Problem 1. Prove that the following graph is isomorphic to the Petersen graph.

Solution. As seen below we can label each vertex with a 2 element subset of {1,2,3,4,5} such that
each vertex has a unique subset, we use all the subsets, and edges are pairs of disjoint subsets.
Thus there exists an isomorphism from this graph to the Peterson graph which implies that the
two graphs are isomorphic. O




Problem 2. How many cycles of length n are there in the complete graph K, ? (Ezplain your
answer.)

Solution. Notice first that in A7 and K5 there are no cycles. Now we consider K,, for n > 2.

I claim that there are (n — 1)!/2 cycles of length n in the complete graph K,,. Arbitrarily label the
vertices of K, as vy.vo,...,v,. We want to create a cycle containing all of these vertices, that is
for each vertex we add to the subgraph we must also add the edge connecting it to the previously
added vertex. WLOG begin with the vertex v;. Now we may pick any other vertex wva,...,v, as
the next vertex, hence there are n — 1 possible options for our new subgraph. Suppose we pick
vy, as our vertex. For the next vertex we may now choose any vertex {v;|j # 1,k}, as picking a
previously chosen vertex would create a cycle of size less than n. Hence we have n — 2 choices for
the third element. Repeating this process of adding new vertices we see that for the j-th vertex,
we have n — j + 1 choices of new vertices to add. When n vertices are added we simply connect
the last vertex to the first to create a cycle. Hence we may count the possible methods of cycle
creation as
(n=n-2)-(n—j+1)---(2)(1) =(n—1)!

Notice thought that each cycle created this way is created twice, once forwards (picking v, then s,
..., then v,,) and once backwards (picking v; then vy, ... , then vs). Logically notice that each cycle
can only be "walked” in two ways, hence therefore we double count each eycle using this method.
Hence we see that there are (n — 1)!/2 cycles of length n in the complete graph K,,. O




Problem 3. Define the hypercube graph Q. as the graph with a vertex for each tuple (a1,...,az)
with coordinates a; € {0,1} and with an edge between (ay.....,ax) and (by, ..., by) if they differ in
exactly one coordinate.

(a)

(b)

Prove that two 4-cycles in Q are either disjoint, intersect in a single vertex, or intersect in
a single edge.

Solution. Notice that 4-cycles in @} use exactly two dimensions out of the k that are available.
Consider the left half of the image below, which contains an example 4-cycle between vertices
A, B,C, D (where A = (ay,....a;) etc.). By the definition of a hypercube graph, A differs
from B in exactly one tuple entry at index ¢. Similarly, C' differs from B in exactly one tuple
entry at index j. Crucially, i # j because A # C (i.e. these are two edits along distinct
dimensions). Notice that once A, B, and C' are defined, our choice of D is fixed: we must
make both edits at indices i and j to reach D.

Suppose for contradiction that two distinct 4-cycles in (), share more than one vertex.

o If these two cycles share four vertices, then they are the same cycle, contradicting the
fact that they are distinct.

¢ If these two cycles share three vertices, then the above example illustrates that the choice
of the fourth vertex is already fixed (they actually have to share four vertices) leading
to the same contradiction.

o If these two cycles share two vertices, then this pair of shared vertices is either 1 edit
apart or 2 edits apart. If they are 2 edits apart, then both cycles constitute edits along
the same two dimensions i and j, meaning the cycles are identical. Once again, this
contradicts them being distinct. So, the two vertices must be 1 edit apart, which is
equivalent to them sharing a single edge.

Therefore, we have proven that two non-disjoint 4-cycles must either share exactly one vertex
or exactly one edge. O

Let Ky 5 be the complete bipartile graph with 2 red and 3 blue verlices. Prove that Kq 4 is not
a subgraph of any hypercube Q..

Solution. Recall our example from part (a), which demonstrated that in a hypercube graph
Q. distinet 4-cycles cannot share exactly three vertices. Now, consider the labeling of K 3
given in the right half of the image below. In K53, there are two distinct four cycles that
share three vertices (namely A, B, C'). Therefore, K33 cannot be a subgraph of Q. O




Problem 4. Let G = (V,E) be a graph. The complement of G is the graph G = (V,E), where
{u,v} € E if and only if {u,v} ¢ E.

(a) Determine the complement of the graphs P3 and Py. (Recall that P, is the path with n
vertices.)

(b) We say that G is self-complementary if G is isomorphic G. Prove that if G is self-complementary
with n vertices, then either n or n — 1 is divisible by 4.

(¢) Construct a self-complementary graph for each n such that n or n — 1 is divisible by 4."

Solution. (a) Recall that Py is the graph
]l ——2 —3

so the complement is

/—__\
1 2 3

In symbols, )
P3=({1,2.3}, {{173}})

Similarly, the complement P; is

1-—"14

In symbols,

1_7_1: ({1529314}' {{1'4}5{1'3}s{2‘4}})

(b) If G is self-complementary, E account for exactly half of all possible edges. Thus,

|E| = (f;_") B n(n4— 1)

Since exactly one of n and n — 1 is even, n or n — 1 must be divisible by 4.

(c) Note that it suffices to prove this is the case for n = 4 and n = 5, since given a graph
self-complementary graph G = (V, E) with n vertices, we can construct a self-complementary
graph with n + 4 vertices by adding P; as well as edges from each v € V to the vertices
of degree two in Py. This works since both G and Py are self-complementary and vertices
of degree one in P; have degree two in P;. Specifically, the only edges between G and Py
are incident to vertices of degree two when restricted to Py, and this remains the case when
taking the complement by the above.

The case n = 4 is so}vcd by Pj. As seen above, Py is the path (3,1,4,2), so there is an evident
isomorphism Py = Pj.

'Hint: The first interesting case is n = 5. Build an example using P; and one more vertex. Study this case
carefully and generalize. For n = 8 you can start with two copies of P;.

w




For n = 5. we have GG as

1
2 / 5
33— 4
whose complement is
1
2 >—< 5
3 4

Then the following, which we will denote f. is graph isomorphism:
1—»1, 24, 32, 45 5~3

It is evidently an isomorphism of vertex sets, and here is the painstaking verification that it
preserves edge relations:

E = {{1,2},{1,5},{2,5},{3,5},{2,4}}
= {F). @R ALQ), f@OLALB), F(@)}A{S(2), FB)}A{f(4), £(5)}}
= F({{L,3}.{1,4},{3,4},{2,3},{4,5}})
= f(E)




Problem 5. True or false: if G is isomorphic to H, then the complements G and H are also
isomorphic.?

Solution. Suppose G is isomorphic to H. Then there is a bijection accross the relation
V(G) — V(H)
that preserves edge relationships, meaning

w € E(G) <= some uv € E(H).

In the complement graph of either H or G, two vertices are connected when they are not connected
in the original graph. So,
wv € E(G) < wv ¢ E(G).

Using the isomorphism, we get

uv ¢ E(G) < some uv ¢ E(H).

Therefore,
uv € E(G) <= some uv € E(H).

So the bijection (isomorphism) also preserves edges in the complement graphs. Thus,
G is isomorphic to H.

O

2'I‘rue,"faa.l:se questions require either a proof (if the statement is true) or a counterexample (if the statement is
false).




Problem 6. For this problem, let G denote the Petersen graph. Use the definition of the Petersen
graph given in class (where vertices are 2-element subsets of {1,2,3,4,5}) to prove the following.

(a) G has no cycles of length 3 or 4.

(b) G has no cycle of length 7.3

Solution.

(a)

Pick any vertex v in the Petersen graph and consider distinct vertices " and «" which each
share an edge with v. By construction, v/ and ¢ must be subsets of the three-element set
{i,7,k} = {1,...,5}\ v of size two. Since a three-element set has no disjoint size-two subsets,
{v/,v"} ¢ E, so v is not contained in any 3-cycles. Now let u be a vertex sharing an edge
with both v" and ¥". Since v" # ", we know that v" Uv"” = {4, j, k}—so u must be a two-
element subset of {1,...,5}\ {i,j,k} = v, and thus u = v. Hence, v’s neighbors have no
common neighbors besides v itself, and v is not contained in any 4-cycles. Since v was picked
arbitrarily, ¢ cannot have any 3- or 4-cycles.

Suppose for contradiction that G has a T-cycle C. Since each vertex in ¢ has degree 3, and
each vertex in C' neighbors two edges in C', there must be one edge connected to each vertex
of €' which is not itself contained in C'. Tf any of these edges connected two vertices of €, it
would form a 3- or 4-cycle, which is impossible by (a). Hence, there must be seven distinct
edges connecting vertices in C' to the three vertices not in C'. By the pigeonhole principle,
one of these outside vertices must connect to three of the vertices in C'; but this is impossible,
for any choice of three vertices in C' contains two which are one or two edges apart in the
chain, and we once again have a 3- or 4-cycle. Hence, G has no 7-cycle.

9Hint: argue by contradiction. Observe that each vertex of ¢ has degree 3. If €' is a 7-cycle in @ is it possible
that the only edges in G connecting vertices in ' are the edges in ('7




