$$q(x,y) = qx^2 + bxy + cy^2$$

quadratic form on K^2 .

Equivalence V'=>V
$q \sim q'$, F $\exists \phi s f$: $q' = q \circ \phi$.
eg $q = xy$ $q' = x^2 - y^2$ equivalent
$(take \phi(x_{i}y) = (x + y, x - y))$ but q not equivalent to $q'' = x^{2} + y^{2}$
A + For K=1R Busiz problem Classify guadratic forms
Np to equivalence

Spheater's law of inertia:
B Symmetric, real coefficients, det B+0
(1) B equivalent to Bnm =
$$\begin{pmatrix} I_n & D \\ 0 & -I_m \end{pmatrix}$$

(11) no two of Bnim are equivalent.
Terminology
• $n = positive index ? invariant
• $m = vegative index ? of B$
• rouch = $n+m$
• signature sig LB) = $n-m$
Car two nondegenerate real guad forms
equivalent \iff same rank \notin synature.$

Proof of (i) It suffices to diagonalize
B
eg (
$$\frac{1}{2\pi}$$
, $\frac{1}{2}$)($\frac{\pi}{-52}$)($\frac{\pi}{2}$, $\frac{1}{2}$)=(10)
 $\frac{1}{2}$)=(0-1)
Diagonalizing B:
Option 1 (spectral Theorem)
B has orthonormal eigen Basis Uni-24 Md
wit standard inver prodion R^d

$$B_{ij} = \lambda_{j} u_{j}$$

$$E_{i} B_{ij} = \lambda_{j} \delta_{ij}$$

$$E_{i} \left(u_{1} \cdots u_{d} \right)$$

$$E_{i} B_{ij} = \lambda_{j} \delta_{ij}$$

$$\frac{D_{p} + \delta_{n} 2}{(u_{1} \cdots u_{d})} \left(v_{DW} / cd u_{n} operations \right)$$

$$E_{i} \left(\frac{31}{11} \right) \sum_{i=1}^{n} \left(\frac{10}{11} \right) \left(\frac{91}{11} \right) \left(\frac{1-1/3}{0} \right) = \left(\frac{30}{0\frac{2}{3}} \right)$$

$$\frac{1}{R^{2} + 3^{2}} R^{1} + R^{2} C^{2 \rightarrow C2 - \frac{1}{3}C1}$$

$$\frac{D_{p} + v_{0} 3}{(1 - 1)^{2} + 3^{2}} \left(c_{ij} + \frac{1}{3} + \frac{1}{3} \right)^{2} - \left(\frac{3}{3} + \frac{1}{3} \right)^{2} + \frac{1}{3} \left(\frac{1}{2} + \frac{2}{3} \right)^{2}$$

$$= 3 \left(x + \frac{1}{3} \right)^{2} - \frac{2}{3} y^{2}$$

$$\Rightarrow q_{ij} S_{k}^{2} - \frac{2}{3} y^{2}$$

$$R = \frac{1}{3} \left(x + \frac{1}{3} \right)^{2} - \frac{2}{3} y^{2}$$

$$R = \frac{1}{3} \left(x + \frac{1}{3} \right)^{2} - \frac{2}{3} y^{2}$$

П

Rinke Option 3 works over any field
of char = 2
(use
$$\frac{1}{2}$$
 fo complete square
 $x^{2} + ax \rightarrow x^{2} + ax + [\frac{a}{2}]^{2} - (\frac{a}{2}]^{2}$)
Course Preview "Sgnatures everywhere"
Manifolds
M⁴k closed, oriented manifold, dan = 4k
BM: H²k(MiR) × H²k(MiR) Or
product H⁴k(MiR) = R
Nondeg. Symmetric bilinear form
Sig(M) == Sig(BM)

Use to study knows up to concordance

Muslov index

$$\begin{pmatrix} generalizes Euler chis \\ Lag(\mathbb{R}^{2}) \cong S^{1} \end{pmatrix}$$
algebra
p real polynomial
 \mathbb{Q} : given $\alpha < b$, how many real
vote des p have in $(a,b) \subset \mathbb{R}^{2}$
Euclidean algorithm $P^{2}=P_{1}, P_{1}=P'$
 $P^{2}=q_{1}P_{1}-P_{2}$
 $P_{1}=q_{2}P_{2}-P_{3}$
 \vdots
 $P_{m}=q_{m-1}P_{m-1}+D$
 $\begin{bmatrix} Define \\ B = \begin{pmatrix} q_{1} & 0 \\ 1 & 0 \\ 0 & 1 & q_{m} \end{pmatrix}$

Thm For a26	c
f voots of p	sig (B(b)) - sig(B(a))
in (a, b)	2
(who multiplicity)	

First part of course : getting familiar ~l quadratic forms, esp. integral forms.

Lecture 2
Last time
• quadratic form
$$q: K^{d} \rightarrow K$$

is diagonalizable
 $q': K^{d} \stackrel{\phi}{\rightarrow} K^{d} \stackrel{f}{\rightarrow} K$
 $q'(x_{1},...,x_{d}) = a_{1}x_{1}^{2} + ... + a_{d}x_{d}^{2}$
• $K = IR \implies$
 $q'' = x_{1}^{2} + ... + x_{n}^{2} - (x_{n+1}^{2} + ... + x_{n+m}^{2})$
signature := $N-m$

$$\frac{Sylvester's \ Law}{B \in GL_{d}(R) \ Symmetric}$$

$$\frac{J \notin E \in GL_{d}(R) \ \#^{t}B \# = \begin{pmatrix} I_{n} & 0 \\ 0 & -I_{m} \end{pmatrix}$$

$$sig(B) := n - m$$

$$\frac{E \times B = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \in GL_{2}(R)$$

$$sig(B) = \begin{cases} 2 & det(B) > 0, \ tr(B) > 0 \\ 0 & det(B) < 0 \\ -2 & det(B) > 0, \ tr(B) < 0 \end{cases}$$

Rational quadratic forms
and p-signatures
q:
$$\mathcal{R}^{d} \longrightarrow \mathcal{R}$$
 quadratic form
Levit time q can be dragonalized (over \mathcal{R})
 $q \sim q' = q_1 x_1^2 + \dots + a_d x_d^2$ (aie \mathcal{Q})
 \mathcal{Q} : when are two diagonal forms
equivalent?
Runke completing square clocsn't give
canonical diagonal form
 $(3x^2 + 2xy) + y^2$ ms $3(x + \frac{y}{3})^2 + \frac{2}{3}y^2$
 $3x^2 + (2xy + y^2)$ ms $2x^2 + (x + y)^2$

Q: Consider firm

$$l(x^2+y^2)$$
 where l is prime.
when is this form equivalent one Q
to x^2+y^2 ?
Rink if $q=a_1x_1^2+\cdots+a_dx_d^2 \neq q$
 $q'=b_1x_1^2+\cdots+b_dx_d^2$ equivalent/ Q
then
• the forms have same $\#$ pos/neg sign
 $(v \text{ over } Q \implies v \text{ over } R)$
• $TTa: = TTbi \text{ in } Q^X/(Q^X)^2$
 $\left(\begin{array}{c} B' \sim B \iff B' = \Phi^{\dagger} B \Phi \\ \implies & det (B') \equiv det (B) \mod (Q^X)^2 \end{array}\right)$

This doesn't help distinguish
$$\chi^2 ty^2$$
 from $l(\chi^2 ty^2)$.

Some observations

$$\begin{array}{l} x^{2}+y^{2} \sim \left(x+y\right)^{2} + \left(x-y\right)^{2} = 2\left(x^{2}+y^{2}\right) \\ \text{Similarly} \quad x^{2}+y^{2} \sim \left(ax+by\right)^{2} + \left(bx-ay\right)^{2} \\ = \left(a^{2}+b^{2}\right)\left(x^{2}+y^{2}\right) \end{array}$$

• when
$$l \equiv 1(4)$$
 can write $l = a^2 t b^2$

So
$$\chi^2 ty^2 \sim l(\chi^2 ty^2)$$

what about
$$L \equiv 3(4)$$
?
 $3(x^2 + y^2) \sim (x^2 + y^2)$

given
$$a_1 x_1^2 + \dots + a_d x_d^2$$
 $a_i \in \mathbb{Z}$
the p-signature is
 $\sum_{i} p - part(a_i) + 4 \cdot \# \stackrel{>}{\underset{i}{}} a_i p - antisquare$
 $\sum_{i} mod 8$.

2-signature : weist see notes.
(-1)-signature :=
$$\sum_{i=1}^{\infty} (-1) \cdot purt(a_i) \in \mathbb{Z}$$

 $a = (-1)^{k} \cdot u \equiv signature over R.$
 $u > 0.$ (!)

Exercise Use p-signatures to show
for l prime

$$l(k^2+y^2) \sim \chi^2+y^2 \Leftrightarrow l=2 \text{ or}$$

 $l=1(4)$
Thus quadratic forms over Q are
equivalent \Leftrightarrow equivalent over $R \notin Qp$
for each prime p .

discuss more next time
(Usefue) Bop
$$f = q_1 x_1^2 + \dots + q_d x_d^2$$

quadratic form over Q. Fix $b \in Q^X$.
(1) If $\exists u \in Q^d$ st. $f(u) = b$
then $f \sim b x_1^2 + g(x_2, \dots, x_d)$
(2) (With cancellation)
Ass. $u \neq u'$ and $f(u) = b = f(u')$
write $f \sim b x_1^2 + g(x_2, \dots, x_d)$
 $f \sim b x_1^2 + g'(x_2, \dots, x_d)$
Then $g \sim g'$.

$$r_{w}: V \longmapsto V - 2 \xrightarrow{B(V,w)} W reflection$$
Then $r_{w}(u) = u'$
So v_{w} maps
$$span(u)^{+} + s span(u')^{+}$$
Possible problem: $u - u'$ is itstropic
ie $f(u - u') = 0$.
Then use $u + u'$ instead.
If $f(u - u') = f(u + u')$ then
$$\frac{B(u - u', u + u')}{s} = f(2u) - f(u - u') - f(u + u')$$

$$= 0 \ bk \ f(u) = f(u) = 0 \quad + \dots$$

$$\begin{array}{l} \overline{E_8} & \left(\text{Next} : \text{integral quad. forms. Nonconserve} \right) \\ \overline{D_n} &= \left\{ \begin{array}{l} X \in \mathbb{Z}^n \\ \end{array} \right| \quad \sum_{x'} = o(z) \right\} \\ \overline{D_n}^+ &= \left[\begin{array}{l} D_n \\ \cup \\ \end{array} \right] \left(\begin{array}{l} D_n + (\frac{1}{2}) - r\frac{1}{2} \right) \right) \\ n &= o(2) \Rightarrow \\ D_n^+ is on fattice \\ (\text{drew would } D_n^+ is not closed under +) \\ & 2(\frac{1}{2}, \dots, \frac{1}{2}) \notin D_n. \\ n &= o(4) \Rightarrow \\ \end{array} \\ \begin{array}{l} \overline{D_n} &= o(4) \Rightarrow \\ \overline{D_n} &= o(8) \Rightarrow \\ \eta &= o(8) \Rightarrow \\ \end{array} \\ \begin{array}{l} \overline{p_{inn}} is even \\ D_n^+ \longrightarrow 2\mathbb{Z} \\ \\ and \\ |det| = 1 \\ \end{array} \end{array}$$

D₈⁺ aka E8 lattice.
The gradmitic form has matrix

$$\begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 2 \end{pmatrix}$$

• This is the intersection form of a 4-manifold
topological
with no smooth structure.
• E8 gives deneast -lattice packing in
din 8 OC Show a 2016
Blichfeldt Square lattice has lattice
[Blichfeldt] Square lattice has lattice
in R² (denest)
E8 kissing number = 240 Z⁸ kissing # = 16=28

•
$$\Theta_{k}(z) = \sum_{\substack{v \in D_{8k}^{+}}} q_{1v} \qquad q_{2v} = e^{2\pi i z}$$

modular form weight 4k.

$$\theta\left(\begin{array}{c} az+b\\ cz+\delta\end{array}\right) = (cz+d)^{4k} \theta(z)$$

$$\frac{E8}{1}, \theta \text{ functions}, \text{ Isospectral Tori}$$

$$L \subset \mathbb{R}^{n} \text{ lattice. Assume} \langle u_{1}v \rangle \in \mathbb{Z} \text{ vel.}$$

$$\text{Theta function } \theta_{L}(z) = \sum_{\substack{v \in L \\ v \in L}} q^{\langle v_{1}v \rangle}$$

$$q = e^{2\pi i z}$$
Function on
$$H := \{ \text{Im}(z) > 0 \}$$

$$EX \quad \mathbb{Z} \subset \mathbb{R}$$

$$\theta(z) = \sum_{\substack{n \in \mathbb{Z} \\ n \in \mathbb{Z}}} e^{\pi i (z+1)n^{2}} = \theta(z).$$

$$(\text{Latin } \theta(\frac{-1}{2}) = \sqrt{\frac{z}{1}} \theta(z).$$

$$= \int_{a}^{b} \int$$

For
$$f(x) = e^{\pi i z \cdot x^2}$$

 $\hat{f}(y) = \sqrt{\frac{i}{z}} e^{-\pi i y^2/z}$ $\begin{pmatrix} tx trule / \\ computation \end{pmatrix}$
Poisson =) $\sum_{n} e^{\pi i z \cdot n^2} = \sqrt{\frac{i}{z}} \sum_{m} e^{\pi i \frac{n^2}{z}}$
 $\theta(z)$ $\theta(-\frac{1}{z})$

More generally if
$$L \subseteq \mathbb{R}^{n}$$

Uninsoluter, even lattice $\begin{pmatrix} 0 & n & l \neq x, & v \\ if & n & \equiv p(8) \end{pmatrix}$
then $\Theta_{L}(2+1) = (1, v, v) \in 22 \quad \forall v$.
Huen $\Theta_{L}(2+1) = \Theta_{L}(2) \quad \Theta_{L}(\frac{1}{2}) = 2^{\frac{n}{2}} \Theta(2)$
 $\Rightarrow \quad \Theta_{L} \quad \text{modular form for } SL_{2}(2).$
weight $\frac{n}{2}$
Application (isospectral tori)
Given $L \subseteq \mathbb{R}^{n}$
get torus $\mathbb{R}^{n}/L \cong T^{n}$
 \mathbb{R} 'sensemian
 $\Theta_{L} \iff \text{lengths of geodesics.}$
 $\overset{n}{\mathbb{Z}}_{r=L}^{(v,v)} = \sum_{N}^{v} \# \{v \in L[(v,v) = N] \cdot q^{N}\}$

Two tori are isospectral if they
have some geodenic lengths.
(
$$rarpice eigenvalues of Laplacian$$
)
 $Q = Are isospectrul nountable isometric?
(Can you hear the shape of a drim?)
Then (Milnov) \exists non-isometric isospectral
tori of dim = 16.
About prost. Recall from hastothe
 $D_n = \{x \in \mathbb{Z}^n \mid \mathbb{Z}_{x} = O(2)\}$
 $D_n' = D_n \cup (D_n + (\frac{1}{2}, \dots, \frac{1}{2}))$
if $n = O(8)$ $D_n' : even, minodular lattic
 $D_n' = E_8$$$

Last time Weak Hasse principe The guadratic forms / R equivalent over Qp are equivalent (for each prime P (including p=-1, $Q_{-1}=R$) (Some p-signature for each p.) Today explain how to deduce from Strong Hasse Principle (Hasse-Minkowski) DA rational quadratic form f represents D the $\exists x \in Q^d | \{i\}$ st f(x| = 0)If represents D over ap for each p.

2) Some for "f represents
$$b \in \mathbb{Q}^n$$

Rimble (Hassie principles)
That is about solving (quadratic) equations:
 $\exists ? x \in \mathbb{Q}^d$ st $f(x) = 0, x_1^2 + \dots + 0, x_n^2 = b$
An equation satisfies Hasse principle if....
Rimble $(D) \Rightarrow (D)$
if f represents b over (D, p) $\forall p$
then $g = f(x) - bg^2$ reps 0 over (D, p)
 $(D) \Rightarrow g$ reps 0 over (D)
 $\Rightarrow g$ reps 0 over (D)

Rule Strong => Weak. Proof by induction Base case $f = \alpha x^2$, $f' = \alpha' x^2$ Assume forf over Qp Yp. WTS frf over Q. Suffices to show f'represents a overla Since then f' ~ ax2 (last time) f~f'over lap => f'reps a over lap = f'reps a overla Hage

Induction Step basically the same.
Suppose
$$f, f'$$
 equiver over Q_p $\forall p$.
Fix $b \in Q^X$ represented by f . (over Q_i)
Suffices to show b represented by f' too.
Lattime: if b vep'd by
 $f \sim b x_i^2 + g(x_2, ..., x_d)$
 $f' \sim b x_i^2 + g'(x_2, ..., x_d)$
and With cancellation $\Rightarrow g \sim g'$ over Q_p
 $\Rightarrow g \sim g'$ over Q_i by induction
 $\Rightarrow f \sim f'$

Rational Farms & Hyperboliz manifolds (In response to Sam: why geometer) care mont rational forms.

$$= \sum_{i=1}^{n} A_{i} \in SL_{n+i}(\mathbb{Z}) \left[A^{t} \left(\begin{array}{c} 1 \\ 1 \\ -1 \end{array} \right) A^{t} \left(\begin{array}{c} 1 \\ -1 \end{array} \right) A^{t} \left(\begin{array}{c} 1 \\ -1 \end{array} \right) A^{t} \left(\begin{array}{c} 1 \\ -1 \end{array} \right) \right]$$

Rule SO(3, 1; 2) ~ H³ Fritz volume H3/So(3,1;Z) hyperbolic 3-manifold (non con pact)

Kalm-Markovic:
M³ closed hyperbolic

$$\Rightarrow \pi_i(M)$$
 contains surface subgroup.
Roop is much easter ble solutizi
is arthmetic group.

Correction / Additions

Claim from last time
If
$$g(x_{0},...,x_{d}) = bx_{0}^{2} - f(x_{1},...,x_{d})$$

represents 0 then f represents b.
(over any field of clar $\neq 2$)
Proof By ars unphon $\exists (y_{01},...,y_{d}) \in K^{d+1}$
S.t. $by_{0}^{2} = f(y_{1},...,y_{d})$
 $Case 1 \quad y_{0} \neq 0 \implies$
 $b = \left(\frac{1}{y_{0}}\right)^{2} f(y_{1},...,y_{d}) = f\left(\frac{x_{1}}{y_{0}},...,\frac{x_{d}}{y_{0}}\right)$
 $\implies f$ represents b.

(are 2 yo=0.

Then f represents 0 ("f isotropic")
Lemma f isotropic
$$\Rightarrow$$
 f reps every
nondegenerate $b \in K^{X}$.
Pfellen $f: K^{d} \rightarrow K$
 $b \ \alpha sociated biliner form.$
Fix $u \in K^{n}$ w $f(u) = 0$
f nondegen $\Rightarrow \exists v \in K^{d}$ st.
 $b(u,v) \neq 0$. Rescale v so $b(u,v) = 2$.
metrix of $b|_{span(u,v)} = \frac{u(0,1)}{1+1}$
 $b(su + v, su + v) = 2s + t = 0$ if $s = \frac{t}{2}$
 $veplace v \neq y = \frac{t}{2}u + v$ so then

matrix of
$$b_{spunlen,J} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

hyperbolic form
quadwatic form of $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ it
 $q(x_{1}y) = 2xy$.
In particular $q(\frac{b}{2}, 1) = b$.
 $f(z) = \sum_{n \in \mathbb{Z}} e^{\pi i z \cdot n^{2}}$
 $(Trent) : convergence?$
Claim converges on $H = \{ un(z) > 0\} \subset C$.
write $z = x + iy$
 $|e^{\pi i z \cdot n^{2}}| = |e^{\pi i (x + iy) \cdot n^{2}}| = |e$

$$= \left| e^{\pi i \times n^{2}} \right| \cdot \left| e^{\pi y n^{2}} \right| decays very fistas $n \to \infty$.
$$= 1$$

as $\log g$ as $y > \infty$.
If $y \leq 0$ there's trankle...
Rational forms \notin hyperbolic mfble.
$$f_{n} := -x^{2} + x^{2} + \dots + x^{2}$$

$$H^{n} := \begin{cases} x \in \mathbb{R}^{n+1} | f_{n}(x) = -1, x_{0} > 0 \end{cases}$$

$$H^{2} \qquad hyperbolic nodel$$

of $uperbolic space$
For $x \in H^{u}$
 $T_{x}H^{u} \cong x^{2} \qquad f_{y}|_{x^{2}} \qquad pos.$$$

$$N = Rien. metriz on Hn
(hyperbolic vetric)
$$O(f_n;R) = \left\{ A \in GL_{n+1}(R) \mid f_n(Av) = f_n(v) \\ \forall v \in R^{n+1} \right\}$$

$$U = V$$

$$O^+(f_n;R) \quad index 2 \text{ subgp prevening } H^n$$

$$V$$

$$So^+(f_n;R) = O^+ \cap SL_n(R)$$

$$J$$

$$So^+(f_n;Z) = SO^+ \cap SL_n(Z) - \frac{1}{2}$$

$$Prop \quad So^+(f_n;Z) \quad contains \ \alpha$$

$$Surface \quad Subgroup = T_i \left(\textcircled{O}, \underbrace{O} \right)$$

$$genus \ge 2.$$$$

The (Mahler Computives application)

$$q: (\mathbb{Q}^{d} \longrightarrow \mathbb{Q}$$
 graduation form
 $SO(q; \mathbb{Z}) \ge SO(q; \mathbb{R})$ as above.
 $SO(q; \mathbb{R})/SO(q; \mathbb{Z})$ compact
 $\iff q$ is anisotropic in $q(v) \neq 0$
 $\forall v \in \mathbb{Q}^{1}(SO)$

Ex. fn idotropic
$$\forall u$$
.
so $\# \frac{n}{solfnin}$ always noncompact.
Ex. $q = -7k^2 + x_i^2 + x_2^2$ anisotropic
 $= 2$, 2 , 2 , 2 , 0 , $n \neq 0$, $d \neq 0$

$$-7a_0^2 + a_1^2 + a_1^2 = 0 \qquad q \neq 0 \implies q \neq 0 \implies q \neq 0$$

dear denominators $\implies a_{0,a_1,a_1} \in \mathbb{Z}$.

$$a_{1}^{2} + a_{2}^{2} = 7a_{0}^{2}$$
Number theory: $N \in \mathbb{Z}_{>0}$ is sum of 2 squares
(\Rightarrow prime factorization constains no
 p^{k} where $p \equiv 3(4) \neq k$ odd.
 \Rightarrow $Ht^{2}/So(q; \mathbb{Z})$ compact hyperiodiz
 $2 - 0rb \cdot Told$.
finitely (oriented by a compact hyperiodiz
 $2 - 0rb \cdot Told$.
finitely (oriented by a compact hyperiodiz
 $=$ $So(q; \mathbb{Z})$ has surface subgp.
 $Pibod of Piop = q = -7x_{0}^{2} + x_{1}^{2} + x_{2}^{2}$
 $f_{n} = -x_{0}^{2} + x_{1}^{2} + \dots + x_{n}^{2}$ $u = 33$.
 $uTT = \int So(q; \mathbb{Z}) \subset So(f_{n}; \mathbb{R})$

Trich: $f_{n} := -7x_{0}^{2} + 7x_{1}^{2} + x_{2}^{2} + \cdots + x_{n}^{2}$ Observe · Solg; Z) ~ Solfy; Z) for n 2,3 • fu ~ fu over a since $\chi^{2} - \chi^{2} \mathcal{N} (4\chi + 3\chi)^{2} - (3\chi + 4\chi)^{2}$ $= \exists (x^2 - y^2).$ This implies So(fn; Z) and So(fn; Z) have common finite index Subgroup (commensurable) $\begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} 1 \\ - \eta \end{pmatrix} \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 0 - 7 \end{pmatrix}$ $\begin{pmatrix} 43\\ 34 \end{pmatrix}^{-1}$ Sol $f_{2,1}(Q) \begin{pmatrix} 43\\ 34 \end{pmatrix} = So \left(f_{2,1}'(Q) \right)$

Final algebraic chapter Integral Quadratic Forms · classification of unmodular, indefinite (usetal for study monitolds) · positive definte forms à mass formula

· forms on Z veuz concute classification using the Farey graph.

Quadratic Forms on
$$\mathbb{Z}^2$$

 $q(x,y) = a_x^2 + h_xy + b_y^2$ $a_ib_ih\in\mathbb{Z}$
Goal $g_{i,un}$ $g_{i,q}'$ determine if $g_{i,q}q'$
in finite time based on their values
Assume q is nondegenerate.
Dichotring
 q definite $positive$ $(q>0)$
 $negative$ $(q>0)$
 q indefinite $iisotropic$ $(J v \neq 0 q(u) = 0)$
 $a_u'sotropic$ $(g(u) \neq 0 \forall v \neq 0)$

Doserve q determined by values

$$q(e), q(f), q(e+f)$$
 whenever e, f baptfor \mathbb{P}^{1}
Check $q(xe+yf) = q(e)x^{2} + [q(e+f) - q(e) - q(f)]xy$
 $fq(f)y^{2}$
equivalently $B(y,y) := q(u+y) - q(u) - q(y)$
 det . by $B(e,e) = B(e,f) = B(f,f)$

Generally
U-V
V
U-V
V
U+V

$$\frac{paralleboynum}{v}$$

 $q(u+v)+q(u-v) = 2[q(u)+q(v)]$
equiv
 $[q(u)+q(v)-q(u+v)] + (q(u)+q(v)-q(u+v)] = 0$
 $\frac{\sqrt{v}}{v}$
 $exactly one positive denote it 8$
 $q(u+v) = q(u-v) + 28$ or

· earlis zero

q+c-b = q+(a+b)-b = 2a > 0b+c-a = b+(a+b)-q = 2b>0

Untertardunadely genus doesn't determine
the form (no Hasse principle new Z...)
For a genus
$$\hat{G}$$
 define the
mass $m(\hat{G}) = \sum_{q \in \hat{G}} \frac{1}{10(q)}$
 $O(q) = orthogonal group (finite ble)
 $q pos. det$
Mass formula for uninodular forms
 $of rank 8k$.
 $m(\hat{G}) = 2^{1-8k} \frac{1}{(4k)!}$ $B_{2k} \prod_{j=1}^{4k} B_j$$

Br = Bernoulli numbers.

rank	mals	# Farms
8	~ 10 ⁻⁹	$1 \text{ nr } E_q = D_8^+$
16	~ 10-18	$2 \sim D_{g}^{\dagger} \oplus D_{g}^{\dagger}, D_{g}^{\dagger}$
24	~ 10-15	24
32	~ 107	7107
	I	
each s in m(l	Summand (i) contribut	es at most $\frac{1}{2}$

Indefinite Forms on
$$\mathbb{Z}^2$$
 (affler
(onway)
Last time
• For any quadrotic form on \mathbb{Z}^2
get labeling of vertices of Forrey graph.
 \longleftrightarrow labeling of vertices of dual
Fary tree. + direction on edges
 $q = a x^2 + \delta xy + by^2$ ulog $\delta > 0$
 $q[e_1=b]$
 $q[e_1=b]$
 $q[e_1=a]$
 $q[e_1]=a$
 $q[e_1]=a$

Observe 9+6-5, 0+6, 0+6+5 arithmetic 9(e,-e,) g(e)+g(e)) g(e,+e,) progression • See this pottern around every edge u-v v (u+v (parallelogrum law) u,v 6455 for Z²

Similarly

Then (rivers
$$\not\in$$
 lates)
 $q: \mathbb{Z}^2 \longrightarrow \mathbb{Z}$ indefinite

Proof (Anisstrupic = River periodic)
Fix buiss
$$e_{if} \in \mathbb{Z}^{2}$$
 - $S^{=0}$
 $q(xe_{i}y_{f})=q(e)x^{2} + [q(e_{i}f)-q(e)-q(f)]x_{i}$
 $+q(f)y^{2}$
Blue from B
has natrix $B = \begin{pmatrix} 2q(e) & 8\\ 8 & 2q(f) \end{pmatrix}$
Rey $|det(B)| = |4q(e|q(f) - S^{2})|$
is invortiant $g = q \cdot (\oint \in GL_{2}(\mathbb{Z}))$
has $det \in \mathbb{Z}^{k}=f_{i}y$
 $f = q(e) = q(f) - S^{2}| = 4[q(e)q(f)| + S^{2}]$

Aside Topography = lopology $\underbrace{Cor}_{q} : \mathbb{Z}^2 \longrightarrow \mathbb{Z}$ • & an'isotropic = Solg) virtually I • q isotropic => solg) finite (see examples) Recall (Mahler Compactness) For g: 2d -> 2 SolqiR)/solqiZ)Compact es q anisotropic.

In special case above
$$[d=2)$$

Sol(q:iR) \cong R
Indefinite uniomodular forms on Z^d
- B symmetric integer notrix
- det (B) = ±1 (minordular)
eg Dn⁺ when $n \equiv 0.08$
A pos. definite
 $\exists > 10^7$ inequivalent pos definite
B in dim = 32 (muss formula)

Thun (Serve) B as above and indefinite · B odd (3 v s.t. vtBr odd) =) Bequiv to (In 0) 0-Im) = $[+1]^{\oplus n} \oplus [-1]^{\oplus m}$ • Beven (vtBJEZZ VJ) ⇒ Bequir to (E8) On HOM $H = \begin{pmatrix} 0 \\ 10 \end{pmatrix}.$

odd case is exercise modulo Thu (Meyor) q: 2d ~ 2 molefnite, minodular => isotropie. (not true w/o unimodular eq $x^2 + y^2 - 7z^2$ anisotropic)

see Notes

Intersection Forms of (4) non-folds
Source; Scorpan's Wild World of 4-manifolds
M⁴ cloted oriented 4-manifold
First example: S⁴, S²xS², CP², T⁴=S'x-xS'
Basic principle: a lot of the topology of M
is captured by how surfacer intersect in M.
especially then
$$\pi_1(M)=0$$
.
Eg S²xS² VS CP² # CP²
H₀(S²xS²) $\cong \begin{cases} Z = i=0.47 \\ Z^2 = i=2 \\ elte \end{cases} \cong H_0^2(CP^2 \# CP^2)$
H₂(S²xS²) gen by $a = [S^{2x}P^{2}]$ and $b = [P^{2x}S^{2}]$

Intersection form
$$H_2(M) \times H_2(M) \longrightarrow \mathbb{Z}$$

 $(x,y) := S_x \cdot S_y$
Symmetric, bilinear,
uninnodular on $H_2(M)$ /form $\downarrow \downarrow \qquad S_x$
Thue props best seen
using equivalent formulation:
 $(-, \cdot): H^2(M; \mathbb{Z}) \times H^2(M; \mathbb{Z}) \longrightarrow \mathbb{Z}$
 $(\alpha, \beta) := (k \cup \beta) [M]$
 $formdanceful
cuppod. Class $\in H_4(M)$
Scorpon: "Think W intersection, prove w/ cup
products$

(warm up 1/ looking for examples ...)

$$G_{eography}$$
 Question: While integral sym. bilinear
forms arise as intersection forms?
Recall (last time) uninvolular $\mathbb{Z}^d \times \mathbb{Z}^d \longrightarrow \mathbb{Z}$
Some of $[+i]^p \oplus [-i]^q$ or $\mathbb{E}_8^{\oplus n} \oplus \mathbb{H}^{\oplus n}$
(Serre)
which are intersection forms?
 $B_{02}^2 = [+1]$ $B_{02}^2 = [-i]$ $B_{s^2xs^2} = {0 \atop i 0}$
 $B_{M,\#M_2} = B_M, \oplus B_{M_2}$
The \exists cloted simply connected topological
 q -manifold M with $B_M = \mathbb{E}_8$.
Warning M has not smoothable.

$$\begin{bmatrix} 2 & 1 & & \\ 1 & 2 & 1 & \\ 1 & 2 & 1 & \\ 1 & 2 & 1 & \\ 1 & 2 & 1 & \\ 1 & 2 & 1 & \\ 1 & 2 & 1 & \\ 1 & 2 & \\ 1 & 2 & \\ 1 & 2 & \\ 1 & 2 & \\ 1 & 2 & \\ 1 & 2 & \\ 1 & 2 & \\ 1 & 2 & \\ 1 & 2 & \\ 1 & 2 & \\ 1 & 1 & 2 &$$

- Min genue vep.
- fools: Gange theory & Seiberg-Witten theory

 $d=4 \Rightarrow g=3.$

$$\frac{\operatorname{Representing} \operatorname{Homology} by submarifolds}{\operatorname{M}^{2n} \operatorname{cloted} \operatorname{oriented} \operatorname{manifold}}$$
intersection form
$$\operatorname{H}^{n}(M; \mathbb{Z} l \times \operatorname{H}^{n}(M; \mathbb{Z}) \longrightarrow \mathbb{Z}$$

$$\langle \alpha_{i_{1}} \alpha_{2} \rangle = (\alpha_{i} \alpha_{2}) \operatorname{EMJ}.$$

$$\overline{\operatorname{Exercise}} (\operatorname{See notes})$$

$$\operatorname{If} \alpha_{i} = \operatorname{Pomearedual}(x_{i}) \quad x_{i} \in \operatorname{H}_{n}(M)$$
and
$$x_{i} \in \operatorname{ENJ} \quad \operatorname{where} \quad N_{i} \subset M$$

$$\operatorname{Submarifold}$$

$$\operatorname{Hhen} \quad \langle \alpha_{i_{1}} \alpha_{2} \rangle = N_{i} \cdot N_{2}$$

$$\operatorname{This} \quad allows \quad us \quad to \quad thinke / veason$$

$$\operatorname{geometrically}.$$

Given
$$x \in H_{k}(M^{n})$$

What: $N^{k} \subset \widehat{F} \to M^{n}$ endoedded subuff
st: $f_{*}([NJ]) = x$.
Then (Thom, [950s) (stated incorrectly (art time))
 x is vep'd by a sub-manifold if
 $R \leq 6$ or $R = n-1, n-2$.
 E_{X} For M^{2} endry $x \in H_{k}(M)$
regid by a sub-manifold $O \leq k \leq B$.
Runke This is sharp:
E.g. $Sp(z) = \sum A \in GL_{2}(H) | A^{*}A = 12$
Compart Symplectic group, $H = q$ contentions.

10 dimensional compact Lie group.

$$S^3 \cong Sp(1) \longrightarrow Sp(2) \longrightarrow S^7$$

analogons to $S' \equiv U(1) \longrightarrow U(2) \longrightarrow S^3$
and $S^0 \cong O(1) \longrightarrow O(2) \longrightarrow S^1$
Compute $H_U(Sp(2)) \cong \begin{cases} \mathbb{Z} & U=0,3,7,00\\ 0 & elke \end{cases}$
(extervise in Serve spectral sequence)
Thus (Bohr - Homke - Kotschirde 2001)
Generator $x \in H_7(Sp(2))$ is not
vepresented by a submanifold.
Built This won't work for $S^3 \times S^7$...
So $S^3 \longrightarrow Sp(2) \longrightarrow S^7$ much be
normitivial.

A principle G-bundle over
$$S^{m} = D^{m} \cup D^{m}$$

 $D^{m} \longrightarrow dct. by http: dchis d
 $T^{m} \longrightarrow s^{m-1} \longrightarrow G.$
 $D^{m} \longrightarrow Here Tro (S^{3}) \cong \mathbb{Z}/12\mathbb{Z}$
(Clutching) $\neq D.$
Representing $x \in H_{n-1}(M^{m})$
 $H_{n-1}(M) \cong H^{1}(M;\mathbb{Z})$ (Pomenne dendety)
 $H_{n-1}(M) \cong H^{1}(M;\mathbb{Z})$ (Pomenne dendety)
 $\equiv [M, K(\mathbb{Z}, I)]$ (Brown representability)
 $\equiv [M, S^{1}].$
 $f_{1}, M \rightarrow S^{1} \longrightarrow T_{1}(M) \rightarrow \mathbb{Z} \longrightarrow d \in H^{1}(M;\mathbb{Z})$$

Then I simply connected closed 4 mfd with intersection form $B_M = E_8$ Key Plumbing

Proof bread + builty Alg top.
LES of
$$(N, \partial N)$$

 $H_{3}(N, \partial N) \rightarrow H_{2}(\partial N) \rightarrow H_{2}(N) \rightarrow H_{2}(N, \partial N) \rightarrow H_{1}(\partial N) \rightarrow H_{2}(N) \rightarrow H_{2}(N) \rightarrow H_{1}(\partial N) \rightarrow H_{1}(N)$
 $B_{N}(:, -) \downarrow \cong \downarrow PD$
 $H_{2}(N)^{*} \xrightarrow{\cong}_{UCT} H^{2}(N)$
 $X \mapsto B_{N}(x, -)$
 $B withmodular \Leftrightarrow B_{N}(:, -)$ iso
 $\Leftrightarrow \varphi$ iso
 $H_{1}(\partial N) \cong H_{1}(\partial N) = 0.$

T

The (Freedman on fake 4.6all) see
Scorpan.
X homology 3-sphere. I contractible
topological 4.mfld Y with DY=X.
Construction of E8 manifold.
() Plumb
$$T^{2}_{TS^2} TS^2 TS^2 TS^2 TS^2$$

to get N N
 $B_N = \begin{bmatrix} 2^{1} \\ 1 & 2 \\ 1 & 2 \end{bmatrix} = E_8$

$$\begin{array}{c} \boxed{Intersection form \stackrel{?}{e} \ cobordism} \\ \hline \\ \hline \\ M \ closed \ oriented \ 4 manifold. \\ \hline \\ intersection form \ \\ \hline \\ B_{M}: H_{2}(M) \times H_{2}(M) \longrightarrow \mathbb{Z}. \\ \hline \\ \hline \\ The \ \underline{signature} \ ob \ M \ is \ drived \ as \\ \ \\ sig(M) := \ sig(B_{M}). \qquad \left(\begin{array}{c} honotopy \\ invariant \end{array}\right) \\ \hline \\ eg \ sig((\# S^{2} \times S^{2})) = \ sig((\# S^{0})) = 0 \\ H = \binom{01}{10} \\ \hline \\ Sig((\# CP^{1} \# \# \overline{CP^{2}})) = \ sig((T_{n} \circ \circ \circ - T_{n})) = h - n \\ \hline \\ \hline \\ Thun (geometric \ significance \ g \ sig(M)) \\ \hline \\ sig(M) = \ sig(M') \iff M \ e M' \ are \\ \ \\ cobordant \end{array}$$

By clutching on "bundle
$$S^2 \rightarrow M \rightarrow S^2$$

is determined by (homotopy class of)
map $S' \longrightarrow SO(3)$
 $\pi_1(SO(3)) \cong \mathbb{Z}/2\mathbb{Z}$ so $\mathbb{C}P^2 \# \overline{C}P^2$
if the unique nentrivial S^2 -hundle over S^2
Sometimes written $S^2 \propto S^2$
Quick argument $\pi_1(SO(3)) \cong \mathbb{Z}/2\mathbb{Z}$
 $Solid \cong \mathbb{R}P^3 = \mathbb{D}^3/\pm 1$ on $\partial \mathbb{D}^3 = S^2$
 A is vitation along axis $v^0 h_0$ angle
 $\partial e[0, \pi]$
 $\Rightarrow SO(3) \cong S^2 \times [-\pi_1 \pi]/n$

(2)
$$M = \partial W \implies sig(M)=0$$
 (elementary)
(3) $sig(M)=0 \implies M=\partial N$ (Rokhlin)
Prost of (2) (3) next fine)
Lemme 1 (half-lines, half-dies)
 $M^{2u} = \partial W^{2u+1}$ oriented manifolds
 $dim_{Q}kev \left[H_{k}(M) \longrightarrow H_{k}(W)\right] = \frac{1}{2} dim_{Q}H_{k}(M)$
(Q-coeff; creats)
ker is isotropic wit BM.
Lemma 2 if B: Q^{2d} $M^{2d} \longrightarrow Q$ hordeg.
has d-dim'l isotropic subserve then siglisto

Prost of len 1 w/ Q-coeff $H_{kr1}(W,M) \xrightarrow{2} H_{k}(M) \xrightarrow{i} H_{k}(w)$ 112 11 2 112 PD $H^{k}(W) \longrightarrow H^{k}(M) \longrightarrow H^{km}(W,M)$ dim ker $(i) = dim ker (2^*)$ = dim im (i*) = dim Hx(M) - dim ker(i) (linear alg T:U->V T*:V*->U*) dim ber T+ dim im T* = dim U) ker(i) is ilotropic: Fix x, x2E ker(i) im () $X_i = \partial Y_i$

$$y_{i} = [N_{i}] \in H_{k+1}(W,M), \quad N_{i} \subset W \quad \text{submitted}$$

$$[\partial N_{i}] = x_{i} \quad WTS \quad (\partial N_{i}) \cdot (\partial N_{2}) = 0.$$

$$N_{i}^{k+1} \quad C \quad W^{2k+1} \quad 1 - manifeld \quad (with \partial)$$

$$\Rightarrow instercentions \quad q \quad \partial N_{i} \neq \partial N_{2} \quad Occur \quad in \quad paivs$$

$$W \quad opposite \quad signs.$$

$$II$$

$$\frac{Cobordistim \quad group S}{Oriented \quad with S} / (ovented)$$

$$abelian \quad group \quad mder \quad \square.$$

$$I \quad dentity: \quad [S^{n}] = neus \quad that \quad band. \quad [musi] = [m]$$

$$Inverses : - [m] = [m] \quad [M \times I]$$

┦

Eq.
$$\Omega_{1} = 0$$
, $\Omega_{2} = 0$
By The $\Omega_{2} \in \mathbb{Z}$ given by signature.
generated by \mathbb{CP}^{2}
Utility: every cobordium invariant
determined by value on \mathbb{CP}^{2}
 $E_{X} \cdot p_{1} : \Omega_{2} \longrightarrow \mathbb{Q}$
 M^{n} closed or. mfld $\longrightarrow \mathbb{R}^{N}$
 $\longrightarrow M^{-\frac{p_{M}}{2}} Gr_{n} \mathbb{R}^{N} \in Gr_{n} \mathbb{R}^{\infty} \sim BO(n)$
 $\chi \longmapsto T_{\chi} M \in \mathbb{R}^{\infty}$
 $H^{*}(Gr_{n} \mathbb{R}^{\infty}; \mathbb{Q}) \cong \mathbb{Q}[p_{1}, ..., Ptr.]]$
 $p_{1} : \Omega_{4} \longrightarrow \mathbb{Q}$ $M \longmapsto \mathcal{Y}_{M}^{*}(p_{1})[M]$

well: defined:
if
$$M = \partial W$$
 then
 $q_{M} = \partial W$ then
 $q_{M} = \partial W$ then
 $q_{M} = \partial W$ then
 $= q_{W} = (p_{i}) [M] = \int W = 0$
 $= Q_{W} = (p_{i}) (i_{*}[M]) = 0.$
 $= 0.$
Sig(Qp^{U}) = 1, $p_{i}(Qp^{2}) = 3$
 $Q_{Y} = \langle Qp^{2} \rangle = 3$
 $Q_{Y} = \langle Qp^{2} \rangle = 3$
 $Sig(M) = \frac{1}{2} p_{i}(M) + 4$ -manifolds M
(Hirzeloruch signature theorem)
Next time: Finish prot of Then
More on cobordism.

Defin Z
$$T^{4} = S' \times \cdots \times S'$$
 $S'CC$
 $(\mathcal{Y} = \sigma(x_{1}, \dots, x_{9}) = (\overline{x}_{1}, \dots, \overline{x}_{9})$
 σ involution, [6 fixed point] $(\pm 1, \dots, \pm 1)$
 $X = T^{4}/\sigma$ or bifold
 $p \in Fix(\sigma)$ σ action $Tp(T^{4})$ by $\binom{-1}{-1} = (-1)^{-1}$
Nobul of singular points \cong Cone (\mathbb{RP}^{3})
Left time: $\mathbb{RP}^{3} \cong SO(3)$
 $Also SO(3) \land T'S^{2}$ simple transitive
 $\Rightarrow SO(3) \cong T'S^{2}$
Remove Cone (\mathbb{RP}^{3}) replace $\forall T^{\leq 1}S^{2}$
 $\min t dTk_{A}$ bundle
 $\cot x_{0} text$
 $Get closed 4-monitold $K = K^{3}$ manifold.$

Facts • K Simply connected.
•
$$H_2(K;Q) \cong Q^{22}$$
 generated by
 $Ib S^2 : J \quad (2eno section of disk bundles)$
and $b = {4 \choose 2} T^2 : S \quad (comp from H_2(T^4))$
Intersection form on $H_2(K;Q)$ equivalent
to $[-2T^{\otimes 16} \bigoplus {0 \choose 10}^{\otimes 3}]$
 $\Rightarrow Sig(K) = Ib$
By Thun K cobordant to $\# CP^2$
 $(not blovious at all !)$
 $Q: IJ K \cong \# CP^2$ diffeo?

A: No Wrong intersection form.
Actually not obvious...
$$B_{K} \neq [-2]^{\otimes 16} \oplus ({}^{\circ}_{10})^{\otimes 3}$$

ble not unimodular
(our basic is not a basi's for $H_{2}(K; \mathbb{Z})$)
in fact
 $B_{K} \cong (-E_{8})^{\oplus 2} \oplus ({}^{\circ}_{10})^{\oplus 3}$.
Thus (Rokhlur) sigles=0 => M bounds.
Idea of Proof
(Innuersion theory) Every M⁴ (down overstal)
innerves in \mathbb{R}^{6} . $M^{4} g \rightarrow \mathbb{R}^{7}$...)

Recall Real vector bundles have Pontnyagin characteristic classes. $H(BO(G); \mathbb{R}) \cong \mathbb{R}[P_1, P_2, P_3] \quad p_i \in H^{4i}$ Chavacteristic class computation: $O = P_1(M \times \mathbb{R}^6) = P_1(T \oplus V_M)$ $= p_{1}(TM) + p_{1}(2M) = p_{1}(TM)$ Conclude. If M^r R⁶, then p, (TM)=0. SiglM=0 last time 3 Sig (M) = pi (TM) [M] So if sig(M)=0 (won't grite realize) have hope to have M ~ 1R6 What's the difficulty geometrically? Given M⁹ - R⁶ generically (M fiM) has fintely many tride points

More cobordism groups

$$\Omega_{n} = \begin{cases} Cloted or exted \\ n \cdot manifold \end{cases} / cobordism$$
(A ctually can view $\Omega := \bigoplus_{n \ge 0} \Omega_{n}$)
(as a ving with [M] · [N] = [MxN] ...)
Thun (Thom) $\Omega_{n} = T_{n}$ (something)
Key is Portryagin - Thom construction
Given $M^{n} \xrightarrow{Whitney} R^{n+R} \subset R^{\infty}$

$$\begin{array}{cccc} & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

and
$$S^{n+k+i} \longrightarrow \overline{S}^{+}_{k+i}$$
 is the
 $\Xi(S^{n+k}) \qquad \overline{\Sigma}(\overline{S}^{+}_{k}) \qquad \overline{S}^{n}_{i}Spension$
 $\overline{C}(S^{n+k}) \qquad \overline{\Sigma}(\overline{S}^{+}_{k}) \qquad \overline{Z}f$
Get well-defined element calin $\pi_{n+k}(\overline{S}^{+}_{k})$
 $(\operatorname{could} \operatorname{desirible} \operatorname{as} \operatorname{homotopy} \operatorname{group} \operatorname{ob})$
 $\overline{O}_{i} \operatorname{spectrum}$
This process can be reversed (hint transverselity)

•

Signatures of Knott

Knot signature
$$K \subset \mathbb{R}^3$$
(1) Seifert surface: \exists oriensted surface $F \subset \mathbb{R}^3$ $\exists F = K$.(2) Seifert bilivicar form $\forall F = K$.(2) Seifert bilivicar form $\forall F = K$.(2) Seifert bilivicar form $\forall F = K$. $Z : H_1(F) \times H_1(F) \longrightarrow \mathbb{Z}$ \mathbb{P}^{OP} $Z : U_1, V = Link \lfloor U^+, V \rangle$ u^+ $u^+ = pash of u in hormal direction to F. u^+ $NB. Z is not symmetric ! $Lk(u^+, v) = 1$ V $NB. Z is not symmetric ! $Lk(u^+, v) = 1$$$$

sig:
$$\mathcal{C} \longrightarrow \mathbb{Z}$$

proofs next time

other signatures
$$\omega \in S^{1}$$

 $H_{\omega} := (1-\omega) \geq + (1-\overline{\omega}) \geq^{+}$
Hermitian form. $H_{\omega}^{*} = H\omega$.
 $\operatorname{Sig}(K, \omega) := \operatorname{Sig}(H\omega)$
 $\operatorname{infortunately}$ there also vanish for Fig.B...
Fibering Trefoil Knot complement.
 $K = \bigcap_{i=1}^{\infty} (\operatorname{utoful} for \operatorname{understandug})$
 $\tau^{2} \operatorname{pt} \longrightarrow S^{3}(K \longrightarrow S^{1})$
 $Option 1 \quad K = S^{3} \cap \sum_{i=1}^{\infty} (z_{i}\omega) \in \mathbb{C}^{2} / z^{2} + \omega^{3} = 0$
 (why^{2})

Seifert Surfaces
Seifert's algorithm
Input: Knot K (planar diagram)
Output: Oriented Surface
$$F \hookrightarrow \mathbb{R}^3$$
 with
 $\partial F = K$
By example:
(2) create Seifert cycles

Genrs of F = 1t # Crossings - # Seifert cycles

eg for fig 8 gems = 1 + 4 - 3 = 1

Knot Signature

$$K = \partial F$$

Seifert asymmetric form
 $\Sigma : H_1(F) \times H_1(F) \longrightarrow \mathbb{Z}$
 $\Sigma(u_1v) = Link(ut,v)$ (on basis)
 $\Sigma = \int_{1}^{n} \int_{1}^{v} \frac{1}{1}$
 $B := \Sigma + \Sigma^{t} = \begin{bmatrix} -2 & 1 \\ 1 & 2 \end{bmatrix}$
 $\operatorname{Sig}(K) := \operatorname{Sig}(B).$
Thus K slice \Longrightarrow $\operatorname{Sig}(K) = 0$
Recall K slice if $K \subset S^{3}$ bounds
 $\operatorname{Ornbuddud} D^{2}$ in D^{4}
 \bigoplus concordant to unknot \bigoplus $[K] = 0 \in \mathbb{C}$

Cor sig(K) well defined Pfollor K= DE, K= DF two Seifert surfaces EHF Seinfert surface for K#K K#K slive (lost time) Thom sig(K#K)=0 $D = \operatorname{Sig}(K \# \overline{K}) = \operatorname{Sig}(B_{K \# \overline{K}})$ = $sig(B_K) + sig(B_{\overline{K}})$ = $Sig(B_k) - sig(B_k)$ [7

-
$$m=1$$
 : Seifert surfaces exist
- $m=4$: used for Robbins
(sig $(M^{1})=0 \Rightarrow M^{1}=3W^{5}$)
- $m=2$: use now
(2) K silice $K=3D^{2}$ $(D^{2}, bD^{2}) \Rightarrow (D^{2}, S^{3})$
Choose Seifert surface FC S³
 $\overline{F} := F \cup D^{2}$ closed or surface in D^{1}_{K}
 R^{1}_{K}
Thom $\Rightarrow \overline{F}$ bounds a 3-mild $M \in \mathbb{R}^{4}$
Half-lives, hulf-dies :
 $ker [H_{1}(\overline{F}) \rightarrow H_{1}(M]]$ is $\frac{1}{2} - dim^{1}$

Sympleitic - Matropic Subspace.

$$\Rightarrow ker is \sum -isotropic (exercise)$$

$$\Rightarrow B = \begin{pmatrix} D & A \\ A & C \end{pmatrix} \Rightarrow sig(B) = 0 \quad D$$

$$\boxed{Kind signatures, canonical}$$

$$Special (asses Assume K fibers)$$

$$F \longrightarrow S^{3} \setminus K \longrightarrow S^{1}$$

$$\int reg cover$$

$$F \times R \int Z = \langle T \rangle$$

$$T(x,t) = (\varphi(x), t+1) \qquad \varphi \in Honeo(F) \quad inconcircny$$

$$B(u, v) := \langle \varphi_{k}(u), v \rangle - \langle u, \varphi_{k}(v) \rangle \quad Symmetric$$

$$\varphi_{k} : H_{i}(F) \longrightarrow H_{i}(F) \longrightarrow Z \quad Symple int. form.$$

sig (K):= sig (B)
For general
$$K \in S^{3}$$

 $H_{i}(S^{3}\setminus K) \cong \mathbb{Z}$ (Alexander duality),
So have (cannical) \mathbb{Z} -conor
 $\mathbb{Z}({}^{\circ}X \longrightarrow S^{3}\setminus n(K))$
 X is horology surface
 $H_{i}(X_{i}\partial X_{i}R) \cong \begin{cases} R & c=0,2\\ R^{29} & i=1\\ 0 & elle \end{cases}$

and there's a sympth form $\langle \cdot, \cdot \rangle : H_1(X, \partial X; R) \ltimes H_1(X, \partial X; R) \to R$

 $B(u,v) = \langle T_*(u),v \rangle - \langle u, T_*(v) \rangle$ sig(K) := sig(B) vegnines no choice.

$$\frac{\text{More Kinst Signatures}}{C} = \begin{cases} \text{oriented} \\ \text{Knots} \end{cases} / \text{concordance} \\ \hline \text{Thm } \mathcal{E} \text{ is not finitely generated} \\ \hline \text{Th } \text{fact } \exists \mathcal{E} \longrightarrow \mathbb{Z}^{\infty} \\ \text{Previously :} \\ \text{ defined } \sigma: \mathcal{E} \longrightarrow \mathbb{Z} \qquad \text{Seifert form} \\ \text{K} \subset S^3 \longrightarrow F \qquad & \text{Seifert form} \\ \text{K} \subset S^3 \longrightarrow F \qquad & \text{Seifert surface} \qquad & \text{Seifert form} \\ \text{Seifert surface} \qquad & \text{Seifert surface} \\ \text{Seifert surfa$$

$$B_{w} = \begin{pmatrix} wt\bar{w} - 2 & 1 - w \\ 1 - \bar{w} & (wt\bar{w} - 2) \cdot n \end{pmatrix}$$

$$q = wt\bar{w} - 2 = 2[Re(w) - 1] = 2[\cos(2\pi) - 1]$$

$$det B_{w} = q^{2}n + q < 0 \Leftrightarrow n < \frac{-1}{q}.$$

Π

$$\beta : H_{i}(F) \times H_{i}(F) \longrightarrow \mathbb{Z}$$

$$\beta (u,v) = \langle \phi_{*}(u), v \rangle - \langle u, \phi_{*}(v) \rangle$$

$$\sigma (K) = sig(\beta). \qquad \langle \cdot, \rangle = intersection form$$

Given
$$A \in Sp_{2n}(\mathbb{R})$$
 consider
 $\mathcal{B}_{A} : \mathbb{R}^{2n} \times \mathbb{R}^{2n} \longrightarrow \mathbb{R}$
 $\mathcal{B}_{A} [u,v] = \langle A u, v \rangle - \langle u, Av \rangle.$
 $\mathcal{B}_{A} [u,v] = \langle A u, v \rangle - \langle u, Av \rangle.$
Symmetric

Exercise sig (
$$\beta_A$$
) invariant under
conjugacy in Span(R).
Ex $A = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$ $A' = \begin{pmatrix} \cot t & \sin t \\ -\sin t & \cot t \end{pmatrix}$
conjugate in GL2(R) but not in SL2(R) = Sp2(R)
preserves orientation

$$\beta_{A} = A^{t}T - JA = \begin{pmatrix} -2int & 0 \\ 0 & -2sint \end{pmatrix} \quad T = \begin{pmatrix} 0 \\ -10 \end{pmatrix}$$

$$\beta_{A'} = \begin{pmatrix} 2sint & 0 \\ 0 & 2sint \end{pmatrix}$$

$$sig(\beta_{A}) = -2 \neq 2 = sig(\beta_{A'})$$

$$\Rightarrow A_{i}A^{i} \quad not \quad Conjugate.$$

This invariant doesn't help distinguish

$$\begin{pmatrix} cost - sint \\ snt with \end{pmatrix} \notin \begin{pmatrix} cost \theta - sn \theta \\ sn \theta & cost \theta \end{pmatrix} \\ if t \neq \theta & in (0, \tau). \\ \hline \hline w - signatures Define H: C^{29} \times C^{29} \rightarrow C \\ H(u, v) = i \langle u, \overline{v} \rangle & Hermitian form \\ \hline H(u, v) = i \langle v, \overline{u} \rangle = -i \langle \overline{u}, v \rangle = \overline{i} \langle u, \overline{v} \rangle = \overline{H(u, v)} \end{bmatrix} \\ For A \in Spin(R) and we C consider \\ \hline Ew = \bigcup kw [(A - wI)^k] & Characteristic \\ substrate. \\ sig(H|_{Ew}) & conj: invar. of A. \\ \hline Culled the w-signature fA. \end{cases}$$

$$\begin{aligned} \mathcal{J} \sim \mathcal{N} & \mathcal{H} = \begin{pmatrix} \circ & i \\ -i & o \end{pmatrix} & \mathcal{A} = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \\ w &= e^{it} & \mathcal{E}_{w} = \begin{pmatrix} c \\ 1 \end{pmatrix} \begin{pmatrix} i \\ 1 \end{pmatrix} \begin{pmatrix} i \\ 2 \end{pmatrix} & sig(\mathcal{H}|_{\mathcal{E}_{w}}) = -1 \\ w &= \bar{e}^{it} & \mathcal{E}_{w} = \begin{pmatrix} c \\ 1 \end{pmatrix} \begin{pmatrix} -i \\ 1 \end{pmatrix} & sig(\mathcal{H}|_{\mathcal{E}_{w}}) = +1. \end{aligned}$$

all other w-sig's varith.

3rd definition of
$$\sigma(K)$$
 and
signature addituity that

M := double cover of D
branched over F
$$\sigma(K) := sig(M)$$

4-mfl signature

Kuy to showing this is well defined:
Thun (Novikov addituity)

$$M^{4} = M_{i} \cup M_{2}$$
 where $\partial M_{i} = N = \partial M_{2}$
 $M^{4} = Sig(M) = Sig(M_{i}) + Sig(M_{2}).$

eg
$$M = \mathbb{D}S^2$$
 unit disk bundle
 $\int \pi$
 $S^2 = D, \cup D_2$
 D_2

$$M = M_{t} \cup M_{2} \qquad M_{t} := \pi^{-1}(D_{t}) \cong D_{t} \times D$$
$$\cong D^{-1}$$

$$\frac{\text{Thm}}{\text{Im}} \left(\begin{array}{c} \text{Wall non additivity} \end{array} \right)$$

$$M^{q} \qquad N_{0} \qquad N_{2}$$

$$N_{1} \qquad X = \partial N_{i} \qquad N_{2}$$

$$\text{Li} := \ker \left[H_{2}(X) \longrightarrow H_{2}(N_{i}) \right]$$

$$\text{Lagrangian} \quad \left(\text{halt divit}, \langle \cdot, \rangle \text{ isotropic} \right)$$

$$\text{Sig}(M) = \operatorname{sig}(M_{i}) + \operatorname{sig}(M_{2}) + \mu(L_{0}, L_{1}, L_{2})$$

$$\text{Maylow index} \quad (\text{symplectic invariant})$$

Connect signatures to symplectic geometry.

$$\begin{array}{c|c} Maslow \quad index \\ \hline Motivation: Wall nonadditivity \\ \hline Motivation: Wall nonadditivity \\ \hline M_{2} \qquad L_{1} = ker \left[H_{1}(X;R) \rightarrow H_{1}(N;R)\right] \\ \hline M_{2} \qquad L_{1} = ker \left[H_{1}(X;R) \rightarrow H_{1}(N;R)\right] \\ \hline M_{2} \qquad L_{1} = ker \left[H_{1}(X;R) \rightarrow H_{1}(N;R)\right] \\ \hline M_{2} \qquad L_{1} = ker \left[H_{1}(X;R) \rightarrow H_{1}(N;R)\right] \\ \hline M_{2} \qquad Sig(M) = Sig(M_{1}) + Sig(M_{2}) + M(L_{1}L_{2},L_{3}) \\ \hline Mallov index \\ \hline \left(R^{2n}_{i}, \omega\right) \quad Symplectic \quad vector \quad space \\ \hline (R^{2n}_{i}, \omega) \quad Symplectic \quad vector \quad space \\ \hline (M_{2}(x;y) = x^{t} Jy \qquad J = \begin{pmatrix} o & T_{n} \\ -T_{n}o \end{pmatrix} \\ \hline Lagrangian \quad Gvallmennian \\ \hline \Lambda_{n} := & \sum L \subset R^{2n} \int dim L = n \\ \hline (x;y) = o \forall x;y \in L \ J \subset Gr_{n} R^{2n} \end{array}$$

$$Claim \beta Symmetric:
Can describe be as
graph f (anique) [inear
f: L_1 \rightarrow L_3.
He L_2 = { x+f(x) : x = L_1 ?.
Define $\beta: L_1 \times L_1 \rightarrow \mathbb{R}$ (f inj hence is
Since $L_1 \cap L_2 = \{e_3\}$)
 $\beta(x_1y) = \omega(x, fly)$)
Claim β Symmetric:
 L_1, L_3 Lagragian
 $O = \omega(x+f(x), y+f(y)) = \omega(x_1y) + \omega(f(x), y)$
 L_2 Lagragian
 $\beta(x_1y) - \beta(y, k)$$$

B is nondegenerate
$$b/c$$

 $\omega : L, XL_3 \rightarrow \mathbb{R}$ is nondegen.
and f is on iso.

Define
$$\mu(L_1, L_2, L_3) = sig(\beta)$$
.
Ex $(n=1)$ L_1, L_2, L_3
 $\beta(x_1x) > 0 \Rightarrow$
 $\mu(L_1, L_2, L_3) = 1$
 $r'(\mu) = L_2'$ L_1, L_2', rL_3
 $\beta(x_1, x) < 0 \Rightarrow$
 $\mu(L_1, L_2, L_3) = -1$
As long as L_1, L_2 transverse to L_3
(an repeat. $\exists f: L_1 \rightarrow L_3$ (not nec. iso)
st. $L_2 = graph(f) \subset L_1 \otimes L_3 \cong \mathbb{R}^2$
Define β as above and $\mu(L_1, L_2, L_3) = sig(\beta)$.

B may be degenerate but that's skay Note

Define

Novikor additivity

$$M \underbrace{M_{1}}_{N} \underbrace{M_{2}}_{N} \operatorname{sig}(M) = \operatorname{sig}(M_{1}) + \operatorname{sig}(M_{2})$$

$$\underbrace{M_{1}}_{N} \underbrace{M_{2}}_{N} \operatorname{sig}(M) = \operatorname{sig}(M_{1}) + \operatorname{sig}(M_{2})$$

$$\underbrace{Maxim np}_{N} \operatorname{Constitut} \operatorname{Mayer}_{N} - \operatorname{Viether}_{N} \operatorname{fequence}_{M_{2}(N)} \underbrace{(i_{1}, -i_{2})}_{H_{2}(M_{1})} \oplus \operatorname{H}_{2}(M_{2}) \xrightarrow{(i_{1}+i_{2})}_{H_{2}(M)} \xrightarrow{(i_{1}+i_{2})}_{H_{2}(M_{1})} \xrightarrow{(i_{1}+i_{2})}_{H_{2}(M_{2})} \xrightarrow{(i_{1}+i_{2})}_{H_{2}(M_{2})} \xrightarrow{(i_{1}+i_{2})}_{H_{2}(M_{2})}$$

$$eg \quad \text{if} \quad N = S^{3} \quad (\text{connected sum})$$

$$\begin{array}{c} \text{In general} \\ \text{H}_{2}(M) \cong & \frac{\text{H}_{2}(M_{1}) \oplus \text{H}_{2}(M_{2})}{\text{Im}(i_{1},-i_{2})} \oplus \text{Im}(3) \end{array}$$

$$= \frac{H_2(N)}{k\sigma(i_1) + ker(i_2)} \oplus \frac{H_2(M_1)}{Im(i_1)} \oplus \frac{H_2(M_2)}{Im(i_2)} \oplus Im(\partial)$$

$$\begin{array}{c} (2) \quad sig(z) = \mu(L_1,L_2,L_3) \quad (explain idea / convertion) \\ \hline \\ (0,] \times N_3 \quad U_3 \quad I_n \left[H_2(\partial z) \longrightarrow H_2(z) \right] \quad isotropic. \\ \hline \\ (0,] \times N_3 \quad U_3 \quad U_3 \quad U_4 \quad U_5 \quad U_7 \quad u_6 \\ \hline \\ (0,] \times N_3 \quad U_1 \quad U_2 \quad U_3 \quad U_4 \quad U_7 \quad u_6 \\ \hline \\ (0,] \times N_3 \quad U_1 \quad U_2 \quad U_3 \quad U_4 \quad U_7 \quad u_6 \\ \hline \\ (0,] \times N_3 \quad U_1 \quad U_2 \quad U_4 \quad U_7 \quad U_8 \quad U_7 \quad u_6 \\ \hline \\ (0,] \times N_3 \quad U_1 \quad U$$

Sig (M) = 0.

$$0=Sp(L_{1},L_{2},L_{3},L_{4}) = \sum_{j=1}^{4} (-j) p(...L_{i}...)$$

$$\frac{\text{Symplectic cocycle}}{\left[\stackrel{}{\mu} \right] \in H^{2}(\text{Sp}_{2n}(\mathbb{R}); \mathbb{Z})} \xrightarrow{\lambda^{7}y=a} \left[\begin{array}{c} \text{Group cohonology} \\ \text{Group cohonology} \\ \text{Group cohonology} \\ \text{C}^{k}(G; \mathbb{Z}) = \underset{\text{translation invol}}{\overset{}{\mu}} \xrightarrow{\lambda^{7}y=a} \\ \begin{array}{c} f^{*}(G; \mathbb{Z}) = \underset{\text{translation invol}}{\overset{}{\mu}} \xrightarrow{\lambda^{7}y=a} \\ \text{Translation invol} \\ \text{S: } C^{k} \longrightarrow C^{k+1} \\ \text{S: } C^{k} \longrightarrow C^{k+1} \\ \end{array} \right]$$

Other cocycles $C \in H^2(Sp_{2n} \mathbb{R})$

- 1) Central extensions.
- 2 Kähler form
- 3 Signature cocycle

1) Central extensions. For any group 6.
H²(G₁Z)
$$\xleftarrow{1-1}$$
 $\begin{cases} central extensions \\ 1 \rightarrow Z \rightarrow G \rightarrow G \rightarrow 1 \\ 1 \rightarrow Z \rightarrow G \rightarrow G \rightarrow 1 \\ 1 \rightarrow Z \qquad T_1(S_{p_{2n}R}) \cong T_1(U(A)) \cong Z \\ T_1(S_{p_{2n}R}) \cong T_1(U(A)) \cong Z \\ \xrightarrow{H} U_{1}(G_1) \xrightarrow{H} G \xrightarrow{H} G \xrightarrow{H} U_{1}(S_{p_{2n}R}) \cong T_1(U(A)) \cong Z \\ \xrightarrow{H} U_{1}(G_1) \xrightarrow{H} G \xrightarrow{H} G \xrightarrow{H} U_{1}(S_{p_{2n}R}) \xrightarrow{H} F_1(S_{p_{2n}R}) \xrightarrow{H} F_1(S_{p_{2n}R})$

Kähler form.

$$X = \frac{Sp_{2n}(R)}{\mu(n)} \stackrel{\simeq}{=} \frac{Siegel upper}{half space} H_{g} = \frac{EAEGL_{n}(C syn metric}{Im(A)>0} \\ Complex unf(A, Riemannian sym. space} \\ WE \Omega^{2}(X) Symplectric forn (Kähler farm) closed, Sp-inner \\ The pex define $\widehat{W}: (Sp_{2n}R)^{3} \longrightarrow R \\ (g_{1},g_{2},g_{3}) \longmapsto \int W \\ \Delta(g_{1},g_{2},g_{3}) \longmapsto \int W \\ \Delta(g_{1},g_{3},g_{3}) \longmapsto \int W$$$

$$\frac{\text{WTS}}{ab} = \delta \sigma (a_{1}b,c) = \sigma (b,c) - \sigma (ab,c) + \sigma (a,bc) - \sigma (ab)$$

$$= \delta \sigma (b,c) + \sigma (a_{1}b,c) = \delta \sigma (b,c) + \sigma (a_{1}b,c)$$

$$= \sigma (ab,c) + \sigma (a_{1}b).$$
Fact $H^{2}(\text{Spin}(R); R) \cong R$ so all cocycles are (basically) the same!

$$\frac{M_{aytr} Signature cocycle}{S_{g}} = \underbrace{Wod(S_{g})}_{Mod(S_{g})} = Homeo(S_{g})/isotopy = \pi_{0} Homeo(S_{g})}$$

$$\sigma: M_{od}(S_{g}) \times M_{od}(S_{g}) \longrightarrow \mathbb{Z}$$

$$F_{v} \propto_{i}\beta \in M_{od}(S_{g}) = \frac{1}{2} \qquad S_{g} \rightarrow E_{u}\beta \longrightarrow \overset{H_{u}\beta}{\longrightarrow} \overset{M_{p}}{\longrightarrow} \overset{M_{p$$

-

$$\frac{C \text{ laim } \sigma \text{ is a } 2 - \cos g \text{ de } (\text{ in homogeneous})}{[\sigma] \in H^{2}(\text{Mod}(S_{3}); \mathbb{Z})}$$

$$[\sigma] \in H^{2}(\text{Mod}(S_{3}); \mathbb{Z})$$

$$\underline{\text{Lest time } \text{ Elements } \Re H^{2}(G_{1}\mathbb{Z}) \text{ nertid by } \varphi: G^{3} \longrightarrow \mathbb{Z}}$$

$$\varphi(ga_{1}, ga_{2}, ga_{3}) = \varphi(a_{1}, a_{2}, a_{3}) \stackrel{\simeq}{=} \varphi(a_{1}, a_{2}, a_{3}) \stackrel{\simeq}{=} \varphi(a_{1}, a_{2}, a_{3}) = \varphi(a_{1}, a_{2}, a_{3}) \stackrel{\simeq}{=} \varphi(a_{1}, a_{2}, a_{3}) = \varphi(a_{1}, a_{2}, a_{3}) \stackrel{\simeq}{=} \varphi(a_{1}, a_{3}$$

Facts about o

$$\frac{\text{Topology of } \Lambda_n}{(1) \quad \Lambda_n \cong \text{Sp}_{2n}(\mathbb{R})/\text{GL}_n(\mathbb{R}) \cong U(n)/o(n)}$$

$$(2) \quad \frac{SU(n)}{So(n)} \longrightarrow \frac{U(n)}{O(n)} \longrightarrow S' \quad \text{fiberation}$$

$$\Rightarrow \pi_i(\Lambda_n) \cong \mathbb{Z} \quad \text{Generator of } H'(\Lambda_n; \mathbb{Z})$$
encarnation of Maslov class.

$$\frac{E \times n=2}{S^{2}} \qquad Spy(R)$$

$$S^{2} \stackrel{\sim}{=} \stackrel{S^{3}}{\stackrel{\sim}{s}^{1}} \stackrel{\simeq}{=} \frac{Su(2)}{so(2)} \xrightarrow{} \Lambda_{2} \stackrel{det^{2}}{\longrightarrow} S^{1}$$

$$= \frac{E \times orc.k}{Nonvolvorny} \qquad \text{is antipolal is } \Lambda_{2} \stackrel{\simeq}{=} \frac{S^{2} \times [0,1]}{(x,0) \sim (-x,1)}$$

$$= Fix \qquad Lo \in \Lambda_{n} \qquad de \ unpole$$

$$\Lambda_{n} = \begin{cases} L \cap Lo = \{0\} \\ transverse \end{cases} \qquad (kn + 1) \\ fransverse \qquad (kn + 1) \\ transverse \qquad (kn + 1) \\ suddrafic forms on only \qquad (kn + 1) \\ fixed L \cap L_{0} \\ \stackrel{\simeq}{=} R^{3} \xrightarrow{} (n + 1) \\ to \qquad (kn + 1) \\ to$$

Picture of
$$\tilde{\Lambda}_z \stackrel{\checkmark}{=} s^2 x R \stackrel{\checkmark}{=} 1$$

 $ift df \Lambda_z \times z$
 $[ift df \Lambda_z \times z$
 $Z] \in H_2(\Lambda_z)$ duel to $[m] \in H^1(\Lambda_z)$ (Arnold)
ie for $Y \in H_1(\Lambda_n)$ $m(Y) = Y \cdot Z$.
Next Unity different defentions of Meslov; applications to Lynamics

$$\frac{E \times n=2}{S^{2}} \sum_{j=1}^{n} \sum_{j=1}^{n} \frac{Su(2)}{So(2)} \longrightarrow \Lambda_{2} \xrightarrow{dut^{2}} S^{1}$$

$$Fix \qquad Le \wedge \Lambda_{2} \qquad Consider \qquad Z = \left\{ L \in \Lambda_{n} \mid Ln L_{0} \neq 0 \right\}.$$

$$\left\{ e_{1}, e_{2} \right\}$$

$$L \in \mathbb{Z} \setminus \left\{ L_{0} \right\} \qquad L \cap L_{0} \subset L_{0} \quad line \qquad Interval \qquad Lot \\ e_{2} \mid e_{3} \mid e$$

$$\Lambda_2 \setminus Z = \{ \text{ Lagrangians transverse to Lo} \}$$

 $\cong \{ \text{ quadratic farms on any fixed LMLo} \} (as in definition of the set of the$

Picture of
$$\tilde{\Lambda}_{z} \stackrel{\sim}{=} s^{2} x R \qquad \stackrel{\sim}{\geq} \frac{1}{2}$$

 Λ_1 story O $SL_2(R)$

Λ_1 story O $SL_2(R)$

Eq $f: S^2 \rightarrow S^2$ $\Lambda_{g} = 1 + Tr [f_{*}: H_{2}(s^{2}) - H_{2}(s^{2})]$ 1+ dog(f) f or pres diffeo $\Rightarrow \Lambda_f = 2$ => fine at least one fixed point This is sharp: f: ZH>Z+1 on C extends to differ (biholo) of $\hat{C} \cong S^2$ f has exactly one fixed pt. $f(\infty) = \infty$.

Ex
$$A = S' \times I$$

 $f: A \rightarrow A$
or. pres. diffeo $\Lambda_f = 0$ betschetz silent.
Indeed f need not have any fixed point.

Remarkable trend: area preserving diffeos
ferd to have more fixed gravanteed
fixed points.

Example 1) $S = S^{L}$
Thrue (Nikishin, Simm 1974) f: $S^{2} \rightarrow S^{L}$
area pres. diffeo (home) \Rightarrow
 $f has $= 2$ fixed point?
eg $f \in Isom(S^{2}) = So(3)$ has 2 fixed pt?
by Them algebra$

Q: Does
$$(S_{rg})$$
 have a contact port of $Y \equiv S'$, $Y \equiv S'$, F_{rr} $t \in S \cong S'$, $\theta \in (0, \pi)$
 $f(t, \theta) = Value S$
 $f(t, \theta) = Value S$
 S^{3} veturn map

H:
$$M \times \mathbb{R} \longrightarrow \mathbb{R}$$
 periodic
 $H(x,t+i)=H(x,t)$.
Key: Canley-Zehnder index (related to
Maslar)
For H: Mix $\mathbb{R} \longrightarrow \mathbb{R}$
and fixed point $f_1^H(x)=x$.
consider path $t \mapsto df_1^t(x) \in Sp_{2n}(\mathbb{R})$
Recall Spont $\mathbb{R} \longrightarrow \Lambda_n \longrightarrow S^1$
aloop in Spont has a Muslov index
But
generally X not a loop...

-