Signatures topics conure
Lecture 1
Quadratic forms (and signature)
K field, V K-vector space.
A quadratic form is a function
$q: V \rightarrow K$ st.

- $q(a v)=a^{2} q(v) \quad \forall a \in K, v \in V$
- $b(v, w):=q(u+w)-q(v)-q(w)$
is bilinear
Ex For $a, b, c \in K$

$$
q(x, y)=a x^{2}+b x y+c y^{2}
$$

quadratic form on K^{2}.

Equivalence
$q \sim q^{\prime}$ if

$$
V^{\prime}-\underset{\underline{\underline{\underline{N}}}}{\phi} \rightarrow V
$$

$$
q^{\prime} \searrow K^{\swarrow} q
$$

$\exists \phi$ si. $\quad q^{\prime}=q \circ \phi$.
eg $q=x y \quad q^{\prime}=x^{2}-y^{2} \quad$ equivalent
(take $\phi(x, y)=(x+y, x-y))$
but, q not equivalent to $q^{\prime \prime}=x^{2}+y^{2}$
for $K=\mathbb{R}$
Basic problem Classify quadratic forms up to equivalence

Dictionary Assume char $(K) \neq 2$.
Quadratic forms \leftrightarrow Sopmmerric forms
$q \longmapsto b(v, w):=\frac{1}{2}[q(v+v)-q(v)-q(v)]$

$$
q(v):=b(u, v)
$$

symuctir bilinear
\longleftrightarrow symmetric matrices forms $K=\left\langle e_{1}, \ldots, e_{d}\right\rangle$

$$
\begin{array}{cl}
b \longmapsto B_{i j}:=b\left(e_{i}, e_{j}\right) \\
b(v, w):=v^{t} B \omega \longleftrightarrow B
\end{array}
$$

Sample use

$$
\text { - } \begin{aligned}
& q^{\prime}=q^{2} \circ \phi \leftrightarrow b^{\prime}(v, w)= \\
& b(\phi v, \phi w)
\end{aligned} \begin{aligned}
& B^{\prime}=\Phi^{t} B \Phi \\
& \\
& \\
& \Phi=\text { matrix } \\
& \text { of } \phi .
\end{aligned}
$$

- q is $\longleftrightarrow \exists u$ st. $\longleftrightarrow \operatorname{det} B=0$

$$
\begin{aligned}
& q \text { is } \\
& \text { "degenerate" }
\end{aligned} \underset{b(u,-) \equiv 0}{\exists u \text { st. }} \longleftrightarrow \operatorname{det} B=0
$$

Sylvester's law of inertia:
B symmetric, real coefficients, $\operatorname{det} B \neq 0$
(i) B equivalent to $B_{n, m}=\left(\begin{array}{cc}I_{n} & 0 \\ 0 & -I_{m}\end{array}\right)$
(ii) no two of $B_{n i m}$ are equivalent.

Terminology

- $n=$ positive index ξ invariants
- $m=$ negative index $\{$ of B
- rank $=n+m$
- siguathue $\operatorname{sig}(B)=n-m$

Cor two equivalent \Longleftrightarrow same rank is signature.

Cor two nondegenerate complex quadratic forms equivalent \Longleftrightarrow same rank.
\Longrightarrow Brim equiv to
Prose of Sylvester

$$
B_{n+m, 0}=I_{n+m} \text { over } \mathbb{C}
$$

Proof of (ii) Fix nim. $B=B_{n, m}$
Say subspace $P \subset \mathbb{R}^{n+m}$ is positive if $B(v, v)>0 \quad \forall v \in P \backslash\{0\}$

Suffices to prove

$$
\max _{P \subset \mathbb{R}^{n+m}} \operatorname{din} P=n
$$

obviously an in variant of B
$\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$ positine $\Rightarrow \max \geqslant n$.
By contrudiction, suppose $\max =\operatorname{dim} P>n$.
Let $N=\operatorname{span}\left\{e_{n+1}, \ldots, e_{n+m}\right\}$
Dimeusion count $\Rightarrow P \cap \cap \neq\{0\} \quad *$ $\begin{array}{cc}\uparrow & \uparrow \\ \text { poss } & \text { neg. }\end{array}$

Proof of (i) If suffices to diugonalize B $\operatorname{eg}\left(\begin{array}{ll}\frac{1}{\sqrt{\pi}} & \\ & \frac{1}{\sqrt{2}}\end{array}\right)^{t}\left(\begin{array}{ll}\pi & \\ & -\sqrt{2}\end{array}\right)\left(\begin{array}{ll}\frac{1}{\sqrt{\pi}} & \\ & \frac{1}{\sqrt{2}}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

Diagonalizing B :
Option 1 (Spectral Theoren)
B has $\underbrace{\text { orthonarmal eigen Basis } u_{1}, \ldots, u_{d}}$ ust standerd inner pachion \mathbb{R}^{d}

$$
\begin{array}{ll}
B_{u j}=\lambda_{j} u_{j} & u_{i}^{t} B u_{j}=\lambda_{j} \delta_{i j} \\
\Phi=\left(u_{1} \cdots u_{d}\right) & \Phi^{t} B \Phi=\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
0 & & \lambda d
\end{array}\right)
\end{array}
$$

Option 2 (vow/column operations)

$$
\begin{aligned}
& \operatorname{Ex}_{\uparrow}^{\left(\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right)} \underset{\uparrow}{\sim\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{3} & 1
\end{array}\right)}\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 / 3 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
3 & 0 \\
0 & \frac{2}{3}
\end{array}\right) \\
& \uparrow_{R 2 \rightarrow-\frac{1}{3} R H R 2}^{C_{2} \rightarrow C_{2}-\frac{1}{3} C l}
\end{aligned}
$$

Option 3 (complete the square)

$$
\begin{aligned}
& q=3 x^{2}+2 x y+y^{2} \\
& =3\left[x^{2}+\frac{2}{3} x y+\left(\frac{y}{3}\right)^{2}-\left(\frac{y}{3}\right)^{2}\right]+y^{2} \\
& =3\left(x+\frac{4}{3}\right)^{2}-\frac{2}{3} y^{2} \\
& \Rightarrow q \sim 3 x^{2}-\frac{2}{3} y^{2}
\end{aligned}
$$

Rank Option 3 works over any field of char $\neq 2$
$\left(\begin{array}{ll}\text { use } \frac{1}{2} \text { to complete square } \\ & x^{2}+a x\end{array} \rightarrow x^{2}+a x+\left(\frac{a}{2}\right)^{2}-\left(\frac{a}{2}\right)^{2}\right)$

Course Preview "Signatures everguhere"

- Manifolds

$$
M^{4 k} \quad \text { closed, oriented manifold, dim }=4 k
$$

$$
B_{M}: H^{2 k}\left(M_{i} \mathbb{R}\right) \times H^{2 k}(M ; \mathbb{R}) \frac{\text { cup }}{\text { product }} H^{4 k}\left(M_{i} \mathbb{R}\right) \not \mathbb{R}^{2}
$$

nondeg. Symmetric bilinear form

$$
\operatorname{sig}(M)==\operatorname{sig}\left(B_{M}\right)
$$

Thun Two 4-mantolds have same signature \Longleftrightarrow they cobordant

Rank Cobordisms generally hard to construct. Much harder than computing signature of a matrix!

- knots

$$
B_{k}: H_{1}(F ; \mathbb{R}) \times H_{1}(F ; \mathbb{R}) \rightarrow \mathbb{R}
$$

symmetric Seifert form.

$$
\operatorname{sig}(K):=\operatorname{sig}\left(B_{K}\right)
$$

K knt $\quad \partial F=R$
use to study busts up to concordance

- Symplectic geometry

$$
\underbrace{\left(R^{2 g}, \omega\right)} \omega(x, y)=x^{t}\left(\begin{array}{cc}
0 & I_{g} \\
-I_{g} & 0
\end{array}\right) y
$$

sympl.vector space skew sym. form.

$$
\log \left(\mathbb{R}^{2 g}, \omega\right)=\left\{L \subset \mathbb{R}^{2 g} \left\lvert\, \begin{array}{l}
\operatorname{dim}_{\omega \mid} L=g \\
L \equiv 0
\end{array}\right.\right\}
$$

Surprise: has natural charts

$$
\cong\left\{\begin{array}{l}
\text { real sym } \\
\text { gag matrices }
\end{array}\right\}
$$

\leadsto

$$
\mu=(\operatorname{Lag})^{\times 3} \xrightarrow[\substack{\text { defined } \\ \text { as a signature }}]{ } \mathbb{Z}
$$

Muslor index
$\binom{$ generalizes Euler class }{$\operatorname{Lag}\left(\mathbb{R}^{2}\right) \cong S^{\prime}}$

- algebra
p real polynomial
Q: given $a<b$, how many real root does P have in $(a, b) \subset \mathbb{R}$?

Euclidean algorithm $\quad p_{0}=p, p_{1}=p^{\prime}$

$$
\begin{gathered}
p_{0}=q_{1} p_{1}-p_{2} \\
p_{1}=q_{2} p_{2}-p_{3} \\
\vdots \\
p_{m}=q_{m-1} p_{m-1}+0
\end{gathered}
$$

Define

$$
B=\left(\begin{array}{cccc}
q_{1} & 1 & & 0 \\
1 & \ddots & \ddots \\
& \ddots & 1 \\
0 & & 1 & q_{m}
\end{array}\right)
$$

Thun For $a<b$
\# roots of $p=\frac{\operatorname{sig}(B(b))-\operatorname{sig}(B(a))}{2}$ (who multiplicity)

First part of concise:
getting familiar il quadratic forms, esp. integral forms.

Lecture 2

Last fine

- quadratic form $q: K^{d} \rightarrow K$
is diugonalizuble

$$
\begin{aligned}
& \text { is diegonalizable } \\
& q^{\prime}: K^{d} \xrightarrow{\phi} K^{d} \xrightarrow{q} K \\
& q^{\prime}\left(x_{1}, \ldots, x_{d}\right)=a_{1} x_{1}^{2}+\cdots+a_{d} x_{d}^{2}
\end{aligned}
$$

- $K=\mathbb{R} \Rightarrow$

$$
\begin{aligned}
& K=\mathbb{R} \\
& q \sim q^{\prime}=x_{1}^{2}+\cdots+x_{n}^{2}-\left(x_{n+1}^{2}+\cdots+x_{n+m}^{2}\right)
\end{aligned}
$$

$$
\text { signature }:=n-m
$$

Sylvester's Law
$B \in G L_{d}(\mathbb{R})$ symmetric

$$
\begin{aligned}
& \exists \Phi \in G L_{d}(\mathbb{R}) \quad \Phi^{t} B \Phi=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & -I_{m}
\end{array}\right) \\
& \operatorname{sig}(B):=n-m \\
& \operatorname{sig}(B)=\left\{\begin{array}{cc}
2 & \operatorname{det}(B)>0, \operatorname{tr}(B)>0 \\
0 & \operatorname{det}(B)<0 \\
-2 & \operatorname{det}(B)>0, \operatorname{tr}(B)<0 .
\end{array}\right.
\end{aligned}
$$

Rational quadratic forms and p-signatures

$$
q: \mathbb{Q}^{d} \longrightarrow \mathbb{Q} \quad \text { quadratic form }
$$

Last time q can be diagonalized (over (Q)

$$
q \sim q^{\prime}=a_{1} x_{1}^{2}+\cdots+a_{d} x_{d}^{2} \quad\left(a_{i} \in \mathbb{Q}\right)
$$

Q: when are two diagonal forms equivalent?

Rink completing square doess't give canonical diagonal form

$$
\begin{aligned}
& \left(3 x^{2}+2 x y\right)+y^{2} \text { ns } 3\left(x+\frac{y}{3}\right)^{2}+\frac{2}{3} y^{2} \\
& 3 x^{2}+\left(2 x y+y^{2}\right) \text { no } 2 x^{2}+(x+y)^{2}
\end{aligned}
$$

Q: Consider form $l\left(x^{2}+y^{2}\right)$ where l is prime. when is this form equivalent over © to $x^{2}+y^{2}$?
Rok if $q=a_{1} x_{1}^{2}+\cdots+a_{d} x_{d}^{2} \bar{\xi}$

$$
q^{\prime}=b_{1} x_{1}^{2}+\cdots+b_{d} x_{d}^{2} \quad \text { equivalent } / \mathbb{Q}
$$

then

- the forms have same \# pos/veg sign (\sim over $\mathbb{Q} \Rightarrow \sim$ over \mathbb{R})
- $\pi_{a_{i}}=\prod_{b_{i}}$ in $\mathbb{Q}^{x} /\left(Q^{x}\right)^{2}$

$$
\left(\begin{array}{ll}
B^{\prime} \sim B & \Longleftrightarrow B^{\prime}=\Phi^{+} B \Phi \\
\Longrightarrow & \operatorname{det} B^{\prime}=\operatorname{det}(\Phi)^{2}-\operatorname{det}(B) \\
\Rightarrow & \operatorname{det}\left(B^{\prime}\right) \equiv \operatorname{det}(B) \bmod \left(Q^{x}\right)^{2}
\end{array}\right)
$$

This doesn't help distinguish $x^{2}+y^{2}$ from $l\left(x^{2}+y^{2}\right)$.

Some observations

- $x^{2}+y^{2} \sim(x+y)^{2}+(x-y)^{2}=2\left(x^{2}+y^{2}\right)$
- Similarly $x^{2}+y^{2} \sim(a x+b y)^{2}+(b x-a y)^{2}$

$$
=\left(a^{2}+b^{2}\right)\left(x^{2}+y^{2}\right)
$$

- when $l \equiv 1(4)$ can write $l=a^{2}+b^{2}$

So $x^{2}+y^{2} \sim l\left(x^{2}+y^{2}\right)$
What about $l \equiv 3(\varphi)$?

$$
3\left(x^{2}+y^{2}\right) \underset{?}{\sim}\left(x^{2}+y^{2}\right)
$$

Thu (weak Haste principle)
two quadratic same $\operatorname{det} \in \mathbb{Q}^{x} /\left(\mathbb{Q}^{x}\right)^{2}$
forms on $Q^{d} \Longleftrightarrow$ and same p-signature equivalent for every prime p.
p-signatures (Conway)

- Fix $p \geqslant 3$ prime for $a \in \mathbb{Z}$ write $a=\underbrace{p^{k} \cdot u}$
peart rel priveto p.
say a is a panti-square if k odd and u is not a square in $(\mathbb{Z} p \mathbb{C})^{x}$
given $a_{1} x_{1}^{2}+\cdots+a_{d} x_{d}^{2} \quad a_{i} \in \mathbb{Z}$ the p-signatuve is

$$
\begin{array}{r}
\sum_{i} p-p a r t\left[a_{i}\right)+4 \cdot \#\left\{a_{i} \quad p \text {-antisquave }\right\} \\
\bmod 8
\end{array}
$$

Example $q=6 x^{2}+20 y^{2}+15 z^{2}$
3-signature $3+1+3$

$$
\begin{equation*}
+4+0+4 \tag{8}
\end{equation*}
$$

5-signature $1+5+5$

$$
\begin{array}{r}
1+3+0 \\
+0+0+4 \equiv 7(8)
\end{array}
$$

p-signature $\quad 1+1+1 \equiv 3(8)$

$$
p \geqslant 7 \quad+0+0+0
$$

2-signature: weird see notes.

$$
\begin{align*}
& (-1) \text {-signature }:=\sum \underbrace{(-1)-\text { purr }\left(a_{i}\right)}_{\text {sign }\left(a_{i}\right)} \in \mathbb{\mathbb { Z }} \\
& \begin{array}{l}
a=(-1)^{k}-u \quad \\
u>0 .
\end{array} \quad \text { signature over } \mathbb{R} . \tag{!}
\end{align*}
$$

Exercise Use p-signatures to show for l prime

$$
l\left(x^{2}+y^{2}\right) \sim x^{2}+y^{2} \Longleftrightarrow \begin{aligned}
& l=2 \text { or } \\
& l \equiv 1(4)
\end{aligned}
$$

Thin (weak Haste pruciple, restated)
Truro quadratic forms over Q are equivalent \Longleftrightarrow eqrivalat over $\mathbb{R} \dot{Q_{i}}$ for each prime p.
discuss more next tine
(Useful) Prop $f=a_{1} x_{1}^{2}+\cdots+a_{d} x_{d}^{2}$ quadratic form over Q. Fix $b \in \mathbb{Q}^{x}$.
(1) If $\exists u \in \mathbb{Q}^{d}$ st. $f(u)=b$ then $f \sim b x_{1}^{2}+g\left(x_{2}, \ldots, x_{d}\right)$
(2) (Witt cancellation)

Ass. $u \neq u^{\prime}$ and $f(u)=b=f\left(u^{\prime}\right)$
write $f \sim b x_{1}^{2}+g\left(x_{2}, \ldots, x_{d}\right)$

$$
f \sim b x_{1}^{2}+g^{\prime}\left(x_{2}, \ldots, x_{d}\right)
$$

Then $g \sim g^{\prime}$.

Application (alternate prot of Sylvester)

$$
\begin{aligned}
& {[+1]^{\oplus n+k} \oplus[-1]^{\oplus \mu} \sim \underbrace{[+1]^{\oplus n} \oplus[-1]^{-1+m}}} \\
& {[+1]^{\oplus k} \sim[-1]^{\oplus k}} \\
& \Rightarrow k=0 .
\end{aligned}
$$

Proof of Prop
(1) Check $Q^{d}=\operatorname{span}(4) \oplus \operatorname{span}(4)^{\perp}$ choose new basis compatible with this decomposition
(2) clog assume $u, u^{\prime} L I$.

Set $w=u-u^{\prime}$ and define
$r_{w}: v \longmapsto v-2 \frac{B(v, w)}{B(w, w)} w$ reflection
Then $r_{w}(u)=u^{\prime}$

So r_{w} maps

Span ln $)^{\perp}$ to $\operatorname{span}\left(u^{\prime}\right)^{\perp}$

Possible problem: $u-u^{\prime}$ is isotropic. ie $f\left(u-u^{\prime}\right)=0$.

Then use $u+u$ instead.
if $f\left(u-u^{\prime} \quad 0=f\left(u+c^{\prime}\right)\right.$ then

$$
\begin{aligned}
\underbrace{B\left(u-u^{\prime}, u+u^{\prime}\right)}_{=0 \text { bl } f(u)=f\left(u^{\prime}\right)} & =f(2 u)-\underbrace{f\left(u-u^{\prime}\right)-f\left(u+u^{\prime}\right)}_{=0} \\
& \rightarrow f(u)=0
\end{aligned}
$$

E_{8} (Next: integral quad. forms. Now:one ex.)

$$
\begin{aligned}
& D_{n}=\left\{x \in \mathbb{Q}^{n} \mid \sum x_{i}^{\prime} \equiv o(2)\right\} \\
& D_{n}^{+}=D_{n} \cup\left(D_{n}+\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)\right)
\end{aligned}
$$

- $n \equiv O(2) \Rightarrow D_{n}^{-1}$ is a lattice
(when noil D_{n}^{+}is not closed cider +)

$$
2\left(\frac{1}{2}, \cdots, \frac{1}{2}\right) \notin D_{n} .
$$

- $n \equiv O(4) \Rightarrow$

Inver product on \mathbb{R}^{n} restricts to integral quadratic form $D_{n}^{+} \longrightarrow \mathbb{Z}$.

- $n \equiv 0(8) \Rightarrow$ form is even $D_{n}^{+} \longrightarrow 2 \mathbb{\mathbb { Z }}$ and \mid let $\mid=1$ (unimodular)
D_{8}^{+}aka E_{8} lattice.
The quadratic form has matrix

$$
\left(\begin{array}{llllllll}
2 & 1 & & & & & & \\
1 & 2 & 1 & & & & & \\
& & 1 & 1 & & & & \\
& & 1 & 2 & 1 & & & \\
& & & & 2 & 1 & & \\
& & & & 1 & 2 & 1 & \\
& & & & & 1 & 2 & \\
& & & & & \\
\hline
\end{array}\right)
$$

- Thisis the intersection form of a 4 -manifold topological with no smooth structure. sphere
- E8 gives densest tactive putting in

E8 kissing number $=240 \quad \mathbb{Z}^{8}$ kissug $\#=16=2.8$

$$
\text { - } \theta_{k}(z)=\sum_{v \in D_{8 k}^{+}} q^{\langle v, v\rangle} \quad q=e^{2 \pi i z}
$$

modular form weight $4 k$.

$$
\theta\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{4 k} \theta(z)
$$

Es, θ functions, Isospectral Tori
$L \subset \mathbb{R}^{n}$ lattice. Assume $\langle v, v\rangle \in \mathbb{Z} \quad v \in L$ Theta function $\theta_{L}(z)=\sum_{v \in L} q^{\langle v, v\rangle}$ $q=e^{2 \pi i z}$
Function on $H:=\{\operatorname{Im}(z) \geq 0\}$
Ex $\mathbb{Z} \subset \mathbb{R}$

$$
\begin{aligned}
& \theta(z)=\sum_{n \in \mathbb{Z}} e^{\pi i z \cdot n^{2}} \\
& \theta(z+2)=\sum_{n \in \mathbb{Z}} e^{\pi i(z+1) n^{2}}=\theta(z) .
\end{aligned}
$$

Claim $\theta\left(\frac{-1}{z}\right)=\sqrt{\frac{z}{i}} \theta(z)$.
\Rightarrow " θ is modular form of weight $\frac{1}{2}$ for $\Gamma=\left\langle\left(\begin{array}{c}0 \\ -10 \\ -10\end{array}\right),\binom{1}{0}\right\rangle \subset S L_{2}(\mathbb{Z})$ "

$$
\theta\left(\frac{a z+b}{c t+d}\right)=(c z+d)^{1 / 2} \theta(z), \quad \begin{aligned}
& \binom{a b}{c d} \in \Gamma \\
& z \in H
\end{aligned}
$$

Poisson
Surnumation

$$
\sum_{n \in \mathbb{Z}} f(n)=\sum_{m \in \mathbb{Z}} \hat{f}(m)
$$

formula

$$
\hat{f}(y)=\int_{-\infty}^{\infty} e^{2 \pi i x y} f(x) d x
$$

For $f(x)=e^{\pi i z \cdot x^{2}}$

$$
\begin{aligned}
& \text { For } f(x)=e^{2} \\
& \hat{f}(y)=\sqrt{\frac{i}{z}} e^{-\pi i y^{2} / z} \quad\binom{\text { excuse }}{\text { Computation }}
\end{aligned}
$$

Poisson $\Rightarrow \underbrace{\sum_{n} e^{\pi i z n^{2}}}_{\theta(z)}=\sqrt{\frac{i}{z}} \underbrace{\sum_{m} e^{-\pi i m^{2} / z}}_{\theta(-1 / z)}$

More generally if $L \subset \mathbb{R}^{n}$
$\underbrace{\text { unimodular }, ~ \underbrace{\text { even }}_{\langle v, ~} \text { lattice }}_{\text {vol } 1\left(\mathbb{R}^{2} / L\right)=1}\binom{$ only exist }{ if $h \equiv 0(8)}$ then $\theta_{L}(z+1)=\theta_{L}(z) \quad \theta_{L}\left(-\frac{1}{z}\right)=z^{\frac{n}{2}} \theta(z)$
$\Rightarrow \theta_{L}$ modular form for $S L_{2}(z)$. weight $\frac{n}{2}$
Application (isospectival tori)
Given $L \subset \mathbb{R}^{n}$
get, toms $\mathbb{R}^{n} / L \cong T^{n}$
Rienanniun
$\theta_{L} \longleftrightarrow$ lengths of geodesics.

$$
\sum_{v \in L}^{\prime \prime} q^{\langle v, N\rangle}=\sum_{N} \#\{v \in L \mid\langle v, v\rangle=N\} \cdot q^{N}
$$

Two tori ave isospectial if they have same geodesic lengths.
$(\leftrightarrow$ eigenvalues of Laplacian)
Q: Are isospeatral menitulde isometric? (Can you hear the shape of a drum?)

The (Minor) \exists non-isometric isospectial tori of $\mathrm{dim}=16$.

About prot. Recall from last time

$$
\begin{aligned}
& D_{n}=\left\{x \in \mathbb{Z}^{n} \mid \sum x_{i} \equiv 0(2)\right\} \\
& D_{n}^{+}=D_{n} \cup\left(D_{n}+\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)\right)
\end{aligned}
$$

if $n \equiv 0$ (8) D_{n}^{+}is even, mimodular lattice

$$
D_{8}^{+} \equiv E_{8}
$$

Clair $\mathbb{R}^{16} / D_{8}^{+} \oplus D_{8}^{+} \quad \dot{\xi} \mathbb{R}^{16} / D_{16}^{+}$
isospectral bat not isometric. harder/move interesting
$\longrightarrow \theta$ functions are weight 8 modular forms.

There is a unique such form up to scaling $\Rightarrow \theta_{D_{8}^{+} \oplus D_{8}^{+}}=\theta_{D_{16}^{+}}$.

Rational Quadratic forms $\bar{\xi}$
strong Hasse principle
Last time
Weak Haste provide Two quadratic forms I \mathbb{Q} are equivalent \Longleftrightarrow equivalut over Q_{p} for each prime p (incineting $p=-1, \mathbb{Q}_{-1} \equiv \mathbb{R}$)
$\left(\Longleftrightarrow\right.$ sure $\begin{array}{l}p \text {-signature for } \\ \\ \\ \\ \\ \\ \\ \end{array}$
Today explain how to deduce from
Strong Haste Principle (Hasse-Minkowshi)
(1) A rational quadratic form f represents 0 (ie $\exists x \in \mathbb{Q}^{d} \backslash\{0\rangle$ s. $f(x)=0$)
$\Leftrightarrow f$ represmits O over \mathbb{Q}_{p} for each p.
(2) Same for "f represents $b \in \mathbb{Q}$ "

Rank (Hasse principles)
This about so (sing (quadratic) equators:
\exists ? $x \in \mathbb{Q}^{d}$ st $f(x)=a_{1} x_{1}^{2}+\cdots+a_{d} x_{d}^{2}=b$
An equation satisfies tasse principle if....
Rule (1) \Rightarrow (2)
if f represents b over $Q_{p} \forall p$ then $g=f(x)-b y^{2}$ reps 0 over $Q_{p} \forall p$ (1) $\Rightarrow g$ reps 0 over Q
$\Rightarrow f$ reps b over \mathbb{Q}.

Ruble Strong \Rightarrow Weak. Proof by induction
Base case $f=a x^{2}, f^{\prime}=a^{\prime} x^{2}$
Assume $f \sim f^{\prime}$ over $Q_{p} \quad \forall p$.
UTS $f \sim f$ over Q.
Suffices to show f^{\prime} represents a over la since then $f^{\prime} \sim a x^{2}$ (las time) $f \sim f^{\prime}$ over $Q_{p} \Rightarrow f^{\prime}$ reps a over Q_{p} $\forall p$
$\Longrightarrow f^{\prime}$ reps a over \mathbb{Q}
Strong Haste

Induction Step basically the save.
Suppose f, f^{\prime} equiv over $\mathbb{Q}_{p} \quad \forall p$.
Fix $b \in Q^{x}$ represented by f. (over QQ) Suffices to show b represented by f^{\prime} too.

Latte: if b reid by

$$
\begin{aligned}
& f \sim b x_{1}^{2}+g\left(x_{2}, \ldots, x_{d}\right) \\
& f^{\prime} \sim b x_{1}^{2}+g^{\prime}\left(x_{2}, \ldots, x_{d}\right)
\end{aligned}
$$

and witt cancellation $\Rightarrow g \sim g^{\prime}$ over Q_{p} $\forall p$.
$\Rightarrow g \sim g^{\prime}$ over Q by induction

$$
\Rightarrow \quad f \sim f^{\prime}
$$

Rational Forms \& Hyperbolic manifolds
(In response to Sam: why geometer care what natural forms.

$$
\begin{aligned}
& \operatorname{So}(n, 1 ; \mathbb{Z}) \\
= & \left\{A \in S L_{n+1}(\mathbb{Z}) \left\lvert\, A^{t}\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & -1
\end{array}\right) A=\left[\begin{array}{lll}
1 & & \\
n & 1 & \\
& & -1
\end{array}\right)\right.\right\}
\end{aligned}
$$

Prop For $n \geqslant 3$ Sol $n, 1 ; \mathbb{\mathbb { R }}$) contains a surface subgroup.

$$
G \quad \pi_{1}(\theta-\theta)
$$

Rake $S O(3,1 ; \mathbb{\mathbb { D }}) \curvearrowright \mathbb{H}^{3}$
finite volume
 (noncoupact)

Kahn-Markovic:
M^{3} closed hyperbatic
$\Rightarrow \pi_{1}(M)$ contains surface subgropp.

Rrop is much easter ble so(n,1;2) is unthmetic group.

Correction / Additions

Claim from last time
If $g\left(x_{0}, \ldots, x_{d}\right)=b x_{0}^{2}-f\left(x_{1}, \ldots, x_{d}\right)$ represents 0 then f represents b. (over any field of dar $\neq 2$)
Proof By ass umption $\exists \quad\left(y_{0}, \ldots, y_{d}\right) \in K^{d+1}$
s... $\quad b y_{0}^{2}=f\left(y_{1}, \ldots, y d\right)$

Case $1 \quad y_{0} \neq 0 \Rightarrow$

$$
\begin{aligned}
b=\left[\frac{1}{y_{0}}\right)^{2} f\left(y_{1}, ., y d\right) & =f\left(\frac{y_{1}}{y_{0}}, \ldots, \frac{y_{d}}{y_{0}}\right) \\
& \Rightarrow f \text { represents } b .
\end{aligned}
$$

Case $2 y_{0}=0$.

Then f represents 0 ("f irotrmic")
Lemma f isotropic \Rightarrow reps every nondegenerate $\quad b \in K^{x}$.

Pf of lem $\quad f: K^{d} \rightarrow K$ b associated bilinear form.
Fix $u \in K^{n} \quad w / \quad f(u)=0$
f uondegen $\Rightarrow \exists v \in K^{d} \quad s t$.
$b(u, v) \neq 0$. Rescale v so $b(u, v)=1$.
matrix of $\left.b\right|_{\text {sean }[4,0)}={ }_{v}^{u}\left(\begin{array}{ll}u & u \\ 0 & 1 \\ 1 & t\end{array}\right)$

$$
b(s u+v, s u+v)=2 s+t=0 \text { if } s=-\frac{t}{2}
$$

replace v by $-\frac{t}{2} u+v$ so then
matrix of $\left.b\right|_{\text {span la, })}=\underbrace{\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)}$
hyperbolic form
quadratic form of $\left(\begin{array}{ll}0 & 1 \\ 10\end{array}\right]$ is

$$
q(x, y)=2 x y .
$$

In particular $q\left(\frac{b}{2}, 1\right)=b$.

$$
\theta(z)=\sum_{n \in \mathbb{Z}} e^{\pi i z \cdot n^{2}}
$$

(Trent): Convergence?
Claim converges on $H=\{\operatorname{ma}(z)>0\} \subset \mathbb{C}$. write $z=x+i y$

$$
\left|e^{\pi i z \cdot u^{2}}\right|=\left|e^{\pi i(x+i y) n^{2}}\right|=\mid e
$$

$$
=\underbrace{\left|e^{\pi i x n^{2}}\right|}_{=1} \cdot\left|e^{-\pi y n^{2}}\right|
$$

decays very fast as $n \rightarrow \infty$.

$$
\text { as lougas } y>0 \text {. }
$$

If $y \leq 0$ there's trouble...

Rational forms $亠$ i hyperbolic mole.

$$
f_{n}:=-x_{0}^{2}+x_{1}^{2}+\cdots+x_{n}^{2}
$$

$$
\mathbb{H}^{n}==\left\{x \in \mathbb{R}^{n+1} \mid f_{n}(x)=-1, x_{0}>0\right\}
$$

hyperboloid model of hyperbolic space

For $x \in \mathbb{H}^{n}$

$$
\left.T_{x} H^{n} \cong x^{\perp} \quad f_{y}\right|_{x^{\perp}} \begin{aligned}
& \text { pos. } \\
& \text { def. }
\end{aligned}
$$

\leadsto Riem. metric on M^{n} (hyperbolic vetric)

$$
O\left(f_{n}, R\right)=\left\{A \in G L_{n+1}(\mathbb{R}) \left\lvert\, \begin{array}{l}
f_{n}(A v)=f_{n}(v) \\
\forall v \in \mathbb{R}^{n+1}
\end{array}\right.\right\}
$$

$0^{+}\left(f_{n} ; \mathbb{R}\right)$ index 2 Snlyp presering M^{n}
U

$$
\begin{aligned}
& S 0^{+}\left(f_{n} ; \mathbb{R}\right)=0^{+} \cap \operatorname{SLa}(\mathbb{R}) \\
& U \\
& S O^{+}\left(f_{n} ; \mathbb{Z}\right)=S O^{+} \cap \operatorname{SLn}(\mathbb{Z})
\end{aligned}
$$

Prop $S O^{+}\left(f_{n} ; \mathbb{Z}\right)$ contains a
Surface sungroup. $\pi_{1}(\underbrace{\infty \cdots \infty}_{\text {genns } \geqslant 2})$ genus $\geqslant 2$.

Ex $S 0^{+}\left(f_{n} ; \mathbb{Z}\right)$ contains

$$
\operatorname{So}^{+}\left(f_{2} ; \mathbb{Z}\right)=\pi_{1}(\underbrace{H^{2} / \operatorname{so}^{+}\left(f_{2} ; \mathbb{T}\right)})
$$

noncompact surface (orbifold)
Fact $S_{0}{ }^{+}(f ; \mathbb{Z}) \cong \Delta(2,4, \infty)$ triangle group.
gererated by reflections in sitles of triangle $n /$ angles $\left(\frac{\pi}{2}, \frac{\pi}{4}, 0\right)$
$\Delta(2,4, \infty)$ virthally finee \Rightarrow doessit contain π_{1} (cloped suiface).

Thm (Mahler Compuctuess application)
$q: \mathbb{Q}^{d} \rightarrow \mathbb{Q} \begin{aligned} & \text { nondeger. } \\ & \text { quadinatic form }\end{aligned}$ $S O(q i \mathbb{Z})<S O(q ; \mathbb{R})$ as abre.
$\operatorname{So}(q ; \mathbb{R}) / s O(q ; \mathbb{Z})$ compact
$\Longleftrightarrow q$ is anisotropic re $q(v) \neq 0$ $\forall v \in Q^{i} \backslash\{0\}$

Ex. f_{n} isotropic $\forall n$.
so $H^{n} /$ So $(f n i \mathbb{Z})$ alwars nancompact.
Ex $\quad q=-7 x_{0}^{2}+x_{1}^{2}+x_{2}^{2}$. anisotrupic

$$
-7 a_{0}^{2}+a_{1}^{2}+a_{2}^{2}=0 \quad a \neq 0 \Rightarrow a \neq 0
$$

clear denominators $\Rightarrow a_{0}, a_{1}, a_{2} \in \mathbb{Z}$.

$$
a_{1}^{2}+a_{2}^{2}=7 a_{0}^{2}
$$

Nunber theory: $n \in \mathbb{Z}>0$ is sum of 2 squares \Leftrightarrow prine factonzation contairs no p^{k} where $p \equiv 3(4)$ ì k old.
$\Rightarrow H^{2} /$ so $\left(q_{i} \mathbb{\mathbb { Z }}\right) \quad$ compact hyperbdiz 2-orbitald.
fintely coveved by a compact hyp surtace \Rightarrow Solqic) has surface suigg.

Proof of Prop $q=-7 x_{0}^{2}+x_{1}^{2}+x_{2}^{2}$

$$
f_{n}=-x_{0}^{2}+x_{1}^{2}+\cdots+x_{n}^{2} \quad n \geqslant 3 .
$$

wIT $\exists S o\left(q_{i} \mathbb{R}\right) \longrightarrow S O\left(f_{n}(\mathbb{R})\right.$

Trick: $f_{n}{ }^{\prime}:=-7 x_{0}^{2}+7 x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$
Obsinve

- $\operatorname{So}(q ; \mathbb{Z}) \longleftrightarrow \operatorname{so}\left(f_{n}^{\prime} i \mathbb{Z}\right)$ for $n \geqslant 3$
- $f_{n}^{\prime} \sim f_{n}$ over \mathbb{Q} since

$$
\begin{aligned}
x^{2}-y^{2} & \sim(4 x+3 y)^{2}-(3 x+4 y)^{2} \\
& =7\left(x^{2}-y^{2}\right)
\end{aligned}
$$

This implies $S O\left(f_{n} ; \mathbb{Z}\right)$ and $S O\left(f_{n}^{\prime} ; \mathbb{P}\right)$ have common finite index Subgroup (commensurable)

$$
\begin{aligned}
& \left(\begin{array}{ll}
4 & 3 \\
3 & 4
\end{array}\right)^{t}\left(\begin{array}{ll}
1 & \\
& 7
\end{array}\right)\left(\begin{array}{ll}
4 & 3 \\
3 & 4
\end{array}\right)=\left(\begin{array}{cc}
7 & 0 \\
0 & -7
\end{array}\right) \\
& \left(\begin{array}{ll}
4 & 3 \\
3 & 4
\end{array}\right)^{-1} \text { So }\left(f_{2} ; \mathbb{Q}\right)\left(\begin{array}{ll}
4 & 3 \\
3 & 4
\end{array}\right)=\text { So }\left(f_{2}^{\prime} ; Q\right)
\end{aligned}
$$

So ($\left.f_{n}{ }^{r} i t\right)$ contains surface
group \Rightarrow Sol $f_{n}: \mathbb{R}$) does too

Final algebraic chapter
Integral Quadratic Forms

- classification of unrmodular, indefinite farms (usctul for study maintolds)
- positive definite forms er mass formula r
- forms on \mathbb{Z}^{2}
ven g concucte classification using the Farcy graph.
 decal tree.
vertices: primitive vectors in \mathbb{Z}^{2} (upton)
edges: pairs of vectors that that form basis for \mathbb{R}^{2}
triangles: triples, each pair a basis.

Quadratic Forms on \mathbb{e}^{2}

$$
q(x, y)=a x^{2}+h x y+b y^{2} \quad a, b, h \in \mathbb{Z}
$$

Goal given q, q^{\prime} determine if $q \sim q^{\prime}$ in finite time based on their values Assume q is nondegenerate.

Dichotomy

- q definite $\begin{aligned} & \text { positive } \quad(q>0) \\ & \text { negative }(q<0)\end{aligned}$
- q indefinite isotropic $(\exists v \neq 0 \quad q(0)=0)$

$$
>\text { anistmpic } \quad(q(v) \neq 0 \quad \forall v \neq \rho)
$$

Observe
q determined by values $q(e), q(f), q(e+f)$ whenever e, f bapisfor \mathbb{L}^{2}

Cher $q(x e+y f)=q(e) x^{2}+[q(e+f)-q(e)-q(f)] x y$

$$
+q(f) y^{2}
$$

equivaluthy $B(u, v):=q(u+v)-q(u)-q(v)$
let. log $B(e, e) \quad B(e, f) \quad B(f, f)$
(but there are infinity way doices of eff)

Case If $q 1 q^{\prime}$ positive definite distinguish them by ... shortest vectors. (But how to find these?)

Eg what's smollest value of

$$
q=6 x^{2}+8 x y+3 y^{2}
$$

Use Favey graph

Geverally
 $u+v$

Paralleloyrum law

$$
q(u+v)+q(u-v)=2[q(u)+q(v)]
$$

equiv

$$
[q(n)+q(v)-q(u+v))+[q(u)+q(u)-q(u-v)]=0
$$

- exactly one positive denaste it δ

$$
q(u+v)=q(u-v)+2 \delta
$$

OR

- eachis zewo

$$
\begin{aligned}
& a+c-b=a+(a+b)-b=2 a>0 \\
& b+c-a=b+(a+b)-a=2 b>0
\end{aligned}
$$

Climbing lemme q any form on \mathbb{Z}^{2} $u, v \in \mathbb{Z}^{2}$ any basis
If $q(n-v) \overbrace{q(v)>0!}^{q(u)>0} q(n+v)$ then

Proof
(1)

$$
\begin{aligned}
q(u+v) & =2[q(u)+q(v)]-q(u-v) \\
& =\underbrace{q(u)}_{>0}+\underbrace{q(v)}_{>0}+\underbrace{[q(u)+q(v)-q(u-v)]}_{=8>0}>0
\end{aligned}
$$

(2) To prove

WB $q(u)+q(u+v)-q(v)>0$.

$$
\begin{aligned}
q(n)+q(u+v)-q(v) & =q(n)+[q(u)+q(v)+\delta]-q(v) \\
& =2 q(u)+\delta>0 . \quad
\end{aligned}
$$

Summary
Given pos. def. form. q can use climbing lemma to find smallest values of q.

or

This gives algorithm to determine if $q \sim q^{\prime}$ in definite case. Cor For $q: \mathbb{Z}^{2} \rightarrow \mathbb{Q}$ pos. det. Sol q) is a subgroup of $\mathbb{Z} 16 \mathbb{Z}$ or $\mathbb{Z} 14 \mathbb{Z}$ $e_{2} \sum_{e_{1}+e_{2}}^{e_{1}}$ permuted $\left(\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right)$ order 6 .

Positive integral quadratic forms + mars for vila

Say $q q^{\prime}: \mathbb{Q}^{d} \rightarrow \mathbb{Z}$ have sane genus if equivilat over \mathbb{t}_{p} (p-adic integers) for each purine p.

$$
\left(\mathbb{Z}_{-1}=\mathbb{R}\right)
$$

Unfortunately genus doescit determine the form (no Hale principle nee 2...)

For a genus G define the
mass $m(g)=\sum_{q \in G} \frac{1}{|O(q)|}$

$$
O(q) \equiv \text { orthogonal group }\binom{\text { finite bic }}{\text { q pos. deft }}
$$

Mass formula for pos uninotulutar forms of rank $8 k$.

$$
m(g)=2^{1-8 k} \frac{1}{(4 k)!} B_{2 n} \prod_{j=1}^{4 k-1} B_{j}
$$

$B_{n}=$ Bernoulli numbers .

rank	mas	\# foams
8	$\sim 10^{-9}$	$1 \sim E_{8} \equiv D_{8}^{+}$
16	$\sim 10^{-18}$	$2 \sim D_{8}^{+} \oplus D_{6}^{+}, D_{1 b}^{+}$
24	$\sim 10^{-15}$	24
32	$\sim 10^{7}$	$>10^{7}$

each summand in $m(G)$ contributes at most $\frac{1}{2} \ldots$

Indefinite Forms on $\mathbb{T}^{2}\binom{$ after }{ Conway }
Last time
For any quadratic form on \mathbb{Z}^{2} get labeling of vertices of Farcy graph.
\leftrightarrow labeling of regions of dual Fare free + direction on edges $q=a x^{2}+\delta x y+b y^{2} \quad u \log \delta>0$

Observe $a+b-\delta, a+b, a+b+\delta$ arithmetic $q\left(e_{1}^{\prime \prime}-e_{2}\right) \quad " \quad q\left(e_{1}\right)+q\left(e_{2}\right) \quad$ " $q\left(e_{1}+e_{2}\right)$ progression

- See this pattern around every edge $u-v>n<u+v$ (parallelogram law) $n_{1} v$ basis for \mathbb{Z}^{2}
- Climbing leave

$$
\Rightarrow
$$

similarly

Situation not covered by Chinking lena:

river edges $=$ edges where

- Rivers keep flowing
- until they reach alake $=$ region where $q=0$.
\exists
So q anisotropic \Rightarrow river is bi-infinite.
q isotropic $\Rightarrow \exists$ a lake. (maybe move?)

Ex $q=7 x^{2}-y^{2} \quad$ (anisotropic)

Labels along the river are pundit!
\Rightarrow river is periodic.
This reflects the fact that $\frac{S O(q) \rightarrow\left(\begin{array}{ll}8 & 3 \\ 21 & 8\end{array}\right) \quad \text { has infinite order. }}{\text { St }}$

Ex $\quad q=3 x^{2}-11 x y+6 y^{2}$

Tho (rivers is lakes)
$q: \mathbb{Z}^{2} \longrightarrow \mathbb{Z}$ indefinite
(1) q anisotropic
$\Rightarrow \exists$ unique river, it's bi-infinite, its labels are periodic
(2) q isotropic
\Rightarrow J exactly two lakes, either adjacent or connected by a river

Rank Two adjacent lakes is a weir
eg $\quad q(x, y)=x y$.

Application (isomorphism prob for indefinite forms on \mathbb{T}^{2})

Giver $q^{\prime} q^{\prime}$ use climbing to find $\operatorname{rive}\binom{$ or }{ weir. } Either periodic or finite. Compute values along river to deternuen

Proof (Anistropic \Rightarrow Rner periodic)

- Fix bacis e,f $\in \mathbb{Z}^{2}$.

$$
\begin{aligned}
& q(x e+y f)=q(e) x^{2}+[q(e+f)-q(e)-q(f)] x y \\
&+q(f) y^{2}
\end{aligned}
$$

Billieat frem B
has natrix $\quad B=\left(\begin{array}{cc}2 q(e) & \delta \\ \delta & 2 g(f)\end{array}\right)$
Key $|\operatorname{det}(B)|=\mid 4 q\left(\operatorname{ce} q(f)-\delta^{2} \mid\right.$
is invariant of $q .\binom{\Phi \in G L_{2}(\mathbb{Z})}{$ has $\operatorname{det} \in \mathbb{Z}^{x}=\{+\mathbb{2}\}}$

- if $q(e)>0, q(p)<0$
then $\left|4 q(e) q(f)-\delta^{2}\right|=4|q(e) q(f)|+\delta^{2}$
\exists finitely many integer solutions
to $4 \cdot \alpha \beta+\delta=\operatorname{det}$
\Rightarrow periodic.
Prot (Totropic \Rightarrow two lakes)
if $\exists \geqslant 1$ lase
or a weir ;
river is $\infty \Rightarrow$ periodic

$$
\Rightarrow \text { bi-infint } t \text {. }
$$

$\Rightarrow \exists 2$ lakes.

Aside Topography $\overline{3}$ Topology

Cor $q: \mathbb{C}^{2} \rightarrow \mathbb{C}$

- q anisotropic \Rightarrow sol q) virtually \mathbb{R}
- q isotropic \Rightarrow so (q) finite (see examples)

Recall (Mahler Compactness)
For $q: \mathbb{Z}^{d} \rightarrow \mathbb{Z}$
$\operatorname{Sol}(q ; \mathbb{R}) / \delta o(q ; \mathbb{T}) \quad$ compact
$\Longleftrightarrow q$ anisotropic

In special care above $(d=2)$ $S_{e}^{\dagger}(q ; \mathbb{R}) \cong \mathbb{R}$

Indefinite unionodular forms on \mathbb{B}^{d}

- B symmetric integer matrix
$-\operatorname{det}(B)= \pm 1 \quad$ (ynimodular)
- eg D_{n}^{+}when $n \equiv 0(8)$
pos. definite
$\exists>10^{7}$ inequivalent pos definite B in $d_{i n}=32$ (muss formula)

The (Serve) B as above and indefüte

- B old ($\exists \vee \mathrm{st}. v^{t} B$ odd)
$\Rightarrow B$ equiv to $\quad\left(\begin{array}{cc}I_{n} & 0 \\ 0 & -I_{m}\end{array}\right)$

$$
\equiv[+1]^{\text {en }} \oplus[-1]^{\oplus m}
$$

- B even $\left(v^{+} B u+2 \mathbb{Z} \quad \forall v\right)$
$\Rightarrow B$ equiv to $\left(E_{8}\right)^{\oplus n} \oplus H^{\oplus m}$

$$
H=\left(\begin{array}{ll}
0 & 1 \\
10
\end{array}\right)
$$

odd case is exercise modulo
The (Meyer) $q: \mathbb{C}^{d} \rightarrow 2$ indefinite, unimodular \Rightarrow isotropic.
$\left(\begin{array}{ccc}\text { not true } w / 0 & \text { mimodular } \\ \text { eg } & x^{2}+y^{2}-7 z^{2} & \text { anisotropic }\end{array}\right)$
see Notes

Intersection Forms of (4-) wampolds
Source: Scorpan's Wild World of 4 -manifolds

- M4 closed oriented 4-manifold
- First examples $S^{4}, S^{2} \times S^{2}, ~ G P^{2}, T^{4}=S^{\prime} \times \cdots S^{\prime}$
- Basic principle: a lot of the topology of M is captured by how surfaces intersect in M. especially when $\pi_{1}(M)=0$.
Eg $s^{2} \times s^{2}$ vs $\mathbb{C} P^{2} \# \mathbb{C} P^{2}$

$$
H_{i}\left(s^{2} \times s^{2}\right) \cong \begin{cases}\mathbb{R} & i=0,4 \\ \mathbb{T}^{2} & i=2 \\ \text { else } & \cong H_{i}\left(\mathbb{A} \# \varangle P^{2}\right)\end{cases}
$$

$H_{2}\left(s^{2} \times s^{2}\right)$ gen by $a=\left[s^{2} \times p^{+}\right]$and $b=\left[p+\times s^{2}\right]$

$H_{2}\left(\mathbb{C} P^{2} \# \mathbb{C P} P^{2}\right)$ gen by $a=[\mathbb{C P}]$ and $b=\left[\mathbb{C P}^{1}\right]$

II
intersection matrices"

$$
\left.\begin{array}{cc}
a\left[\begin{array}{ll}
a & b \\
b & 1 \\
1 & 0
\end{array}\right] \\
s^{2} \times s^{2}
\end{array} \quad \neq \begin{array}{cc}
a & b \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

So $S^{2} \times S^{2} \neq \mathbb{C} P^{2} \# \mathbb{C} P^{2} \cdots$
General Fact: Every $x \in H_{2}\left(M^{4}\right)$ is represented by an embedded surface $S_{x} \subset M$
intersection form $H_{2}(M) \times H_{2}(M) \longrightarrow \mathbb{Z}$

Properties:
symmetric, bilinear, mimodular on $\mathrm{H}_{2}(M) /$ torsion

$$
\langle x, y\rangle:=S_{x} \cdot S_{y}
$$

These props best seen using equivalent formulation:

$$
\begin{aligned}
& \langle\because\rangle: H^{2}\left(M_{i} \mathbb{Z} \mid \times H^{2}(M ; \mathbb{Z}) \longrightarrow \mathbb{Z}\right. \\
& \langle\alpha, \beta\rangle:=(\alpha \cup \beta)^{\Sigma}[M] \\
& \text { cupprod. } \\
& \uparrow \text { fundamental } \\
& \text { class } \in H_{4}(M)
\end{aligned}
$$

Scorpan: "Think wo intersection, prove wi cup " products
(warm up wi looking for examples...)
Geography Question: While integral sym. bilinear forms arise as intersection forms?

Recall (last time) $\begin{gathered}\text { indefinite } \\ \text { uninodular }\end{gathered} \mathbb{Z}^{d} \times \mathbb{Z}^{d} \rightarrow \mathbb{Z}$
is one of $[+1]^{p} \oplus[-1]^{q}$ or $E_{8}^{\theta n} \oplus H^{\otimes m}$
(Sure)
which are intersection four?

$$
\begin{array}{rlr}
B_{\mathbb{Q P}^{2}}=[-1] \quad B \frac{B}{C P^{2}}=[-1] & B_{s^{2} \times s^{2}} & =\left(\begin{array}{l}
0 \\
1 \\
10
\end{array}\right) \\
B_{M_{1} \# M_{2}}=B_{M_{1}} \oplus B_{M_{2}} & \equiv H .
\end{array}
$$

The \exists closed simply corrected topological 4-manifold M with $B_{M}=E_{8}$.

Warning M has not smoothalle.

Thm (Donaldion) M smoth B_{M} definite

$$
\Rightarrow B_{M}=[+1]^{\oplus P} \text { or } B_{M}=[+1]^{\oplus q} \text {. }
$$

Key to construction of E8-manifold: planibing

Anunlus, Mobins $\longleftrightarrow D^{\prime}$ - Gundees over S^{\prime}.
Build 4 -manitads by plumbing D^{2}-buadles over S^{2} (for example)

Ex Plumb two copies of $S^{2} \times D^{2}$.
$\leadsto 4$-manifold with boundary.
What is N ? Some clues:
(1) $N \sim S^{2} V S^{2}$. intersection matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(2) $\partial N=D^{2} \times S^{\prime} \cup S^{\prime} \times D^{2}=S^{3}$
\uparrow closed 3-manitola
Cap to get $S^{2} \times S^{2}$. (usual cell structure)
so $\quad N=\delta^{2} \times s^{2} \backslash D^{4}$.
(analogous to surface case: got $S^{1} \times S^{1} \backslash D^{2}$)

E8 ritersution form

vertices: self intersection 2
edges: intersect once.

$$
\left[\begin{array}{llllllll}
2 & 1 & & & & & & \\
1 & 2 & 1 & & & & & \\
& 1 & 2 & 1 & & & & \\
& & 1 & 2 & 1 & & & \\
& & & & 1 & 2 & 1 & \\
& & & & 1 & 2 & 1 & 1 \\
& & & & & & 1 & 2
\end{array}\right]
$$

Plumb 8 copies of $T^{\leq 1} S^{2}$
unit disk bundle. (next time).

Representing Homology by Submantolds

Thu (Thou) M^{n} sm. or $m f\left(d . \quad x \in H_{i}(M ; \mathbb{Z})\right.$.
$\exists k \geqslant 1$ s.t. $k x=[N]$ where $N \hookrightarrow M$
embedded subuanfold.
If $i \leq 8$ or $i=m-1, m-2$ then
$x=[N]$ for some $N \ldots$

Ex. $m=2 \quad M=$ sustace.
Any $x \in H_{1}(M)$ reprepented by a multicurve

$$
\pi_{1}(M) \longrightarrow H_{1}(M) \cong \pi_{1}(M)^{a b} \quad(\text { Harearicz) }
$$

$\Rightarrow x$ rep'd by smooth immerted curve Surger infersutions to get multicurve.

Same argument works for $M^{Y} w / \pi_{1}(M)=0$.

$$
\pi_{2}(M) \stackrel{\cong}{\cong} H_{2}(M) \quad \text { (Hurewicz) }
$$

Given immersion a $S^{2} \longrightarrow M^{4}$ self transient intersections look like $\mathbb{R}^{2} \oplus \mathbb{R}^{2}=\mathbb{R}^{4} \ldots$

Alternative: intersection locally is

$$
\left\{(z, \omega) \in \mathbb{C}^{2} \mid \quad z \omega=0\right\} .
$$

Replace w/ $\left\{(z, w) \in \mathbb{C}^{2} \mid z w=\varepsilon\right\}$
Note in $4 d$ case resulting subutld is commented, bout not nee. S^{2}.

$$
\begin{array}{ll}
\text { Eg } M=\mathbb{C} P^{2} & H_{2}\left(\mathbb{C} P^{2}\right)=\langle a\rangle \cong \mathbb{Z} \\
a=\left[\mathbb{C} P^{\prime}\right] . & a-a=1
\end{array}
$$

$2 a$ vepid by.

$3 a$
repd by

$$
\cong T^{2}
$$

geneonally d-a repid by surface of geans $g=\frac{(d-1)(d-2)}{2} \quad$ (degree-genus formula) can chook repl to be algebmic "plave curnes in $\mathbb{E P}$ " in $\mathbb{C} \mathbb{P}^{2}$

$$
d=4 \Rightarrow g=3
$$

Min genus rep. tools: Gauge theory \& Seibery-witten theory

Representing Homology by submarifolds
$M^{2 n}$ closed oriented manifold
intersection form

$$
\begin{array}{r}
H^{n}\left(M_{i} \mathbb{Z} \mid \times H^{n}\left(M_{i} \mathbb{Q}\right) \longrightarrow \mathbb{Z}\right. \\
\left\langle\alpha_{1}, \alpha_{2}\right\rangle=\left(\alpha_{1} \cup \alpha_{2}\right)[M] .
\end{array}
$$

Exercise (see notes)
If $\alpha_{i}=\operatorname{Pomlanedual}\left(x_{i}\right) \quad x_{i} \in H_{n}(\mu)$
and $x_{i}=\left[N_{i}\right]$ where $N_{i} \longleftrightarrow M$ Submantold
then $\left\langle\alpha_{1}, \alpha_{2}\right\rangle=N_{1} \cdot N_{2}$
This allows us to think/reason grondrically.

Given $x \in H_{k}\left(M^{n}\right)$
Wuat: $N^{k} \xrightarrow{f} M^{n}$ embedded subufld s.t. $f_{*}([N])=x$.

Then (Thom, 19505) (stated incorvectly last tive)
x is rep'd by a submanifold if $k \leq 6$ or $k=n-1, n-2$.

Ex Fas M^{9} every $x \in H_{k}(M)$
repd by a subomanifald $0 \leq k \leq 8$.
Runk This is sharp:
E.g. $\quad S_{p}(2)=\left\{A \in G L_{2}(\mathbb{H}) \mid A^{*} A=1\right\}$ Compact Symplectic gromp, $H=$ quaterions.

10 dimensional compact Lie group.

$$
S^{3} \cong S_{p}(1) \rightarrow S_{p}(2) \rightarrow S^{7}
$$

amalogons to $S^{\prime} \cong u(1) \longrightarrow u(2) \longrightarrow S^{3}$
and $S^{0} \cong O(1) \longrightarrow O(2) \longrightarrow S^{\prime}$
Conponte $H_{k}\left(S_{p}(2)\right) \cong \begin{cases}\mathbb{Z} & k=0,3,7,60 \\ 0 & \text { else }\end{cases}$
(exerate in Serve spectal sequence)
Thm (Bohr-Hanke-Kotschick 2001)
Genevator $x \in H_{7}\left(S_{p}(2)\right)$ is not represented by a submantold.

Rmx This woit work for $s^{3} \times s^{7} \ldots$ So $S^{3} \rightarrow S_{p}(2) \rightarrow S^{7} \quad$ must be nentriviat.

A principle G-bundle over $S^{m}=D^{m} \cup D^{m}$

det. by hipy class of
$m_{\text {ap }} S^{m-1} \longrightarrow G$.
Here $\pi_{6}\left(s^{3}\right) \cong \mathbb{Z} / 12 \mathbb{Z}$
(Clutching)
Representing $x \in H_{n-1}\left(M^{n}\right)$

$$
\begin{aligned}
& H_{n-1}(M) \cong H^{\prime}(M ; D) \\
& \cong[M, K(\mathbb{0}, 1)] \\
& =\left[M, S^{1}\right] \text {. } \\
& f: M \rightarrow S^{\prime} \rightarrow \pi_{1}(M) \rightarrow \mathbb{t} \leadsto \alpha \in H^{\prime}(M ; \mathbb{Z}) \\
& \forall \forall_{H}(n)^{\prime 7} \alpha \\
& \text { (Pomeme duality) } \\
& \begin{array}{c}
\text { (Brewn } \\
\text { representability) }
\end{array}
\end{aligned}
$$

whey f smooth. Fix reg. value $\theta \in S^{\prime}$

$$
N^{n-1}:=f^{-1}(\theta) \hookrightarrow M^{n}
$$

submarifold.

$$
\begin{aligned}
& \text { For } \alpha: H_{1}(M) \rightarrow \mathbb{Z} \quad \alpha([\infty)=\gamma \cdot N \\
& \Rightarrow \alpha=P D([N]) .
\end{aligned}
$$

Representing $x \in H_{n-2}\left(M^{n}\right)$

$$
\begin{aligned}
A_{n-2}(M) \cong H^{2}(M i \mathbb{C}) & \cong\left[M_{1} K(\mathbb{e}, 2)\right] \\
& \simeq\left[M, C p^{\infty}\right]
\end{aligned}
$$

$$
f: M \rightarrow \mathbb{C} P^{\infty} \leadsto \begin{array}{r}
\mathbb{C} \rightarrow E \\
\vdots \\
M
\end{array} n c c_{1}(E) t H^{2}\left(M_{;} \mathbb{E}\right)
$$

For $\quad \sigma: M \rightarrow E$ section transursecto D - ration $N^{n-2}:=\sigma(M) \cap M \longrightarrow M$ ember subutid.

$$
c_{1}(E)=P D([N])
$$

($C_{1}(E)$ on a situate $E C M$ section. This" given by $\Sigma \cdot N$.

E8 manifold.
The \exists simply connected closed ymfed with intersection form $B_{M}=E_{8}$ Key Plumbing

Eq.

$$
\begin{aligned}
D^{2} \rightarrow T^{\leqslant 1} & S^{2} \supset D^{2} \times D^{2} \longleftrightarrow D^{2} \times D^{2} \subset T^{(1} s^{2} \in D^{2} \\
& { }^{2}(x, y) \longleftrightarrow \\
& (y, x) \quad \int^{2}
\end{aligned}
$$

result is honcompact.
N with $B_{N}=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$

$$
\left(2=\chi\left(s^{2}\right)\right)
$$

To obtain closed mole want $a N=S^{3}$

$$
\underbrace{S^{3}}_{\text {cone } \cong D^{4}}
$$

cone not
count $H^{i}(M, M-x)= \begin{cases}2 & i=4 \\ 0 & \text { exc. }\end{cases}$

Lemma N^{4} simply clan. $\partial N \neq \phi$. connected.
∂N homology $\Leftrightarrow B_{N}$ unimodulur sphere

Proof bread + butter alg top.

$$
\begin{aligned}
& \text { LES of }(N, \partial N) \\
& H_{3}(N, \partial N)^{0} \rightarrow H_{2}(\partial N) \rightarrow H_{2}(N)^{\phi} \rightarrow H_{2}(N, \partial N) \rightarrow H_{1}(\partial N) \rightarrow H_{2}(N) \\
& B_{N}(,-) \downarrow \cong P D \\
& H_{2}(N)^{*} \xrightarrow[\text { oCT }]{\cong} H^{2}(N) \\
& x \mapsto B_{N}(x,-)
\end{aligned}
$$

B curimoduliar $\Leftrightarrow B_{N}(,-)$ iso

$$
\begin{aligned}
& \Longleftrightarrow \quad \phi \text { iso } \\
& \Longleftrightarrow \quad H_{1}(\partial N) \cong H_{2}(\partial N)=0 .
\end{aligned}
$$

The (Freedman on Fake y-ball)
X homology 3-sphere. \exists contractible topological Y-mold Y with $\partial Y=X$.

Construction of E_{8} manifold.
(1) Plumb

to get N w

$$
B_{N}=\left[\begin{array}{llllllll}
2 & 1 & & & & & & \\
1 & 2 & 1 & & & & & \\
& 1 & 2 & 1 & & & & \\
& & 1 & 2 & 1 & & & \\
& & & 1 & 2 & & & \\
& & & & 1 & 2 & & \\
& & & & & 1 & 2 & \\
& & & & & & & \\
& & & &
\end{array}\right] \equiv E_{8}
$$

(2) E8 unimodnlinr $\Rightarrow \partial N$ is homology 3-Spheve by lemma
(3) Freedman $\Rightarrow \exists$ contractible Y n) $\partial Y=\partial N$.

$$
M:=\underset{\partial}{N} \cup^{\prime} Y
$$

closed top. mold $B_{M}=E_{8}$.

Rok In fact ∂N is not S^{3}.
It's the Poincare Homology sphere!
(Poincare's counterex, to poincare conj) original.
Alternate model: quotient of dodecahedron...

Intersection form \& cobardism (smooth)
M closed oriented 4 -manifold.
intersection form $B_{M}: H_{2}(M) \times H_{2}(M) \rightarrow \mathbb{Z}$.
The signature of M is defined as

$$
\begin{aligned}
& \operatorname{sig}(M):=\operatorname{sig}\left(B_{M}\right) . \quad\binom{\text { homotopy }}{\text { invariant }}
\end{aligned}
$$

$$
\begin{aligned}
& H=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \operatorname{sig}\left(\# \mathbb{C}\left(\mathbb{C} P^{2} \# \underset{m}{\#} \overline{Q P^{2}}\right)=\operatorname{sig}\left(\begin{array}{cc}
I_{n} & 0 \\
0-I_{m}
\end{array}\right)=n-\infty .\right.
\end{aligned}
$$

Thu (geometric significance of sig (M))

$$
\operatorname{sig}(M)=\operatorname{sig}\left(M^{\prime}\right) \Longleftrightarrow M \underset{\text { in } M^{\prime} \text { are }}{\text { cobordant }}
$$

colordant

W^{5} oriented manifold
and

$$
\partial W \cong M^{\prime} W \bar{M}
$$

$\left(\begin{array}{cc}\text { as oriented } & \text { manifold e. } \\ \bar{M}=M \omega / & \text { oppolite } \\ \text { orientation }\end{array}\right)$
Ex $\operatorname{sig}(M)=0 \Longleftrightarrow M$ cobordant to S^{4} (since $\operatorname{sig}\left(S^{4}\right)=0$)
$\Leftrightarrow M$ bounds
$M=\partial W^{\prime}$$\binom{$ an oriented }{$5-$ mann fold }

$$
W^{\prime}=W \cup D^{5}
$$

$$
W=W^{\prime} \backslash D^{5}
$$

Cor $\mathbb{C} P^{2}$ doesit bound. (ionposible (1?) -/0 $\left.\begin{array}{r}\text { algebra... }\end{array}\right)$
but $\mathbb{C P} \# \overline{\mathbb{C P}}{ }^{2}$ does bound.

Elementary argument:

$$
\mathbb{C} P^{2} \backslash D^{4} \cong N\left(\mathbb{C} P^{\prime}\right)^{\substack{\text { tubular } \\ \text { nh }}}
$$

\downarrow

$$
\mathbb{C} P^{\prime} \cong s^{2}
$$

$$
\underbrace{\mathbb{D}^{2} \cup \mathbb{D}^{2}}_{S^{2}} \rightarrow \mathbb{C} P^{2} \# \widetilde{\mathbb{C P ^ { 2 }}}
$$

Any $s^{2} \rightarrow M^{4} \quad$ bounds

Bunk $\mathbb{C P} \# \overline{\mathbb{C P}^{2}} \neq S^{2} \times S^{2} \quad$ (Why?)
since $B_{C P^{2} \nmid \overparen{C P^{2}}}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \neq\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=B_{S^{2} \times S^{2}}$.

By clutching am oriented (liner) $s^{2} \rightarrow M \rightarrow s^{2}$
is determined by (homotopy class of) $\operatorname{map} S^{\prime} \longrightarrow S O(3)$

$$
\pi_{1}(s o(3)) \cong \mathbb{Z} / 2 \mathbb{Z} \text { so } \mathbb{C} P^{2} \# \overline{\mathbb{C P}}
$$

is the unique nontrivial S^{2}-bundle over S^{2}
sometimes written $S^{2} \tilde{x} S^{2}$
Quick argument $\pi_{1}\left(S_{0}(3)\right) \cong \mathbb{Z} / 2 \mathbb{Z}$

$$
S_{0}(3) \cong \mathbb{R} P^{3}=D^{3} / \pm 1 \text { on } \partial D^{3}=S^{2}
$$

$A \quad{ }^{D}{ }^{C W}$ volution along axis $V^{v^{S^{2}}}$ by angle $\theta \in[0, \pi]$

$$
\Rightarrow S_{0}(3) \cong S^{2} \times[-\pi, \pi] / \sim
$$

rotation by θ along $v=0 \equiv i d$.
rotation by π at $U=$ rotation by π at $-V$

Strategy for Thu
(1) Suffices to show $\operatorname{sig}(M)=0 \Longleftrightarrow$ M bounds.

Proof
M cobordunt to $M^{\prime} \Longleftrightarrow M^{\prime} \not \bar{M}$ bounds

(2) $M=\partial W \Rightarrow \operatorname{sig}(M)=0 \quad$ (elementary)
(3) $\operatorname{sig}(M)=0 \Rightarrow M=\partial N \quad$ (Rokhlin)

Prost of (2) (3) next tine)
Cenmer 1 (half-lives, halt-dies)

$$
\begin{array}{r}
M^{2 k}=\partial W^{2 k+1} \quad \text { orrented manitids } \\
\text { - } \operatorname{dim}_{\mathbb{Q}} \operatorname{ker}\left[H_{k}(M) \rightarrow H_{k}(W)\right]=\frac{1}{2} \operatorname{dim}_{Q} H_{k}(M) \\
(\mathbb{Q} \text {-coefficients) }
\end{array}
$$

- ker is isotrapic wut B_{M}.
lemunz 2 if $B: \mathbb{Q}^{2 d} \times \mathbb{Q}^{2 d} \rightarrow \mathbb{Q}$ nondeg. has d-dim'l icotropir subseace then sig $(B)=0$

If of lem 2 By assumption
$\exists u$ st. $B(u, u)=0$
$\exists v \quad s \neq \quad B(u, v)=1$.

$$
B=\left(\begin{array}{ll}
0 & 1 \\
1 & a
\end{array}\right) \cdot \oplus B^{\prime} \sim\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) . \oplus B^{\prime}
$$

induct
About lem 1 :
Ex.

$M=$ genus g surface
$W=$ handlevody.

Ex

$$
\begin{aligned}
& W=S^{3} \backslash N(K) \\
& M \cong T^{2}
\end{aligned}
$$

$N(K) \quad \exists$! primitive $v \in H_{1}\left(T^{2}\right) \cong \mathbb{Z}^{2}$ that bounds in W.

Proot of lem 1 w/ \mathbb{Q}-coett

$$
H_{k+1}(W, M) \xrightarrow{\partial} H_{k}(M) \xrightarrow{i} H_{k}(w)
$$

PD $\quad 12$ 112

$$
112
$$

$$
H_{112}^{k}(w) \longrightarrow H_{\| 2}^{k}[\mu) \longrightarrow H^{k+1}(w, M)
$$

UCT $12 \ldots$ NL

$$
H_{k}(w)^{* 12} \xrightarrow{i^{*}} H_{k}(M)^{*} \xrightarrow{\partial^{*}} H_{k+1}(w, M)^{*}
$$

$$
\operatorname{dim} \operatorname{ker}(i)=\operatorname{dim} \operatorname{ker}\left(\partial^{*}\right)
$$

$$
=\operatorname{dim} \operatorname{im}\left(i^{*}\right)
$$

$$
=\operatorname{dim} H_{k}(M)-\operatorname{dim} \operatorname{ker}(i)
$$

$$
\binom{\text { liniar aly } T: U \rightarrow V}{\operatorname{dim} \text { ber } T+\operatorname{din} \operatorname{im} T^{*}=\operatorname{dim} U}
$$

$\operatorname{kev}(i)$ is isotropic: Fix $x_{1}, x_{2} \in \operatorname{ker}(i)$ $\operatorname{im}^{\prime \prime}(\partial)$

$$
x_{i}=\partial y_{i}
$$

$y_{i}=\left[N_{i}\right] \in H_{k+1}(W, M), \quad N_{i} \subset W$ submfled

$$
\begin{array}{lll}
{\left[\partial N_{i}\right]=x_{i} \quad \underline{W T S}} & \left(\partial N_{1}\right) \cdot\left(\partial N_{2}\right)=0 . \\
N_{1}^{k+1} \cap N_{2}^{k+1} \subset W^{2 k+1} & \text { 1-manitold (with } \partial)
\end{array}
$$

\Rightarrow intersections of ∂N_{1} \& ∂N_{2} occur in pairs w) opposite signs.

Coborditom groups

$$
\Omega_{n}=\left\{\begin{array}{l}
n \text {-dimil cloced } \\
\text { oriented mfids }
\end{array}\right. \text { / Coriented) }
$$

abelian group under \amalg.
Ideutity: $\left[S^{n}\right]=$ mplds that bound. $\left[\mathrm{MOS}^{n}\right]=[n]$ Inveres : $-[m]=[\bar{m}] \quad \square M \times I$

Eg $\quad \Omega_{1}=0, \quad \Omega_{2}=0$
By The $\Omega_{y} \cong \mathbb{Z}$ given by signature. generated by $\mathbb{C P}^{2}$
Utility: every cobordsism invariant determined by value on $\mathbb{C} \mathbb{P}^{2}$

Ex. $p_{1}: \Omega_{4} \longrightarrow \mathbb{Q}$
M^{n} closed or. unfed $C \mathbb{R}^{N}$

$$
\begin{aligned}
& \leadsto M \xrightarrow{M} G_{r_{n}} \mathbb{R}^{N} \subset G r_{n} \mathbb{R}^{\infty} \sim B O(n) \\
& \xrightarrow{T_{x} M \subset \mathbb{R}^{\infty}} \\
& H^{0}\left(G r_{n} \mathbb{R}^{\infty} ; \mathbb{Q}\right)\left.\cong \mathbb{Q}\left[p_{1}, \ldots, p_{l r_{2}}\right]\right] \\
& p_{1}: \Omega_{4} \longrightarrow \mathbb{Q} \quad M \mapsto \varphi_{M}^{*}\left(p_{1}\right)[M]
\end{aligned}
$$

well-detined:
if $M=\partial W$ then

$$
\begin{aligned}
& \varphi_{M}^{*}\left(p_{1}\right)[M]=i^{*} \varphi_{w}^{*}\left(p_{1}\right)[M] \\
&=\varphi_{w}^{*}\left(p_{1}\right)(\underbrace{i_{*}[M]}_{=0})=0 \\
& \operatorname{sig}\left(\Phi p^{2}\right)=1, \quad p_{1}\left(\mathbb{C} P^{2}\right)=3 \\
& \Omega_{4}=\left\langle\mathbb{C} p^{2}\right\rangle \Rightarrow 4
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& \operatorname{sig}(M)=\frac{1}{3} p_{1}(M) \quad \forall \text {-manifolds } M
\end{aligned}
$$ special case of

(Hirzebruch signature theorem)
Next time: Finish prot of Thy Mare on cobordism.

Signature ξ cobordism
Thm M,N dosed orented 4 -manifilds M, N cobordent $\Leftrightarrow \operatorname{sig}(M)=\operatorname{sig}(N)$.

Last fime

- equivalent: M bounds $\Leftrightarrow \operatorname{sig}(M)=0$.
- M loundr $\Rightarrow \operatorname{sig}(M)=0$.

Example K3 manitold.

$$
\left(\begin{array}{ccc}
\text { so fas laven't sen very } \\
\text { compliatal } & 4 \text {-manntilde }
\end{array}\right)
$$

Definition 1 smoth quartic in $\mathbb{C} P^{3}$ eg $\left\{x^{4}+y^{4}+z^{4}+w^{4}=0\right\} \subset \mathbb{C} P^{3}$ $K 3$ "Surface" (quich but oprque)

Detw 2

$$
\begin{array}{ll}
T^{4}=S^{\prime} \times \cdots \times S^{\prime} \quad S^{\prime} \subset \mathbb{C} \\
\mathcal{\sigma}^{\prime} & \sigma\left(x, \ldots, x_{y}\right)=\left(\bar{x}, \ldots, \bar{x}_{y}\right)
\end{array}
$$

σ involution, 16 fixed points $(\pm 1, \ldots, \pm 1)$
$X=T^{4} / \sigma \quad$ orbifold
$p \in F i x(\sigma)$ Faction $T_{p}\left(T^{4}\right)$ by $\left(\begin{array}{ll}-1 & \\ -1-1,-1\end{array}\right)$
Nbind of singular point t \cong Cone $\left(R P^{3}\right)$
Last time: $\mathbb{R} P^{3} \cong S_{0}(3)$

Also $S O(3) \curvearrowright T^{\prime} S^{2}$ simple transitive

$$
\Rightarrow \quad S O(3) \cong T^{\prime} s^{2}
$$

Remove Cone $\left(R P^{3}\right)$ replace wi $T^{\leq 1} S^{2}$ unit disk, bundle. cotangent
Get closed 4 -mandola $K=K 3$ manifold.

Facts - K simply connected.

- $H_{2}(K ; Q) \cong Q^{22}$ generated by
$16 S^{2}$ is (zero section of disk bundles) and $b=\binom{4}{2} \quad T^{2}$'s (conn from $H_{2}\left(T^{4}\right)$)

Intersection form on $\mathrm{H}_{2}\left(\mathrm{Ki}_{i} \mathrm{Q}\right)$ equivalent to $[-2]^{\oplus 16} \oplus\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)^{\oplus 3}$

$$
\Rightarrow \quad \operatorname{sig}(k)=16
$$

By Thai K cobordant to \# $\mathbb{C P}$ (not obvious at all!)

Q: is $K \cong \underset{16}{\#} \underset{\mathbb{C}}{ }{ }^{2}$ differ?

A: No wrong intersection form.
Actually not obvious... $B_{k} \neq[-2]^{\oplus 16} \oplus\left(\begin{array}{ll}0 & 1 \\ 10\end{array}\right)^{\oplus 3}$
bile not un'uadular
(our basic is not a basis for $H_{2}(K ; \mathbb{Z})$)
in fact

$$
B_{K} \cong\left(-E_{8}\right)^{\oplus 2} \oplus\binom{01}{10}^{\oplus 3}
$$

The (Rokhlin) sig $|M|=0 \Rightarrow M$ bounds.

Idea of Proof
(1) (Immersion theory) Every M^{4} (dosed oneated) immerses in \mathbb{R}^{6}. $M^{4} \xrightarrow{\longrightarrow} \mathbb{R}^{6}$ $\left(\begin{array}{l}\text { Strong } \\ \text { Whitney ionmerion }\end{array} \Rightarrow M^{4} \xrightarrow{ } \rightarrow \mathbb{R}^{7} \ldots\right.$)
(2) (Thou) If oriented N^{k} embeds in \mathbb{R}^{k+2} then N bounds oriented W^{k+1} in \mathbb{R}^{k+2}
(eg $k=1$: snugs Seitert dertaces exist) Discuss general proof later

By (1) + (2) suffices to show can improve

$$
M^{4} \leftrightarrow \mathbb{R}^{6} \text { to } M^{4} \hookrightarrow \mathbb{R}^{6}
$$

There is an obstruction to doing this!
If $M \subset \mathbb{R}^{6}$ then

Furthermore UM is also trivial $\left(\begin{array}{ll}\text { see Kirby.... } \\ T_{o p} & \text { metals }\end{array}\right)$

Recall Real vector bundles have Pontryagin characteristic classes.

$$
H^{*}(B \circ(6) ; \mathbb{Q}) \cong \mathbb{Q}\left[p_{1}, p_{2}, p_{3}\right] \quad p_{i} \in H^{4 i}
$$

characteristic class computation:

$$
\begin{aligned}
O=p_{1}\left(M \times \mathbb{R}^{6}\right) & =p_{1}\left(T M \otimes V_{M}\right) \\
& =p_{1}(T M)+p_{1}(2 M)=p_{1}(T M)
\end{aligned}
$$

If $M^{4} \hookrightarrow \mathbb{R}^{6}$, then $p_{1}(T M)=0, \Leftrightarrow \operatorname{sig}(n)=0$ last time

So if $\operatorname{sig}(M)=0$

$$
3 \operatorname{sig}(M)=p_{1}[T M)[M]
$$

have hope to have $M \hookrightarrow \mathbb{R}^{6}$ (wort quit realize)
What's the difficulty geometrically?
Given $M^{4} \longrightarrow \mathbb{R}^{6}$ generically $(M \pitchfork M)$
has fintely many tripe points

Amazing fact: for $M^{4} \varphi \longrightarrow \mathbb{R}^{6}$
Sig (M) is signed count of triple points (!)
(Key connection algebra to geometry)
So $\operatorname{sig}(m)=0 \Rightarrow$ triple points occur in ± 1 pains.

Plan: try to "cancel" ± 1 pairs

Change M to coberduant manifold (obtained by surgery/heurde attachment) to get $M^{\prime} Q \rightarrow \mathbb{R}^{6}$ w/ no triple points. only See
 locally at selfintersections
looks like $\mathbb{R}^{4} \cap \mathbb{R}^{4}$ in \mathbb{R}^{6}
n

$$
\begin{aligned}
& x_{1} x_{2} x_{3} x_{4} \\
& x_{3} x_{7} x_{5} x_{6}
\end{aligned}
$$

Wive encountered this before!

Conclude:

after replying M by cobordent manitsld can assume $M \subset \mathbb{R}^{6}$ ecenbedded.

* requires argument for the last step. $D^{2} \times S^{0} \quad$ no $\quad S^{\prime} \times D^{\prime}$

More cobordism groups
$\Omega_{n}=\left\{\begin{array}{c}\text { closed oriented } \\ \text { n-manitolde }\end{array}\right\} /$ cobadism is a group.
(Actually can view $\Omega:=\bigoplus_{n \geqslant 0} \Omega_{n}$ as a ring with $[M] \cdot[N]=[M \times N] \ldots$

Thu (Thou) $\Omega_{n}=\pi_{n}$ (something)
Key is Pontryugin - Tho construction Given $M^{n} \underset{\text { Whitney }}{C} \mathbb{R}^{n+k} \subset \mathbb{R}^{\infty}$

Collaple wap $f: S^{n+k} \longrightarrow(\nu M)^{+} \longrightarrow\left(\xi_{k}\right)^{+}$
$(-)^{+}=1$ pt compactification (Thom space)
get element of $\bar{n}_{n+k}\left(\xi_{k}^{+}\right)$
if instead $M \hookrightarrow \mathbb{R}^{n+k} \subset \mathbb{R}^{n+k+1}$
get element of $\pi_{n+k+1}\left(\xi_{k+1}^{+}\right)$...
But $\xi_{k+1}^{+} \simeq \sum \xi_{k}^{+} \quad$ (suspeasion)
and $\delta_{11}^{n+\varepsilon+1} \longrightarrow \xi_{k+1}^{+}$is the

$$
\Sigma^{\prime \prime}\left(S^{n+k}\right) \quad \Sigma^{\prime \prime}\left(\xi_{k}^{t}\right) \quad \text { suspension }
$$

Get well-defied element calm $\bar{\pi}_{n+k}\left(\xi_{k}^{+}\right)$
$\binom{$ could describe as homotion group of }{ of spectrum }
This process can be reversed (hint trunverality)

Signatures of Knots
Previously

$$
\Omega_{4}=\left\{\begin{array}{cl}
\text { close or. } \\
4 \text {-moles }\} / \text { cobordism }
\end{array} \stackrel{\text { sig }}{\cong} \mathbb{Z}\right.
$$

abelian group under D or \#
Next

$$
\frac{\text { Next }}{\text { Ne. }}=\left\{\begin{array}{l}
\text { or. } \\
\text { knots }
\end{array} \text { /concadance } \xrightarrow{\text { signatures) }} \mathbb{Z}^{\infty}\right.
$$

abeliun group under \#

K, K^{\prime} isotopic

$[0,1] \times S^{1} \longrightarrow\left[0, T \times S^{3}\right.$ level-presenung

Here embedding is smooth (or at least 1 locally flat). otherwise any two knots are isotopic

Connected sum of oriented knop

Prop $C:=\left(\left\{\begin{array}{c}\text { oriented } \\ \text { knots }\end{array}\right\} /\right.$ concordance, $\left.\#\right)$
is an abelian group
"Knot Concordance group"

- identity $=[$ unknot $=O]=$

Knots that bound disk in $D^{\prime \prime}$

"slice knots"

granny knot is slice

- eg ribbon knots are slice

Ribbon knot $=$ knot that bounds immersed disk w/ "ribbon siagulartives"

- inverses

exercise: $K \#-K$ always ribbon knot

Ruk $\left(\left\{K_{\text {nots }}\right\} /\right.$ isolpy, $\left.\#\right)$ doesn't have inverses.

Rmke sometimes $k,-k$ isotopic/concoodent $\leadsto 2$-tassion in C. aupphichiral open Q : is there 3-tasion? 5-tarim?
Rmph Ribbon. Slice curjecture (Fox 1960s) Every (smothly) slice Knot is ribbon.

Rime Smooth vs topologivally slife is
 different!

Piccirillo: Conwary knt is not smothly slice (but it a topoloyically slice)

Knot signature $\quad K \subset \mathbb{R}^{3}$
(1) Seifert surface: \exists oviented surfuce

$$
F \subset \mathbb{R}^{3} \quad \partial F=K
$$

(2) Seifert bilinear form

$$
\begin{aligned}
& \sum: H_{1}(F) \times H_{1}(F) \longrightarrow \mathbb{Z} \\
& \sum(u, v)=\operatorname{Link}\left(u^{+}, v\right)
\end{aligned}
$$

$u^{+}=$push of u in phovenal direction to F.

NB. \sum is not symmatric! $\operatorname{Lk}\left(u^{+}, v\right)=1$

$$
\sum(u, v) \neq \sum(v, u)
$$

$B(u, v)=\sum(u, v)+\sum(v, u)$ synmetuzation

$$
\operatorname{sig}(K):=\text { signature of } B \text {. }
$$

(1)

Thm sig(K) well-definied indep of choice of Seifert surface F.
(2) if K, K^{\prime} concordent, then

$$
\operatorname{sig}(k)=\operatorname{sig}\left(k^{\prime}\right) .
$$

(3) sig defines a homomaphisn

$$
\text { sig: } \mathscr{C} \longrightarrow \mathbb{Z}
$$

proofs next the

Example
$F \cong$

$$
\begin{array}{ll}
L k\left(u^{+}, u\right)=1 & L k\left(u^{+}, u\right)=-1 \\
\Sigma=\begin{array}{cc}
u \\
v
\end{array}\left(\begin{array}{cc}
u & v \\
0 & -1
\end{array}\right) & B=\left(\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right) \\
& \lambda_{1} \lambda_{2}=\operatorname{det}>0 \\
\lambda_{1}+\lambda_{2}=t r<0
\end{array} \Rightarrow \operatorname{sig}=-2
$$

(trefoil not slice)

Example

$F \cong$

$$
\begin{aligned}
& \Sigma=\left(\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
-2 & 1 \\
1 & 2
\end{array}\right) \\
& \operatorname{det}<0 \quad \Rightarrow \text { sig }=0 \\
& t r=0
\end{aligned}
$$

Q: Is Fig slice?
A: No... unlike for 4 melds sig is not complete concordance invariant.
other signatures $\quad \omega \in S^{\prime}$

$$
H_{\omega}:=(1-\omega) \Sigma+(1-\bar{\omega}) \Sigma^{t}
$$

Hermitian form. $H_{w}^{*}=H_{w}$.

$$
\operatorname{sig}(K, \omega):=\operatorname{sig}\left(H_{\omega}\right)
$$

unfortunately these also vanish for fig $8 \ldots$

Fibering Trefoil Knot complement.

$$
\begin{aligned}
& T^{2} \backslash p t \longrightarrow S^{3} \backslash K \longrightarrow S^{\prime} \\
& \text { Option } 1 \quad K=S^{3} \cap\left\{(z, \omega) \in \mathbb{C}^{2} \mid z^{2}+\omega^{3}=0\right\} \\
& \text { (why?) }
\end{aligned}
$$

$$
\begin{aligned}
& S^{3} \backslash K \longrightarrow S^{\prime} \\
& (z, \omega) \longmapsto \frac{z^{2}+w^{3}}{\left|z^{2}+\omega^{3}\right|}
\end{aligned}
$$

gives fibuation. (How to tell what fiber is?)
0 Option

$$
S^{3}=S^{1} \times D^{2} \cup D^{2} \times s^{\prime}
$$

Construct family $F_{\theta} \quad \theta \in[0,2 \pi]$ each $F_{\theta} \cong T^{2} \backslash D^{2}$ with $\partial F_{\theta}=K$.

Seifert Surfaces

- Seifert's alganthm

Input: Kunt K (ptanar diagram)
Output: Oriented surtace $F \hookrightarrow \mathbb{R}^{3}$ with

$$
\partial F=K
$$

By example:

(1) pick orientation
(2) create Seifert cycles
(3) connect by twisted bands

$$
\text { Gemus of } F=\frac{1+\# \text { crossings - \# Seifert }}{\text { cycles }}
$$

eg for fig8 \quad gemis $=\frac{1+4-3}{2}=1$

- Knot genus

$$
g(K):=\min \{\operatorname{genns}(F) \mid F \text { seifert surface }\}
$$

Examples
(1) $g(K)=0 \Longleftrightarrow K$ bounds D^{2} in \mathbb{R}^{3} $\Leftrightarrow K$ unknot
(2) $g(S) \leq 1 \quad$ by above fig $8 \neq$ unknot \Rightarrow genus $=1$.
(3) (Haken) Algorithm to compere $g(K)$ using "normal surface theory" gives algorithm to recognize unknot but its van tine is exponential in \# crossings (impractical)

Prop $g\left(k \# K^{\prime}\right)=g(k)+g\left(k^{\prime}\right)$
Cor If $K \# K^{\prime}=$ unknot them

$$
K=K^{\prime}=\text { unknot }
$$

Pf of Cor $0=g($ unknot $)=g\left(k \# K^{\prime}\right)$

$$
=g(k)+g\left(k^{\prime}\right)
$$

$$
\Rightarrow g(k)=g\left(k^{\prime}\right)=0 \Rightarrow k=k^{\prime}=\text { unknot } \square
$$

Prot of Prop

- $g\left(K \# K^{\prime}\right) \leq g(K)+g\left(K^{\prime}\right)$:

Seifurt surf for $K \# K^{\prime}$ of genus $g(k)+g\left(K^{\prime}\right)$

- $g(K)+g\left(K^{\prime}\right) \leq g\left(K \# K^{\prime}\right)$

$S=$ min geand Seitert surtace for $K \# K^{\prime}$ $S \cap P=1$-mfld wth $\partial \subset K$.

After isotery $P_{n} S=$ single are (inneermost dile argment)
$\Rightarrow S=F Q F^{\prime} \quad$ bandry connected sum of Seifert surfaces for K, K^{\prime}

$$
\Rightarrow g(K)+g\left(K^{\prime}\right) \leq g(F)+g\left(F^{\prime}\right)=g(S)=g\left(K * K^{\prime}\right)
$$

Knot Signatuve

$$
K=\partial F
$$

Seifert asymmetric form

$$
\begin{aligned}
& \sum: H_{1}(F) \times H_{1}(\mathbb{F}) \longrightarrow \mathbb{Z} \\
& \sum(u, v)=\operatorname{Link}\left(u^{+}, v\right) \quad \text { Conbasis) } \\
& \sum=\left[\begin{array}{cc}
n & v \\
-1 & 0 \\
1 & 1
\end{array}\right] \quad B:=\Sigma+\sum^{t}=\left[\begin{array}{cc}
-2 & 1 \\
1 & 2
\end{array}\right] \\
& \operatorname{sig}(K):=\operatorname{sig}(B) .
\end{aligned}
$$

Thm K slice $\Rightarrow \operatorname{sig}(K)=0$
Recall K slice if $K \subset S^{3}$ bound embedided D^{2} in D^{4}
\Leftrightarrow concoodut to unkuot $\Leftrightarrow[K]=0 \in \zeta$

Cor sig (k) well detried
Pfot Cor $K=\partial E, K=\partial F \quad$ two Seifert surfiees

E GF Seiffert surtace for $K \notin \bar{K}$
$K \# \bar{K}$ slice (last tivel $\xrightarrow{T h m} \operatorname{sig}(K \# \bar{K})=0$

$$
\begin{aligned}
0=\operatorname{sig}(K \# \bar{K}) & =\operatorname{sig}\left(B_{k \# \bar{K}}\right) \\
& =\operatorname{sig}\left(B_{K}\right)+\operatorname{sig}\left(B_{\bar{K}}\right) \\
& =\operatorname{sig}\left(B_{K}\right)-\operatorname{sig}\left(B_{K}\right)
\end{aligned}
$$

Pf of Thm
(1)
(Thon) $m \geqslant 1 \quad X^{m} \subset \mathbb{R}^{m_{n+2}}$
or. Subufted $\Rightarrow \exists \quad Y^{n+1} \subset \mathbb{R}^{m+2}$ or subupld $\partial Y=X$

- $m=1$: Seifert surtaces ex.5t
- $m=4$: used for Rokhlu

$$
\left(\operatorname{sig}\left(M^{4}\right)=0 \Rightarrow M^{4}=\partial W^{5}\right)
$$

- $m=2$: ule now
(2) K slice $K=O D^{2} \quad\left(D^{2}, \partial D^{2}\right) c\left(D^{n}, S^{3}\right)$ choon seifert instuce $F \subset S^{3}$
$\bar{F}:={\underset{K}{U}}^{D^{2}}$ dosed or. surtace in D^{U} \mathbb{R}^{4}

Thow $\Rightarrow \bar{F}$ bounds a 3-mpled $M \subset \mathbb{R}^{n}$

Half-lives, hulf-dies:

$$
\operatorname{ker}\left[H_{1}(\bar{F}) \rightarrow H_{1}(M)\right] \text { is } \frac{1}{2}-\operatorname{dim}^{\prime} l
$$

Symplutic -iotropiz subiface.
\Rightarrow her is \sum-isotrpai (exercise)

$$
\Rightarrow B=\left(\begin{array}{ll}
0 & A \\
A & C
\end{array}\right) \Rightarrow \operatorname{sig}(B)=0
$$

Knot signatures, canonical
Special case: Assume k fibers

$$
\begin{aligned}
& F \longrightarrow S^{3} \backslash K \longrightarrow S^{\prime} \\
& \uparrow \text { reg contr } \\
& F \times \mathbb{R} S \mathbb{Z}=\langle T\rangle \\
& T(x, t)=(\phi(x), t+1) \quad \phi \in H_{\text {ones }}(F) \text { monodrany } \\
& B(u, v):=\left\langle\phi_{t}(u), v\right\rangle-\left\langle u, \phi_{x}(v)\right\rangle \text { symmetric } \\
& \phi_{*}: H_{1}(F) \rightarrow H_{c}(F) \\
& \left\langle\rightarrow H_{1} H_{1}(F) \times H_{1}(F) \rightarrow \mathbb{\mathbb { C }}\right. \text { syupli int. form. }
\end{aligned}
$$

$$
\operatorname{sig}(K):=\operatorname{sig}(B)
$$

For general $K<S^{3}$

$$
H_{1}\left(S^{3} \backslash K\right) \cong \mathbb{Z} \quad \text { (Alexander duality). }
$$

So have (canonical) \mathbb{Z}-cover

$$
\mathbb{T}_{\langle T\rangle}^{\mathbb{U}} C^{0} X \longrightarrow S^{3} \ln (K)
$$

X is "homology surface"

$$
H_{i}\left(X_{1} \partial X_{i} \mathbb{R}\right) \cong \begin{cases}\mathbb{R} & i=0,2 \\ \mathbb{R}^{2 g} & i=1 \\ 0 & \text { eve }\end{cases}
$$

and There's a supt form

$$
\langle;\rangle: H_{1}\left(X_{1} \partial X_{i} \mathbb{R}\right) \times H_{1}\left(X_{1} \partial X_{i}\right) \rightarrow \mathbb{R}
$$

$$
B(n, v)=\left\langle T_{*}(u), v\right\rangle-\left\langle u_{1} T_{*}(v)\right\rangle .
$$

$\operatorname{sig}(K):=\operatorname{sig}(B)$ requires no chrice.
SNOMNMNM/
BBubble method. $\sum_{\text {For Seifurt surtuess }}$

More Kmot Signatures

$$
l=\left\{\begin{array}{l}
\text { orinted } \\
\text { Knots }\} / \text { concortance }
\end{array}\right.
$$

Thm \mathcal{L} is not finitey genemted
I_{n} fact $\exists \varphi \longrightarrow \mathbb{Z}^{\infty}$
Previansly:

- defived $\sigma: \varphi \rightarrow 2$

Seifert form
$K \subset S^{3} \leadsto F_{\text {Seifert surface }} \leadsto \sum i H_{1}(F) \times H,(F) \rightarrow Z$
Seifert surface $\sum(u, v)=\operatorname{linh}\left(u^{+}, v\right)$

$$
\leadsto B=\Sigma+\Sigma^{t}, \quad \sigma(K):=\operatorname{sig}(B)
$$

and is a

- $\sigma(K)$ indep of cherics, concordance inveriant
- note $\operatorname{In}(\sigma)=2 \mathbb{Z}$
$\sigma(K) \in 22$ since $\operatorname{dim} H_{1}(F)$ wen

$$
\sigma(\mathcal{S})=-2
$$

Formal process to dotain mare signatures:

For $\omega \in S^{\prime} \subset \mathbb{C}$ define

$$
B_{\omega}=(1-\omega) \Sigma+(1-\bar{\omega}) \Sigma^{t}
$$

$$
\sigma_{w}(K)=\operatorname{sig}\left(B_{w}\right)
$$

Hermitian form

$$
B_{\omega}^{*}=B_{\omega}
$$

alt a
concordance invar

$$
\sigma_{\omega}: \varphi \longrightarrow \mathbb{Z}
$$

Claim $\left\{\sigma_{\omega} \mid \omega=e^{2 \pi i / m}, m \geqslant 2\right\}$
Contains ∞ LI subset
To see this consider twist kurt

$$
K_{n}=
$$

 n full twists.

trefoil

figure 8

Check K_{n} has Seisfurt form $\Sigma=\left(\begin{array}{cc}-1 & 1 \\ 0 & -n\end{array}\right) \quad$ wt Serffert Surface from Seifuris algorithm

$$
B_{\omega}=\left(\begin{array}{cc}
\omega+\bar{\omega}-2 & 1-\omega \\
1-\bar{\omega} & (\omega+\bar{\omega}-2) \cdot n
\end{array}\right)
$$

Fix $\omega=e^{2 \pi i / m}$, vary $n>0$. Find

$$
\sigma_{\omega}\left(K_{n}\right)=0 \text { for } n<\frac{1}{2-\omega-\bar{\omega}} \equiv \frac{1}{2\left[1-\cos \left(\frac{2 \pi}{m}\right)\right]}
$$

$$
\left[\begin{array}{c}
B_{\omega}=\left(\begin{array}{cc}
\omega+\bar{\omega}-2 & 1-\omega \\
1-\bar{\omega} & (\omega+\bar{\omega}-2) \cdot n
\end{array}\right) \\
q=\omega+\bar{\omega}-2 \equiv 2\left[\operatorname{Re}_{e}(\omega)-1\right]=2\left[\cos \left(\frac{2 \pi}{m}\right)-1\right] \\
\operatorname{det} B_{\omega}=q^{2} n+q<0 \Leftrightarrow n<\frac{-1}{q}
\end{array}\right]
$$

inductively build LI set

	$\sigma_{\omega_{2}}$	$\sigma_{\omega g}$	$\sigma_{\omega g}$	$\sigma_{\omega_{11}}$
K_{1}	$*$	0	0	0
K_{2}	$*$	$*$	0	0
K_{3}	$*$	$*$	$*$	0
K_{4}	$*$	$*$	$*$	$*$
	\vdots			\vdots

Signatures \&' Conjugacy in $S_{p 2 n}(\mathbb{R})$
Last time if KCS^{3} fibers

$$
\begin{gathered}
F \times \mathbb{R} S \mathbb{Z}=(T) \quad \\
\begin{array}{l}
\downarrow(x, t)=(\phi(x), t+1) \\
F \rightarrow S^{3} \backslash K \longrightarrow S^{\prime}
\end{array} \\
\beta: H(F) \times H_{1}(F) \rightarrow \mathbb{C} \\
\beta(u, v)=\left\langle\phi_{t}(u), v\right\rangle-\left\langle u, \phi_{*}(v)\right\rangle \\
\sigma(K)=\operatorname{sig}(\beta) . \quad\langle i\rangle=\text { interaction form }
\end{gathered}
$$

$\left(\mathbb{R}^{2 n},\langle\because\rangle\right)$ syrplectic vector space
Given $A \in S_{p_{2 n}}(\mathbb{R})$ consider

$$
\begin{aligned}
\beta_{A}: & \mathbb{R}^{2 n} \times \mathbb{R}^{2 n} \longrightarrow \mathbb{R} \\
& \beta_{A}(u, v)=\langle A u, v\rangle-\langle u, A v\rangle
\end{aligned}
$$

symmetric

Exerose $\operatorname{sig}\left(\beta_{A}\right)$ invarimat undir conjugacy in $S_{p_{2 n}}(\mathbb{R})$.

Ex $\quad A=\left(\begin{array}{rr}\cos t & -\sin t \\ \sin t & \cos t\end{array}\right) \quad A^{\prime}=\left[\begin{array}{cc}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right)$
conjugate in $G L_{2}(\mathbb{R})$ bat not in $\underbrace{S L_{2}(\mathbb{R})}_{\text {prescrues oriataion }} \equiv S_{P_{2}}(\mathbb{R})$

$$
\begin{aligned}
& \beta_{A}=A^{t J}-J A=\left(\begin{array}{cc}
-2 \sin t & 0 \\
0 & -2 \sin t
\end{array}\right) \quad J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& \beta_{A^{\prime}}=\left(\begin{array}{cc}
2 \sin t & 0 \\
0 & 2 \sin t
\end{array}\right) \\
& \operatorname{sig}\left(\beta_{A}\right)=-2 \neq 2=\operatorname{sig}\left(\beta_{A^{\prime}}\right)
\end{aligned}
$$

$\Rightarrow A, A^{\prime}$ not conjugate.

This invariant doesut help dotragish

$$
\left.\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right) \dot{(\cos \theta} \begin{array}{c}
-\sin \theta \\
\sin \theta
\end{array} \cos \theta\right)
$$

if $t \neq \theta$ in $(0, \pi)$.
w-signatures Define $H=\mathbb{C}^{2 g} \times \mathbb{C}^{2 g} \rightarrow \mathbb{C}$
$H(u, v)=i\langle u, \bar{v}\rangle$ Hermitian form

$$
[H(v, u)=i\langle v, \bar{u}\rangle=-i\langle\bar{u}, v\rangle=\overline{i\langle u, \bar{v}\rangle}=\overline{H(u, v)}]
$$

For $A \in S_{P_{2 n}}(\mathbb{R})$ and $\omega \in \mathbb{C}$ consider

$$
E_{\omega}=\bigcup_{k \geqslant 1} \operatorname{kar}\left[(A-\omega I)^{k}\right]
$$

charatheritic subleque.
$\operatorname{sig}\left(\left.H\right|_{E_{\omega}}\right)$ conj. invar. of A.
called the w-siynative of A.

$$
\begin{aligned}
& J \leadsto H=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right) \quad A=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right) \\
& \omega=e^{i t} \quad E_{\omega}=\mathbb{C}\left\{\binom{i}{1}\right\} \quad \operatorname{sig}\left(\left.H\right|_{E_{\omega}}\right)=-1 \\
& \omega=e^{-i t} \quad E_{\omega}=\mathbb{C}\left\{\left(\left[\begin{array}{c}
-i \\
1
\end{array}\right)\right\} \quad \operatorname{sig}\left(\left.H\right|_{E_{\omega}}\right)=+1 .\right.
\end{aligned}
$$

all other w-sig's vanish.
$3 r d$ defintion of $\sigma(k)$ and signature additivity thins (Kanffran-Taylor)

$M:=$ double cover of D^{4} branched over F

$$
\sigma(K):=\underbrace{\operatorname{sig}(M)}_{4 \text {-mil signature }}
$$

Key to shoming this is well-defired:
Thm (Noikov addinuity)

$$
M^{4}=M_{1} U_{N} M_{2} \quad \text { whene } \quad \partial M_{1}=N=\partial M_{2}
$$

then $\operatorname{sig}(M)=\operatorname{sig}\left(M_{1}\right)+\operatorname{sig}\left(M_{2}\right)$.
Ex It's impertuct to "ghe olang full bondary."
eg $M=\mathbb{D} S^{2}$ unit dish bundle

$$
\begin{align*}
& \downarrow \pi \\
& S^{2}=D_{1} \cup D_{2} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& M=M_{1} \cup M_{2} \quad M_{i}:=\pi^{-1}\left(D_{i}\right) \cong D_{i} \times \mathbb{D} \\
& \cong D^{4} \\
& \operatorname{sig}(M)=-2 \quad \operatorname{sig}\left(M_{i}\right)=0 .
\end{aligned}
$$

Here M_{1}, M_{2} ghmed allong sobicts of $\partial \ldots$

Thm (Wall nonaddituity)

$$
L_{i}:=\operatorname{ker}\left[H_{2}(X) \rightarrow H_{2}\left(N_{i}\right)\right]
$$

Lagrangion (halt dimil, \rangle isotroic)

$$
\operatorname{sig}(M)=\operatorname{sig}\left(M_{1}\right)+\operatorname{sig}\left(M_{2}\right)+\underbrace{\mu\left(L_{0}, L_{1}, L_{2}\right)}
$$

Maslov index (symplectic invarint)

Connect signatures to symplectic geometry.

Maslov index
Motivation: Wall nomaddituity

$$
M^{4}=\frac{M_{1} \int_{N_{1}}^{N_{3}} M_{N_{2}}^{N_{2}}}{N_{i}=\operatorname{ker}\left[H_{1}(X i \mathbb{R}) \rightarrow H_{1}\left(N_{i} ; N\right)\right]}
$$

$$
\operatorname{sig}(M)=\operatorname{sig}\left(M_{1}\right)+\operatorname{sig}\left(M_{2}\right)+\underbrace{\mu\left(L_{1}, L_{2}, L_{3}\right)}_{\text {Maslor index }}
$$

$\left(\mathbb{R}^{2 n}, \omega\right)$ symplectic vector spence

$$
\omega(x, y)=x^{t} J_{y} \quad J=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n}
\end{array}\right)
$$

Lagrangian Grassnannian

$$
\Lambda_{n}:=\left\{L \subset \mathbb{R}^{2 n} \left\lvert\, \begin{array}{l}
\operatorname{dim}_{\omega(x, y)=0} l=n \quad \forall x, y t
\end{array}\right.\right\} \subset G r_{n} \mathbb{R}^{2 n}
$$

Ex $\Lambda_{1}=\mathbb{R} P^{1} \cong S^{\prime}$
In general

$$
\Lambda_{n} \cong S_{P_{2 n}(\mathbb{R})}^{G \ln (\mathbb{R})} \cong=U(n) / O(n)
$$

and there is a fibration

$$
\frac{S U(n)}{S O(n)} \longrightarrow \frac{U(n)}{O(n)} \longrightarrow S^{\prime}\binom{\text { Proof }}{\text { loter }}
$$

In particular $S^{2} \rightarrow \Lambda_{2} \rightarrow S^{\prime}$ unique nontrivina bundle. (nanovieatale 3 mofd)
Detining $\mu: \Lambda_{n} \times \Lambda_{n} \times \Lambda_{n} \longrightarrow \mathbb{Z}$
Sperial case Suppose
L_{1}, L_{2}, L_{3} fransueve $L_{i} \cap L_{j}=\{0\}$ so $R^{2 n}=L_{i} \otimes L_{j}$.

Can describe l_{2} as graph of (unique) linear $f: L_{1} \rightarrow L_{3}$.
ie $\left.L_{2}=\{x+f(x): x \in L\},\right\}$
Define $\beta: L_{1} \times L_{1} \rightarrow \mathbb{R}\binom{f$ in hence iso }{ since $L_{1} \cap L_{2}=\{0\}}$

$$
\beta(x, y)=\omega(x, f(y))
$$

Claim β symmetric.
L_{1}, L_{3} Lagrangian

$$
\begin{aligned}
0=w(x+f(x), y+f(y)) & =w(x, y)+\omega(f(x), f(y)) \\
& +w(x, f(y))+w(f(x), y) \\
& =\beta(x, y)-\beta(y, x)
\end{aligned}
$$

β is non degenerate b/c
$\omega: L_{1} \times L_{3} \rightarrow \mathbb{R}$ is nondegen. and f is an iso.

Define $\mu\left(L_{1}, L_{2}, L_{3}\right)=\operatorname{sig}(\beta)$.

Ex $(n=1)$

- L_{1}, L_{2}, L_{3}

$$
\begin{aligned}
& \beta\left(x_{1} x\right)>0 \Rightarrow \\
& \mu\left(l_{1}, L_{2}, L_{3}\right)=1
\end{aligned}
$$

- $L_{1}, L_{2}^{\prime}, L_{3}$

$$
\beta(x, x)<0 \Rightarrow
$$

$$
\mu\left(L_{1}, L_{2}, L_{3}\right)=-1
$$

As long as L_{1}, L_{2} transverse to L_{3} can repent. $\exists \quad f: L_{1} \rightarrow L_{3}$ (not rec. is e)
s.t. $L_{2}=\operatorname{graph}(f) \subset L_{1} \otimes L_{3} \cong \mathbb{R}^{2 n}$

Define β as alone and $\mu\left(L_{1}, L_{2}, L_{3}\right)=\operatorname{sig}(\beta)$.
Note β may be degenerate fut that's okay
diagonalize $\left(\begin{array}{lll}+I_{p} & & \\ & -I_{q} & \\ & & 0\end{array}\right) \quad \operatorname{sig}(\beta)=p-q$.

General definition

$$
\begin{aligned}
& V=\left\{\left(v_{1}, v_{2}, v_{3}\right) \in L \in L_{2} \oplus l_{3} \mid v_{1}+v_{2}+v_{3}=0 \in \mathbb{R}^{2 n}\right\} \\
& Q\left(v_{1}, v_{2}, v_{3}\right)=\omega\left(v_{1}, v_{2}\right)=\omega\left(v_{2}, v_{3}\right)=\omega\left(v_{3}, v_{1}\right) \\
& \left(v_{1}=-v_{2}-v_{3}\right)
\end{aligned}
$$

quadratic form. $\mu\left(L_{1}, L_{2}, L_{3}\right):=\operatorname{sig}(Q)$.
Ex

$$
\begin{aligned}
& \left.V 1-\operatorname{dim}^{\prime}\right) \\
& Q\left(v_{1}, v_{2}, v_{3}\right)<0
\end{aligned}
$$

$$
V_{2}-\operatorname{dim}^{-1}
$$

$$
Q \equiv 0 .
$$

Here $\mu: \Lambda_{1} \times \Lambda_{1} \times \Lambda_{1} \rightarrow \mathbb{Z}$
agrees if the "order cockle" on $S^{\prime} \cong \Lambda_{1}$

$$
\operatorname{ard}(x, y, z)=\left\{\begin{array}{rl}
+1 & x y z<c w \\
-1 & x y z \text { cw } \\
0 & x y z \text { not } \\
\text { disthat }
\end{array}\right.
$$

Viewing $\quad S^{\prime}=\partial H^{2}$

$\operatorname{ard}(x, y, z)=\frac{1}{\pi} \operatorname{signed}($ area $($ tingle spammed by $x, y, z)$
Key Property μ is a cocycle
Given $L_{1}, L_{2}, L_{3}, L_{4}$

$$
\sum(-1)^{i} \mu\left(L_{1}, \ldots, \hat{L}, \ldots, L_{4}\right)=0
$$

Novikor additivity

Warmup Consoler Mager-Vietrisl sequence

$$
H_{2}(N) \xrightarrow{\left(i_{1},-i_{2}\right)} H_{2}\left(M_{1}\right) \oplus H_{2}\left(M_{2}\right)^{j+j_{2}} H_{2}(M) \xrightarrow{\partial} H_{1}(N)
$$

If $H_{1}(N)=H_{2}(N)=0$ then

$$
\begin{aligned}
& H_{2}(M) \cong H_{2}\left(M_{1}\right) \oplus H_{2}\left(M_{2}\right) \quad \text { orthogonal } \\
\Rightarrow \operatorname{sig}(M)=\sin \left(M_{1}\right)+\operatorname{sig}\left(M_{2}\right) . &
\end{aligned}
$$

eg if $N=S^{3}$ (connected sum)

In geveral

$$
\begin{aligned}
& H_{2}(M) \cong \frac{H_{2}\left(m_{1}\right) \oplus H_{2}\left(M_{2}\right)}{I_{m}\left(i_{1},-i_{2}\right)} \oplus \operatorname{Im}(\partial) \\
& \cdots \cong \frac{H_{2}(N)}{\operatorname{ko}\left(i_{1}\right)+\operatorname{ker}\left(i_{2}\right)} \oplus \frac{H_{2}\left(M_{1}\right)}{I_{m}\left(l_{1}\right)} \oplus \frac{H_{2}\left(M_{2}\right)}{I_{m}\left(i_{2}\right)} \oplus I_{m}(\partial)
\end{aligned}
$$

Observe

- Im $\left(i_{j}\right)$ degenenite $\Rightarrow \operatorname{siy}\left(M_{j}\right)=\operatorname{sig}\left(\frac{H_{i}\left(M_{j}\right)}{\operatorname{Im}_{m}\left(i_{j}\right)}\right)$
- middle summends orthogonal but not all sumuands orthegonal.
- WTJ can split off copits of $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ from $1^{\text {st }}$ /lact summands.
illustration: Fix $x^{\prime}=\partial(x) \quad$ Nelozed, or.

$$
\Rightarrow \exists \quad y \in H_{2}(N) \text { s.t. } x^{\prime}-y=1 \text {. }
$$

int, form on $\operatorname{sean}(x, y)$ is $\left.\begin{array}{ll}x \\ y & y \\ ? & 1 \\ 1 & 0\end{array}\right)$

More generally fix basis for $\operatorname{Im}(\partial)$ and tale dual busil for $\mathrm{H}_{2}(N) / \operatorname{ker}\left(\mathrm{O}_{1}\right)+$ leerliz on which form is $\sim\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)^{\oplus k}$ ono

Application (signature of knop) $\sigma(K)$ defuntron 3:

$M=$ double cover of D^{4} brunched over F

$$
\sigma(k):=\operatorname{sig}(m)
$$

Claim $\sigma(k)$ well defined indep of choice of F.

$M:=$ double cover of S^{4} brunched over $F_{1} \cup \bar{F}_{2}$.

$$
M=M_{1} \cup \bar{M}_{2} \quad N=\begin{gathered}
\text { double of } s^{3} \text { branched } \\
\text { over } K, ~
\end{gathered}
$$

Novikow $\quad \operatorname{sig}(M)=\operatorname{sig}\left(M_{1}\right)-\operatorname{sig}\left(M_{2}\right)$
WTS $\operatorname{sig}(M)=0$.
Equivalently WTJ M bounds. $(\operatorname{dim} 4)$

Them: $\exists X^{3} c S^{4}$ with $\partial X=F$.
$W=$ double cover of D^{5} breaded over X.
By construction $\quad \partial W=M$

Last time $\left(\mathbb{R}^{2 n}, \omega\right)$ symplectic vispace. $\Lambda_{n}=$ Lagrangin Maslov index $\mu:\left(\lambda_{n}\right)^{\times 3} \rightarrow 2$ Gralsmanion
write $\left(v_{1}, v_{2}, v_{3}\right)=\left(v_{1},-\left(v_{1}^{\prime}+v_{3}^{\prime}\right), v_{3}\right) \underset{L_{2}}{L_{\text {gaph }}}\left(f: L_{1} \longrightarrow L_{3}\right)$

$$
L_{1} \stackrel{\cong}{\rightarrow} V \quad Q\left(v_{1}\right)=\omega\left(v_{1}, f\left(v_{1}\right)\right)
$$

$$
v_{1} \longmapsto\left(v_{1},-\left(v_{1}+f\left(v_{1}\right)\right), f\left(v_{1}\right)\right)
$$

$$
\begin{aligned}
& \begin{aligned}
\mu\left(L_{1}, L_{2}, L_{3}\right) & =\operatorname{sig}(Q)
\end{aligned} \begin{aligned}
Q: v & \rightarrow R \\
Q\left(v_{1}, v_{2}, v_{3}\right) & =\omega\left(v_{1}, v_{2}\right)
\end{aligned} \\
& V\left(L_{1}, l_{2} l_{3}\right)=\left\{\left(v_{1}, v_{2}, v_{3}\right) \in L_{1} \oplus L_{2} \oplus L_{3} \mid \sum_{\text {in }} v_{i}=0\right\} \\
& \text { If } l_{1}, L_{2} \text { trunsverse to } l_{3}
\end{aligned}
$$

Wall nonadditivity

$$
L_{i}=\operatorname{ker}\left[H_{1}\left(X_{i} \mathbb{R}\right) \longrightarrow H_{1}\left(N_{i} ; R\right)\right]
$$

$$
\operatorname{sig}(M)=\operatorname{sig}\left(M_{1}\right)+\operatorname{sig}\left(M_{2}\right)+\mu\left(L_{1}, L_{2}, L_{3}\right)
$$

 Novikov: $\operatorname{sig}(M)=\operatorname{sig}\left(M_{1} u M_{2}\right)+\operatorname{sig}(Z)$. glued alang cloped manifll. (think back to poof ...)
(2) $\operatorname{sig}(z)=\mu\left(L_{1}, L_{2}, L_{3}\right)$ (explain idea/conve ton)

WT understand int. form on cycles $u \in H_{2}(z)$ where

$$
\begin{aligned}
& u=u_{1}+u_{2}+u_{3}+v \\
& \partial v=-\left(\partial u_{1}+\partial u_{2}+\partial u_{3}\right)
\end{aligned}
$$

if $\omega_{i}=\partial u_{i}$ then and $w_{1}+w_{2}+w_{3}=0$ in $H_{1}(X)$. $\omega_{i} \in \operatorname{ker}\left[H_{1}(x) \rightarrow H_{1}\left(N_{i}\right)\right]$.
Check $u \cdot u=Q\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \quad(u p$ to a multiple)
unit lille in Hoff bundle

Ex $\quad M=s^{2} \times D^{2}=M_{1} \times M_{2} \quad \partial M=s^{2} \times s^{1}$

$$
\operatorname{sig}(M)=0 .
$$

Ex (trisections) Morse 2-furction $M^{4} \rightarrow D^{2}$ Eluyg doreel or rented M^{4} his a trisection

$$
M=M_{1} \cup M_{2} \cup M_{3} \quad M_{i} \cong S^{1} \times D^{3}
$$

$H_{i j}:=M_{i} \cap M_{j}=$ gemes g handecrady

$S=M_{1} \cap M_{2} \cap M_{3}$ genus g surface.

$$
H_{i j} u H_{j k}=\text { Heegaard spiting of } \partial M_{j} \cong S^{\prime} \times S^{2}
$$

Norikov+ Wall $\operatorname{sig}(M)=\operatorname{sig}\left(M_{1} \cup M_{2}\right)+\operatorname{sig}\left(M_{3}\right)^{0} \quad L_{i j}=k_{r}\left[M_{1}(N)-1\right.$

$$
=\operatorname{sig}\left(m_{1}\right)+\operatorname{sig}\left(m_{2}\right)+\mu\left(L_{12}, L_{23}, L_{31}\right)
$$

Signature Cocyles $\mu:\left(\Lambda_{n}\right)^{\times 3} \longrightarrow\{-n, \ldots, n\} \subset \mathbb{Z}$

$$
\text { - } \mu\left(L_{\sigma(1)} L_{\sigma(2)}, L_{\sigma(3)}\right)=\operatorname{sign}(\sigma) \mu\left(l_{1}, l_{2}, l_{3}\right) \quad \sigma \in S_{y_{m}(3)}
$$

- cocycle

$$
0=\delta_{\mu}\left(L_{1}, L_{2}, L_{3}, L_{4}\right) \equiv \sum_{i=1}^{4}(-1)^{i} \mu\left(\ldots \hat{L_{i}} \ldots\right)
$$

Symplectic cocycle $\hat{\mu}:\left(S_{p_{2 n}}(R)\right)^{x^{3}} \longrightarrow \mathbb{Z}$

Other cocycles $c \in H^{2}\left(S_{p_{2 n}} \mathbb{R}\right)$
(1) Central extensions.
(2) Kätler form
(3) Signature cocyle
(1) Central extensions. For any group G.

$$
\begin{aligned}
& H^{2}(G ; \mathbb{Z}) \stackrel{1-1}{\longleftrightarrow}\left\{\begin{array}{l}
\text { central extensions } \\
1 \rightarrow \mathbb{Z} \rightarrow \tilde{G} \rightarrow G \rightarrow 1
\end{array}\right\} / \sim \\
& \text { For } G=S_{p_{2 n}}(\mathbb{R}) \quad \pi_{1}\left(S_{p_{2 n}} \mathbb{R}\right) \cong \pi_{1}(u(a)) \cong \mathbb{Z}
\end{aligned}
$$

(2) Kätlec form

$$
X=S_{p 2_{n}(\mathbb{R}) / U(\cdot)} \cong \underset{\text { Siegel upper }}{\text { half spare }} H_{g}=\left\{A \in G L_{n} \mathbb{C} \text { symmetric } \underset{\operatorname{Im}(A)>0}{ }\right\}
$$

complex mf (d, Riemancion sym. pace.
$\omega \in \Omega^{2}(x)$ symplectic foin (Kabhlerferm) doped, S_{p}-invar
For $p \in X$ define
 $\hat{\omega}:\left(S_{p_{2}} \mathbb{R}\right)^{3} \longrightarrow \mathbb{R}$

(3) signature coyle on $S_{P_{g}}(\mathbb{Z})$

For $a, b \in S_{2 g}(\mathbb{Z})$

- $\operatorname{Mod}\left(S_{g}\right) \rightarrow S_{2 g}(\mathbb{E})$ surjective (Mecks-Patrislyy) choose iffy $A, B \in \operatorname{Mod}\left(S_{g}\right)$
- Build S_{g}-bundle over part $\sigma(a, b):=\operatorname{sig}\left(E_{A, B}\right)$
 indep of choice of lifts...

Claim σ is a cocycle
$\left[\begin{array}{ll}\text { inhomogeneous } & (x, y, z) \hookleftarrow\left(1, x^{-1} y, x^{-1} z\right)=(1, \underbrace{x^{-1} y, \underbrace{-1}_{a b} y y^{-1} z}_{a})]\end{array}\right]$
$\underline{\text { WT }} \quad 0=\delta \sigma(a, b, c)=\sigma(b, c)-\sigma(a b, c)+\sigma(a, b c)-\sigma(a, b)$

Noviko $\sigma(b, c)+\sigma(a, b c)=\operatorname{sig}\left(E_{a, b, c, a b c}\right)$

$$
=\sigma(a b, c)+\sigma(a, b)
$$

Fact $H^{2}\left(S_{p_{2 n}}(\mathbb{R}) ; \mathbb{R}\right) \cong \mathbb{R}$ so all cocycles are (basically) the same!

Move Masbov inder (Rich connections)
Several pints of view
\int Wall noned ditivity
(1) $\mu:\left(\Lambda_{n}\right)^{3} \longrightarrow \mathbb{Z}$ Maslov cocyde

$$
\leadsto \hat{\mu}:\left(S_{p_{2 n}} \mathbb{R}\right)^{3} \rightarrow \mathbb{Z} \leadsto[\hat{\mu}]_{\in} H^{2}\left(\delta_{p 2 n}(\mathbb{R} ; \mathbb{Z})\right.
$$

(2) Central extension $1 \rightarrow 2 \rightarrow \widetilde{S_{p_{2 n}} \mathbb{R}} \rightarrow S_{p_{2}}(\mathbb{R}) \rightarrow 1$ $\left.\leadsto \quad c \in H^{2}\left(S_{P_{2}} \mid \mathbb{R}\right) ; \mathbb{R}\right)$
(3) $\xi \in H^{\prime}\left(\Lambda_{n} ; \mathbb{Z}\right)$ Connect to dy namics
(4) Meyer Signature cocycle connect to Surface buadus topelogy of

Mager Signature cocycle

$$
\begin{aligned}
& S_{g}=0 \cdots 0 \quad M o d\left(S_{g}\right)=H_{\text {omeol }}\left(S_{g}\right) / \text { istapy } \equiv \pi_{0}\left(H_{\text {menalg }}\right) \\
& \sigma: M_{a d}\left(S_{g}\right) \times M_{o l}\left(S_{g}\right) \longrightarrow \mathbb{Z} \\
& \text { Fo } \quad \alpha, \beta \in M_{0 d}\left(S_{g}\right) \quad \exists!\quad S_{g} \rightarrow E_{\alpha \beta} \rightarrow{ }^{M_{\alpha}} \rho_{\rho^{M}}^{M_{\alpha} \beta} \\
& \sigma(\alpha, \beta):=\operatorname{sig}\left(E_{\alpha \beta}\right) \\
& S^{2} \backslash \cup_{3} D^{2} \\
& \text { Constrantion of } E_{\alpha \beta} \\
& \mathrm{S}_{M_{\alpha} \mathrm{B}_{\alpha}} S_{g} \rightarrow M_{\alpha} \rightarrow S^{\prime} \\
& \text { M, }
\end{aligned}
$$

Claim σ is a $2-$ locy de (inhbmogeneows)

$$
[\sigma] \in H^{2}\left(\operatorname{Mod}\left(S_{g}\right) ; \mathbb{Z}\right)
$$

Lastine Elements of $H^{2}(G, T)$ reid by $\phi: G^{3} \longrightarrow \mathbb{Z}$

$$
\begin{aligned}
& \phi\left(g a_{1}, g a_{2}, g a_{3}\right)=\phi\left(a_{1}, a_{2}, a_{3}\right) \quad \dot{\varepsilon} \quad 0=\delta \phi\left(a_{1}, \ldots, a_{4}\right)=\sum(-1)^{i} \phi\left(\hat{i}_{1}, \ldots\right) \\
& \phi\left(a_{1}, a_{2}, a_{3}\right)=\phi(1, \underbrace{a_{x}^{-1} a_{2}}_{x}, a_{1}^{-1} a_{2} \cdot \underbrace{-a_{2}^{-1} a_{3}}_{y})=\hat{\phi}(x, y) \text { (Homgeneous 2-cogy } l_{c}) \\
& \delta \phi=0 \Leftrightarrow \delta \hat{\phi}(x, y, z)=\hat{\phi}(y, z)-\hat{\phi}(x y, z)+\hat{\phi}(x, y z)-\phi(x, y)
\end{aligned}
$$

(inhumongeneoss 2-cogyde)

Facts about σ
(3) $\sigma(\alpha, \beta)$ depends only on action of α, β on $H_{1}\left(S_{g}\right)$ $\operatorname{Hod}\left(S_{g}\right) \rightarrow S_{p_{2 g}}(\mathbb{Z})$. ie σ descends to $\bar{\sigma}: S_{p_{2 g}}(\mathbb{Z}) \times S_{p_{2 g}}(\mathbb{Z}) \longrightarrow \mathbb{Z}$ (Maslov index)
(2) $g=1 \quad \operatorname{Mod}\left(T^{2}\right) \cong S p_{2}(\mathbb{\mathbb { C }}) \cong S L_{2}(\mathbb{Z}) \cong \mathbb{Z} / 4 \mathbb{\mathbb { Z }} * \mathbb{Z} / 6 \mathbb{Z}$

$$
[\sigma]=4 \in H^{2}\left(S L_{2}(\mathbb{Z}) ; \mathbb{Z}\right) \cong \mathbb{Z} / 12 \mathbb{Z}
$$

(1) σ measures signature of surface bindles reer surfaces
(Norikov)

$$
S_{g} \rightarrow E \rightarrow S_{h}
$$

$$
S_{h} \rightarrow K\left(\operatorname{Mod}\left(S_{g}\right), 1\right)
$$

Thm $($ Atiya-h, Kodarva $) \exists S_{g \rightarrow E} \rightarrow S_{h} \quad w /$ sig $(E) \neq 0 \quad(g \geqslant 3)$
(1.5) Thmm $\left(H_{\text {marad }} \quad g \geqslant 3 \quad H^{2}\left(\mu \cdot d\left(F_{y}\right) ; a\right) \cong a \quad(\Rightarrow\right.$ gen by $\sigma)$
Proot of Claim Novika! Fix $\alpha, \beta, \gamma \in \operatorname{Mod}\left(S_{g}\right)$
WTS $\quad \sigma(\beta, \gamma)+\sigma(\alpha, \beta \gamma)=\sigma(\alpha, \beta)+\sigma(\alpha \beta, \gamma)$
Both LHS \& RHS are signature of (total space) of bande

$$
S_{g} \rightarrow E_{\alpha, \beta, \gamma, \alpha \beta \gamma}
$$

Toplogy of Λ_{n}
(1) $\quad \Lambda_{n} \cong S_{P_{2 n}}(R) / G L_{n}(R) \cong U(n) / O(n)$
(2) $\frac{S U(n)}{S_{0(n)}} \rightarrow \frac{u(n)}{O(n)} \longrightarrow S^{\prime} \quad$ fibration
$\Rightarrow \pi_{1}\left(\Lambda_{n}\right) \cong \mathbb{Z}$. Generator of $H^{\prime}\left(\Lambda_{n} ; \mathbb{Z}\right)$
encarnation of Masloo dars.
 Check $\underbrace{U(n) \curvearrowright \Lambda_{n} \text { transitive, } S^{U t a b}{ }_{u(n)}(\underbrace{\left\langle e_{1}, e_{0}\right\rangle})} \cong O(n)$. Given $L \in \Lambda_{n}$ close ONB $u_{1}, \ldots, u_{n} . \left\lvert\, \begin{aligned} & \text { redundancy } J \text { dice of }\end{aligned}\right.$ Then $u_{1}, \ldots u_{n}, J u_{1}, \ldots J_{u_{n}}$ sympletic basis $O N B$ of L ie $O(n)$ matrix $A \sim$ there columns in $S_{\rho_{2 n}}(R) \cap O(2 n) \cong U(n)$ and $A\left(L_{0}\right)=L$.
(2) $U(n) \xrightarrow{d t^{2}} S^{1} \quad \stackrel{\text { Che } C_{k}}{\text { SU(n) acts tranitinely }}$
$\Lambda_{n}=U(n) / O(n)$
$\operatorname{det}^{2}: \Lambda_{n} \longrightarrow S^{\prime} \rightarrow m \in H^{\prime}\left(\Lambda_{n} ; \mathbb{Z}\right) \quad\binom{$ Brmin }{ reperenatai:iliz }
Any loop $\gamma \cong S^{\prime} \subset \Lambda_{n}$ hes a "Maslow inder" $m(\gamma) \in \mathbb{Z}$.

Ex $n=2 \quad S_{\rho_{4}}(\mathbb{R})$

$$
S^{2} \cong s^{3} \cong \frac{\operatorname{su(}(2)}{s^{\prime}(12)} \longrightarrow \Lambda_{2} \xrightarrow{\operatorname{det}^{2}} s^{\prime}
$$

- Exaruse Monodvory is antipatal ie $\Lambda_{2} \cong \frac{S^{2} \times[0,1]}{(x, 0) \sim(-x, 1)}$
- Fix $\ddot{L}_{0} \in A_{n}$ deconpoge

Picture of $\tilde{\Lambda}_{2} \cong s^{2} \times \mathbb{R} \quad \tilde{z}$

$[Z] \in H_{2}\left(\Lambda_{2}\right)$ dual to $[m] \in H^{\prime}\left(\Lambda_{2}\right)$ (Arnoild) ie for $\gamma \in H_{1}\left(\Lambda_{n}\right) \quad m(\gamma)=\gamma \cdot Z$.

Next Unity diftemant defurions of Maslov; applicationsto dymanas

Ex $n=2 \quad S_{P_{4}(R)}$

$$
s^{2} \cong s^{3} / s^{\prime} \cong \frac{\operatorname{Sul}^{\prime}(2)}{\text { Sol2) }} \longrightarrow \Lambda_{2} \xrightarrow{\operatorname{det}^{2}} s^{1}
$$

 eg $\ln L_{0}=\left\langle e_{1}\right\rangle$. What are all Lagrangans lontaing $\left\langle e_{1}\right\rangle$?

$$
\begin{array}{l|ll}
0=\omega\left(e_{1}, a e_{1}+b e_{2}+c f_{1}+d f_{2}\right)=c & d \neq 0 . & L=\left\langle e_{1}, b e_{2}+d f_{2}\right\rangle \\
0=g\left(e_{1}, a e_{1}+b e_{2}+c f_{1}+d f_{2}\right)=a & Z \cong S^{2} /(0=\infty) \sim S^{2} v S^{\prime}
\end{array}
$$

$\Lambda_{2} \backslash z \equiv\{$ Lagrangiuns transuru to 1.$\}$
$\cong\{$ quadratic forms an ary fixed L DLL. $\}$ ($\begin{aligned} & \text { as in def } \\ & \text { of Malor }\end{aligned}$

$$
\cong \mathbb{R}^{3}
$$

Picture of $\quad \tilde{\Lambda}_{2} \cong s^{2} \times R \quad \tilde{z}$

$$
\begin{aligned}
& \Lambda_{1} \text { story } \\
& \sigma \\
& \mathrm{SL}_{2}(\mathbb{R}) \\
& \begin{array}{ll}
\mathbb{Z} & \rightarrow \widetilde{S L}_{2} \mathbb{R}
\end{array} \rightarrow \mathrm{SL}_{2} \mathbb{R} د \text { So(2) }
\end{aligned}
$$

Λ_{n} stang

Fixed points of surface diffeomorphisus S oriented surface. $f: S \rightarrow S$ diffeomondain. Q: Does f have " fixed point? $(f(x)=x)$

Examples

- rotations on $S^{\prime} \times S^{\prime}$ ave fixed point free.

$$
r(\theta, \varphi)=(\theta+c, \varphi)
$$

- Browner: every $f=D^{2} \rightarrow D^{2}$ has a fixed Closed disk pout.
- Lefschetz: $f: S \rightarrow S$ (continuous) has fixed point if

$$
\frac{\sum_{i=0}^{2}(-1)^{i} \operatorname{Trace}\left[f_{*} ; H_{i}(S ; Q) \rightarrow H_{i}(s ; Q)\right] \neq 0}{{ }^{\prime \prime} \Lambda_{f} \text { Letschetz number }}
$$

Consequently goo (homotepri) also has a fixed pt.

Eg $f: s^{2} \rightarrow s^{2}$

$$
\begin{aligned}
\Lambda_{f} & =1+\operatorname{Tr}\left[f_{*}: H_{2}\left(s^{2}\right) \rightarrow H_{2}\left(s^{2}\right)\right] \\
& =1+\operatorname{deg}(f)
\end{aligned}
$$

f or. press differ $\Rightarrow \Lambda_{f}=2$
\Rightarrow has at least one fixed pant
This is sharp: $f: z \mapsto z+1$ on \mathbb{C} extends to ditteo (biholo) of $\hat{\mathbb{C}} \cong S^{2}$ f has exacting one fixed pt. $f(\infty)=\infty$.

Ex $A=S^{\prime} x I$ $f: A \rightarrow A$

or. pres. differ $\Lambda_{f}=0$ let'schetz silent.
Indeed f need not have any fixed point.

Remarkable trend: area preserving differs tend to have move fixed guaranteed fixed pints.
Example 1 $S=S^{2}$
Thu (Nikishin, Simon 1974) $\quad f: S^{2} \rightarrow S^{2}$ area pres. differ (homes) \Rightarrow
f has $\geqslant 2$ fixed point
eg $f \in \operatorname{Irom}^{+}\left(s^{2}\right)=$ So(3) has 2 fixed pt by linear algebra

For geneval case:
Browner frouslation Thm $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$\forall p \in \mathbb{R}^{2} \quad \exists$ prop. enberned $L \cong \mathbb{R} \hookrightarrow \mathbb{R}^{2}$ S.t.

Pf ofThm By letschetz f has a fixed pt. "s". Apply Browner franslation to $\left.f\right|_{s^{2} \backslash \infty \cong \mathbb{R}^{2}} \Rightarrow \exists$ open U st. $U_{1} f(u), f^{2}(u), \ldots$ disjoint

Since f preserves area, $\operatorname{area}(a)>0$, area $\left(\delta^{2}\right)<\infty$, this is a contradiction.

Example 2 $S=S^{\prime} \times[0,1]$ annulus.

Here an area preserving differ (still) need not have my fixed paints (rotate) However...

Thm (Poincave, Birkholf 1913)
$f: A:=S^{\prime} \times[0,1] \gtrless \begin{aligned} & \text { orrentation s } \\ & \text { area prepering }\end{aligned}$ and $\left.f\right|_{S^{\prime} \times 0}$ cW rotation
$\left.f\right|_{S^{\prime} \times 1} \quad C C W$ rotation
Then f has $\geqslant 2$ fixed points.

Why Poincave cared: celestine mecharics 3-body poblen, wout pevidic solutionl Mathematical formulation
Remanuion 2-sperear $\left(S^{2}, g\right)$
Q: Does $\left(S_{i}^{2}, g\right)$ have a closed geodere?

For $t \in \gamma \cong s^{\prime}, \theta \in(0, \pi)$
$f(t, 0)=$ value of $1^{\text {ST }}$ veturn map
f extends to $A \rightarrow A \quad w /$ properties if the theorem.
Fixed point of f sim closed geodesic. transverse to γ

A proof idea

For each $t \in S^{\prime}$ take $\theta, \theta^{\prime} s t$.

Problem: what if red/green nested?

This cant happen bbc f is owen preparing,

Problem For fixed $t_{1} \theta, \theta^{\prime}$ not uniquely determined

fix (not so easy) by Birkhotf
see also Graven-Hubbuad 2021

Arnold called this Thu the "Seed of symplectic topology"

Arnold conjective
(M, ω) symplectic manifold $\left(\begin{array}{ll}\text { eg } & \text { surface } \\ y & \text { area fam }\end{array}\right)$
$f: M \rightarrow M$ sympleatic differ $f^{*} \omega=\omega$ (area proserng)
that's also Hemiltorim.
Then $\#\{f(x)=x\} \geqslant \sum$ Betti \#s of M.

Eg an area preserving differ of T^{2} has $\geqslant 4$ fired points.

Proof by Fleer (birth of Floes houndogy.)

Hamiltonian differ:
Given $H: M \longrightarrow \mathbb{R} \leadsto d \varphi \quad 1$-form
$\exists!$ vector field V_{H} (Haniltoricm Vf.) S. $d H(u)=w(u, V) \quad \forall u$.
as flow $f_{t}^{H} \quad f_{1}^{H}=$ Hamiltonian differ.

Ex

Here f_{1}^{H} has as many fixed point t as Critical points of H

Move generally Arnold predict is same for time dependent Haniltowion vector field
$H: M \times \mathbb{R} \longrightarrow \mathbb{R} \quad$ periodic

$$
H(x, t+1)=H(x, t) .
$$

Key: Carley-Zehuder index $\binom{$ related to }{ Maslov }
For $H: M^{2 n} \times R \rightarrow R$
and fixed point $f_{1}^{H}(x)=x$.
consider path $t \stackrel{\gamma}{\longmapsto} d f_{H}^{t}(x) \in S_{p_{2 n}}(\mathbb{R})$
Recall $\quad S_{p_{2}} \mathbb{R} \rightarrow \Lambda_{n} \rightarrow S^{\prime}$
aloopin Span \mathbb{R} has a Maslov index
But generally γ not a loop...

