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Definition

Let X be a finite graph and g be a metric on X so that edges are

isometric to segments in R. The volume entropy of (X , g) is
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n!1

log(#S(x0, n))
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If X is a finite graph, then the minimal volume entropy of X is

ent(X ) = inf{ent(X , g)Vol(X , g) | g is a metric on X}.

Theorem

Lim calculates the minimal volume entropy of every finite graph.
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Pointed hyperbolic 3-manifolds

H =

8
<

:(M, p) :
M complete oriented
hyperbolic 3-manifold,
p 2 M

9
=

;/pointed isometry

Definition (The geometric topology on H, informally)

Pointed manifolds are close in the geometric topology on H if
they are almost isometric on large neighborhoods of their
basepoints.



Connected components

Def: For a fixed hyperbolic 3-manifold M, the leaf of H
corresponding to M is

`(M) := {(M, p) 2 H | p 2 M}.

Theorem (Z.)

The connected components of H are

1. `(M) for each M with vol(M) < 1

2. H1 := {(N, p) 2 H | vol(N) = 1}.

Idea of proof: Use the density theorem of Namazi-Souto and
Ohshika to construct a dense path connected subset of H1.
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Path connectivity

Theorem (Z.)

H1 is not path connected. In particular, there exists a hyperbolic
3-manifold M such that `(M) is a path component of H1.

Here, H1 = {(N, p) 2 H | vol(N) = 1}.



Construction of M

Construction of M with `(M) a path component of H1:
Building block: Let N be a connected, compact, oriented
hyperbolic 3-manifold with two totally geodesic isometric boundary
components S1, S2 with an isometry ⌧ : S2 ! S1.

Gluing: For i 2 Z enumerate copies Ni of N with @Ni = S i
1 t S i

2.
For all i 2 Z, glue S i

2 to S i+1
1 via ⌧ . The result is M.
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The Basic Goal

Suppose a finite group 𝐺 acts on a (closed, oriented) manifold 𝑀.

Broad goal: Understand the group 𝐻𝑜𝑚𝑒𝑜𝐺(𝑀).

More specifically: topology of 𝐻𝑜𝑚𝑒𝑜𝐺 𝑀 ?
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For surfaces: yes!

Birman-Hilden, MacLachlan-Harvey (70s):  If 𝑀 is a hyperbolic 
surface, then 𝒫: 𝜋0 𝐻𝑜𝑚𝑒𝑜𝐺 𝑀 → 𝜋0 𝐻𝑜𝑚𝑒𝑜 𝑀  is injective.
Ex:
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For 3-manifolds: no!

Theorem (L.): For most group actions on 3-manifolds, 
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Next step: What is 𝐾𝑒𝑟 𝒫 ?
• For 𝑆1 × 𝑆2 #2  → 𝑆3, 𝐾𝑒𝑟 𝒫 ≅ 𝐹∞ ⋊ ℤ2. 
• Theorem (L.): For 𝑆1 × 𝑆2 #𝑛  → 𝑆3, 

𝐾𝑒𝑟(𝒫) is normal closure of a single 
element.

• We study 𝐾𝑒𝑟(𝒫) using tools from 
geometric group theory (“McCullough-
Miller space”).
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Motivation:

• Opers generalize the notion of complex projective structures on
surfaces:

• A projective structure induces a Riemann surface structure on S.
A monodromy construction implies that this data is equivalent
to a pair (f, ρ), for f : S̃→ P1 locally biholomorphic for the
induced complex structure, and equivariant for
ρ : π1(S) → PGL2(C) some representation.
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Motivation

• Denote by CP1(X) the space of complex projective structures
inducing a complex structure X on S. Fixing [(f0, ρ0)] ∈ CP1(X), we
can write any other [(f, ρ)] as f(z) = Osc(z)(f0(z)), for
Osc : X̃→ PGL2(C) holomorphic the osculating Mobius map.

• This map Osc satisfies that:

(Osc(z))−1(Osc(z))′ = −1
2 {f, f0}

(
z −z2
1 −z

)
.

where {f, f0} is the Schwarzian derivative of f w.r.t. f0. An object
that can be naturally identified with H0(K2) (the space of
quadratic differentials on X).

2



Ahlfors-Weil

• Fixing a marking on X, we can always identify X̃→ D ⊂ P1, and
ρ0 : π1(X) → PGL2(R) the Fuchsian representation. This lets us
identify CP1(X) with H0(K2).

Baby Ahlfors-Weil
Let q ∈ H0(K2) such that ||q||2 < 1

2 , then the associated complex
projective structure [(fq, ρq)] satisfies that ρq is convex cocompact.

Sketch:
Identifying PGL2(C) = Isom(H3), we can think that PGL2(R) preserves
a totally geodesic plane H2 ⊂ H3. We can embed Ep0 : X̃→ H2 ⊂ H3

equivariantly for our Fuchsian representation. One can define
Ep : X̃→ H3 as Ep(z) = Osc(z)(E0(z)), for Osc(z) the osculating map
for the projective structure [(fq, ρq)]. The bound gives us sufficient
control over S to prove that it is quasi-isometrically embedded.
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Opers

• Given V an n−dimensional vector space, define the full flag
manifold Fn as the space of sequences
0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ En = V, where each Ei is a subspace,
Ei ⊂ Ei+1, and dim Ei = i.

• There is a distribution D ⊂ TF with some interesting geometry:
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Opers

• Given a Riemann surface X, a PGLn(C)−oper is:

Each (complex) curve φα has to be tangent to the distribution D
and needs to satisfy a regularity condition.

• A monodromy construction associates to every such structure a
pair (f, ρ), where f : X̃→ Fn is a (locally injective) holomorphic
map that is equivariant for ρ : π1(X) → PGLn(C).

• Example: if we embed PGL2(C) → PGLn(C) irreducibly, this
induces a map from ι : P1 → Fn. One can compose the
developing map of a P1−structure with ι to get a PGLn(C)−oper.
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The question:

Theorem (Beilinson-Drinfeld)
The space of PGLn(C)−opers over a Riemann surface X is an affine
space with underlying vector space:

H0(K2)⊕ H0(K3)⊕ . . .⊕ H0(Kn).

Comparing this with the Ahlfors-Weil theorem, it is natural to ask:

Question:
Are there constants A2, . . . , An such that if (q2, . . . , qn) is a tuple of
differentials with ||qi|| < Ak, then the monodromy of the oper is
(complex) Borel Anosov.

• Our approach involves generalizing the osculating Möbius maps
to this setting, and using those to construct an equivariant
surface to the symmetric space PGLn(C)/SUn similarly to the
Ahlfors-Weil case.
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More comments:

• The punchline is a bit different. It requires a result that allows
us to promote from a surface in the symmetric space with
control geometry to Anosovness of the representation (a la
Kapovich-Leeb-Porti, Riestemberg).

• The strategy proves fruitful for SL3(C) by brutal computation of
the Epstein surface for triangle groups (A3 = 1

3 works). But a
general approach is in development for any complex semisimple
Lie group G.
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Thanks!

Disclaimer: The speaker chooses not to follow the following wise
words from John Baez: “Practice your talks! ... Watch yourself
struggling to turn on the laser pointer, tripping over the microphone
wire, fumbling around, desperately struggling against Microsoft to
get your Powerpoint presentation to work, engaging in all sorts of
pointless antics that distract from the subject matter, wasting
precious time, boring people to death. And resolve to do better!”
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� < PSL(2,C): Fin. gen. Kleinian group (Z-dense)

⇤� ⇢ S2: Limit set of �

⇢ : � ! PSL(2,C): disc. faith. rep. (Z-dense)

Theorem (Sullivan)

Suppose that ⇢ is a quasi-conformal deform.

If the bdry map @⇢ is conformal on S2 � ⇤� (Beltrami diff.=0),

then ⇢ is trivial (conj. by Möbius transf.).

Generalization of Mostow’s Rigidity

Evidence for Ahlfors’ measure conjecture
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Ahlfors’ meas. conj. (Proved by Canary, Agol, Calegari-Gabai)

�: fin. gen. Kleinian group. Either

⇤� = S2
or Leb(⇤�) = 0.

Canary: Tameness conj. ) Ahlfors’ meas. conj.

Agol, Calegari-Gabai: Tameness

Theorem (Sullivan)

Suppose that ⇢ is a quasi-conformal deform.

If ⇤� = S2, the bdry map @⇢ is conformal on S2 � ⇤� ,

then ⇢ is trivial (conj. by Möbius transf.).

Question

What if Leb(⇤�) = 0?
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In general,

@⇢ : ⇤� ! S2

What is ‘conformality’ on a Leb-null set?

Circular slice: ⇤� \ C for circle C ⇢ S2

Theorem (K.-Oh)

Suppose that S2 � ⇤� has at least two components.

If @⇢ is conformal ‘on ⇤�’, i.e.,

if @⇢ maps every circular slice into a circle,

then ⇢ is trivial.

Indeed, setting ⇤⇢ = union of all such circular slices,

Int(⇤⇢) 6= ; ) ⇢ is trivial.
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⇤⇢ ⇢ ⇤� : union of all circular slices mapped into circles

Theorem (K.-Oh)

Suppose further: � and ⇢(�) are convex cocompact. Either

⇤⇢ = ⇤� or Hausdorff meas.(⇤⇢) = 0

and the former implies that ⇢ is trivial.

Proof Key Idea (for both thms).

Dynamics on higher-rank homogeneous spaces

(e.g. Transitivity/Ergodicity of a higher-rank flow,

higher-rank Patterson-Sullivan measures,)

and relate them to fractal geometry of limit sets
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