(Homeo(M)) is not injective.
Ex:

(Sl X SZ)#Z

Need:

e (G does not act

freely
* M/G has at least 3
prime factors

PSS
Next step: What is Ker(P)?
* For (§'xS52)% - S3 Ker(P) = E, X Z,.

e Theorem (L.): For (S x §2)#* — §3,

element.

Miller space”).

Ker(®P) is normal closure of a single

* We study Ker(P) using tools from
geometric group theory (“McCullough-
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- Opers generalize the notion of complex projective structures on

surfaces:
r C
,é ¢,L M
M,

%ﬁse%L}[

- A projective structure induces a Riemann surface structure on S.
A monodromy construction implies that this data is equivalent
to a pair (f, p), for f: S — P locally biholomorphic for the
Induced complex structure, and equivariant for
p: m(S) = PGL,(C) some representation.

;e\



- Denote by CP'(X) the space of complex projective structures
inducing a complex structure X on S. Fixing [(fo, po)] € CP'(X), we

can write any other [(f, p)] as f(z) = Osc(2)(fo(2)), for
Osc : X — PGL,(C) holomorphic the osculating Mobius map.

- This map Osc satisfies that:

(05¢(2))~'(05c(2)) = = {f:fo) (j - ) .

—Z

where {f, fo} Is the Schwarzian derivative of f w.rt. fo. An object
that can be naturally identified with H°(K?) (the space of
quadratic differentials on X).



Ahlfors-Weil

- Fixing a marking on X, we can always identify X — D c P', and
po : m(X) — PGL,(R) the Fuchsian representation. This lets us
identify CP'(X) with HO(K?).

Baby Ahlfors-Weil
Let g € H°(K?) such that ||q||, < 4, then the associated complex

projective structure [(fq, pq)] satisfies that p, IS convex cocompact.

Sketch:
|dentifying PGL,(C) = Isom(IH°), we can think that PGL,(R) preserves

a totally geodesic plane H? ¢ H°. We can embed Epg : X — H? ¢ H°
equivariantly for our Fuchsian representation. One can define

Ep : X — H° as Ep(z) = Osc(2)(Eo(2)), for Osc(z) the osculating map
for the projective structure [(fq, pg)]- The bound gives us sufficient
control over S to prove that it is quasi-isometrically embedded.



- Given V an n—dimensional vector space, define the full flag
manifold F, as the space of sequences
OCE CE C...CE,=V, whereeach E Is a subspace,
Ei C Ei—Hr and dim Ei = I

- There is a distribution D C TF with some interesting geometry:

() > / /
77




- Given a Riemann surface X, a PGL,(C)—oper is:

L
o 6L, (&)
%
- A
6. fj”f"f’”ﬁ}’s )LW?

Each (complex) curve ¢, has to be tangent to the distribution D
and needs to satisfy a regularity condition.

- A monodromy construction associates to every such structure a
pair (f, p), where f: X — F, is a (locally injective) holomorphic
map that is equivariant for p : m(X) — PGL,(C).

- Example: If we embed PGL,(C) — PGL,(C) irreducibly, this
induces a map from ¢ : P' — F,. One can compose the
developing map of a P'—structure with ¢ to get a PGL,(C)—oper.



The question:

Theorem (Beilinson-Drinfeld) | |
The space of PGL,(C)—opers over a Riemann surface X is an affine

space with underlying vector space:

HO (K @ HY(K) @ ... @ HY(K™).

Comparing this with the Ahlfors-Weil theorem, it I1s natural to ask:
Question: | |

Are there constants A,, ..., A, such thatif (g2,...,qgn) Is a tuple of
differentials with ||gi|| < Ak, then the monodromy of the oper is
(complex) Borel Anosov.

- Our approach involves generalizing the osculating Mobius maps
to this setting, and using those to construct an equivariant
surface to the symmetric space PGL,(C)/SU, similarly to the
Ahlfors-Well case.



More comments:

- The punchline is a bit different. It requires a result that allows
us to promote from a surface in the symmetric space with

control geometry to Anosovness of the representation (a la
Kapovich-Leeb-Porti, Riestemberg).

+ The strategy proves fruitful for SL3(C) by brutal computation of
the Epstein surface for triangle groups (A3 = % works). But a

general approach is in development for any complex semisimple
Lie group G.



Thanks!

Disclaimer: The speaker chooses not to follow the following wise
words from John Baez: “Practice your talks! ... Watch yourself
struggling to turn on the laser pointer, tripping over the microphone
wire, fumbling around, desperately struggling against Microsoft to
get your Powerpoint presentation to work, engaging in all sorts of
pointless antics that distract from the subject matter, wasting
precious time, boring people to death. And resolve to do better!”
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I' < PSL(2,C): Fin. gen. Kleinian group (Z-dense)
Ap C S?: Limit set of T
p:I' = PSL(2,C): disc. faith. rep. (Z-dense)

Theorem (Sullivan)
Suppose that p is a quasi-conformal deform.

If the bdry map 0p is conformal on S* — Ar (settrami ditt-0),

then p is trivial (conj. by Mdbius transft.).
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I' < PSL(2,C): Fin. gen. Kleinian group (Z-dense)
Ap C S?: Limit set of T
p:I' = PSL(2,C): disc. faith. rep. (Z-dense)

Theorem (Sullivan)
Suppose that p is a quasi-conformal deform.

If the bdry map 0p is conformal on S* — Ar (eitrami dit-0),

then p is trivial (conj. by Mébius transt.).

@ Generalization of Mostow’s Rigidity

@ Evidence for Ahlfors’ measure conjecture
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Ahlfors’ meas. conj. (Proved by Canary, Agol, Calegari-Gabai)
I': fin. gen. Kleinian group. Either

Ar = Sz or Leb(Ap) = 0.

Canary: Tameness conj. = Ahlfors’ meas. con.

Agol, Calegari-Gabai: Tameness

Dongryul M. Kim (Yale University) Rigidity of Kleinian groups GATSBY 2024 Fall 3/5



Ahlfors’ meas. conj. (Proved by Canary, Agol, Calegari-Gabai)
I': fin. gen. Kleinian group. Either

Ar = Sz or Leb(Ar) = 0.

Canary: Tameness conj. = Ahlfors’ meas. con.

Agol, Calegari-Gabai: Tameness

Theorem (Sullivan)
Suppose that p is a quasi-conformal deform.

If Ap = S?, the-bery-mapop-is-conformar-onsi—ir

then p is trivial (conj. by Mdbius transf.).

Dongryul M. Kim (Yale University) Rigidity of Kleinian groups GATSBY 2024 Fall 3/5



Ahlfors’ meas. conj. (Proved by Canary, Agol, Calegari-Gabai)
I': fin. gen. Kleinian group. Either

Ar = Sz or Leb(Ar) = 0.

Canary: Tameness conj. = Ahlfors’ meas. con.

Agol, Calegari-Gabai: Tameness

Theorem (Sullivan)
Suppose that p is a quasi-conformal deform.

If Ap = S?, the-bery-mapop-is-conformar-onsi—ir

then p is trivial (conj. by Mdbius transf.).

y

What if Leb(Ar) = 07
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In general,
ap A — Sz

What is ‘conformality’ on a Leb-null set?

Circular slice: Ar N C for circle C C S?
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In general,
5’,0 : Ar — Sz

What is ‘conformality’ on a Leb-null set?

Circular slice: Ar N C for circle C C §?

Theorem (K.-Oh)

Suppose that S* — Ar has at least two components.

If Op I1s conformal ‘on Ar’, I.e.,
if 0p maps every circular slice into a circle,

then p Is trivial.

Indeed, setting A, = union of all such circular slices,

Int(A,) # 0 = pis trivial.
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A, C Ar : union of all circular slices mapped into circles

Theorem (K.-Oh)

Suppose further: T and p(I') are convex cocompact. Either
A, =Ar or Hausdorff meas.(A,) =0

and the former implies that p is trivial.
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A, C Ar : union of all circular slices mapped into circles

Theorem (K.-Oh)

Suppose further: T and p(I') are convex cocompact. Either
A, =Ar or Hausdorff meas.(A,) =0

and the former implies that p is trivial.

Proof Key |ldea (for both thms).

Dynamics on higher-rank homogeneous spaces

(e.g. Transitivity/Ergodicity of a higher-rank flow,

higher-rank Patterson-Sullivan measures,)

and relate them to fractal geometry of limit sets
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