Problem 2. Compute the cohomology ring of the Klein bottle using simplicial homology with the
(simplicial) method we used in class for the torus.

Solution. Recall the homology of the Klein bottle K:

Z k=0
Hiy(K)=(ZDOZ2Z k=1
0 else

Then we use the universal coefficient theorem to get that the cohomology with Z/27Z coefficients:
H°(K;Z/2Z) = Hom(Z,Z/2Z) ® Ext(0,Z/2Z) = Z./27Z
HY(K;Z/2Z) =~ Hom(Z & Z/2Z,Z/2Z) & Ext(Z,Z/2Z) = Z/2Z & Z/2Z
H?*(K;Z/2Z) = Hom(0,Z/2Z) ® Ext(Z & Z/2Z,Z/2Z) = 7./2Z
The cohomology ring (as a group) is therefore
H*(K;Z/2Z) = Z)2Z{1} & Z/2Z{a} & Z/2Z{B} & Z/2Z{~}

To get the ring structure, we need to consider the cup products between the generators. We know
that 1 is the multiplicative identity, and h cupped with anything else is 0 for dimension reasons.
Thus the only cup products of interest are a — «a, a — [ = 3 — a (the equality follows since
—1 =1 modulo 2), and 8 — . Endowing K with a simplicial structure, we get:
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I claim «v is the cochain which is 1 on the blue 1-simplices and 0 on the other 1-simplices. Likewise,
I claim S is the cochain which is 1 on the red 1-simplices and 0 on the other 1-simplices. Observe
that a is a cocycle, as every 2-simplex either touches the blue twice or zero times (and is therefore
0 mod 2); the same reasoning shows that 3 is a cocycle. If a were a coboundary, then the 0-
cochain o it came from must satisfy o(7) # o(4) since «([4,7]) = 1. On the other hand, because
a([1,7]) = a([1,4]) = 0, then we know that ¢(7) = o(1) = o(4), a contradiction. An analagous
argument proves (3 is not a coboundary using the 0-simplices 3 and 2. When we compute a — a,
we get a cochain which is 0 on all 2-simplices. On the other hand, observe that (3 — 3)(P) =




5([2,8]) - 3([8,9]) = 1, which shows that a # 3, so the proposed forms of a and 3 are the two
generators for the first cohomology. The full computation of § — 3 shows that it is 0 on every
other 2-simplex (ie 8 — 3 is the indicator function on P). We know that the generator of Ha(K)
is the sum of the 2-simplices, ie [K] = A+ B + ... + R. Since (3 — 8)([K]) = 1 this implies that
32 = ~ (recall 7 is the generator of the second cohomology). Finally when we compute o — /3,
we get the indicator on I. Using the same reasoning, as for 32, we get that @ — 8 = 5. This
determines the ring structure of the cohomology ring. Another presentation is given

Z/2Z|c, B]

H*(K;Z/27Z) = m

The map H*(K;Z/2Z) — (T_Z%Z_%%r) sending 1 — 1, @ — a, 3+ B3, and v ~ (% is a bijection

of rings (both rings have 16 elements) so it is an isomorphism. O

ot




Problem 3. Use homology or cohomology to prove that RP? and RP? v S are not homotopy
equivalent.

Solution. We show that X = RP? and Y = RP? v §3 are not homotopy equivalent by showing
that their cohomology rings with Zs coefficients are not isomorphic. We start by showing that

H*(RP"; Zy) = Zo[x]/(2™*1)
for n = 2, 3.
Fix 0 < k < n an arbitrary manifold M. Note that
Extz, (Hn—k—1(M;Z2); Z2) = 0
since Zs is a field. Therefore by the universal coefficients theorem, the map
h : H" " %(M;Zy) — Homg, (H,_(M; Zs), Z)
is an isomorphism. Also, by Poincaré duality, since every manifold is Zs-orientable,
[M] ~: Hp_y(M;Zs) - H¥(M;Zy,)

is an isomorphism as well. Therefore, as we discussed in class, for any f € H "‘k(]\ff ; Zs) primitive,
there is some g € H*(M;Zy) so that f — g # 0.

Now for RIP?, recall from Problem 1 that the cohomology is given by

H*(RP?; Zy) = Zo{1} ® Zo{ f} © Za{g}-

We claim that f — f = g. Write f — f = tg, t € Zs. By the discussion above, there is some
st € HY(RP?; Zs) so that f — (sf) # 0. Therefore

0# s(f — f) = sty.
Therefore st = 1so s =t =1and f — f = g. This shows that
H*(RP?; Zs) = Zs[z]/(2?).

For H*(RP3;Zy),
H*(RP*; Zy) = Zo{1} & Zo{f} & Za{g} & Zo{h}.

We can use the same argument above to show that g — f = h and use the embedding RP? — RP?
to show that f2 = g (as we did in class). This shows that

H*(RP?; Zy) = Zs[z]/(2*).
Finally, we are ready to show that X and Y are not homotopy equivalent. In Y, let
f € HY(RP?;Zy) = HY(Y;Z3), g€ H*(RP%Zy) = HX(Y;Zy).

Here we are using that the cohomology of a wedge sum is the direct sum of the cohomologies (in
degrees > 0). Technically, we should represent f and g in H*(Y'; Z2) by images of the induced map
of the retraction r : Y — RIP2. Then

r(f) = r"(g)=r(f—9)=0



since H%(RP?;Zy) vanishes in degree 3. Therefore
HY(Y;Zy) — H*(Y;Zy) = 0.

This is not true of H*(X;Zsy) because of the polynomial ring structure mentioned above. Therefore
X and Y are not homotopy equivalent.

O




Problem 5. (a) Prove that every oriented surface S is the boundary S = OM of some compact
3-manifold M.

(b) Prove that RP? is not the boundary of any 3-manifold. ' ?
Solution.

(a) The boundary of a compact manifold is compact, so a non-compact surface cannot be the
boundary of a compact manifold. We can also reduce to the connected surface case by consid-
ering each connected component separately. Thus, we let S be an oriented connected compact
surface. By the classification theorem of closed surfaces, there is a homeomorphism ¢ from
S to either the sphere or a genus g surface. We will show that spheres and genus ¢ surfaces
are the boundary of a compact 3-manifold M and give a CW structure on M. Since ¢ is a
homeomorphism from S to dM, this procedure will induce a cell structure on a manifold N
such that § = ON.

If S is homeomorphic to S?, we take M to be the ball D3, that has a cell structure given by
1 O-cell, 1 2-cell and 1 3-cell. If S is homeomorphic to the torus 7', we take M to be the solid
torus, that has a cell structure given by 1 0-cell, 2 1-cells, 2 2-cells and 1 3-cell. In general, for
a genus ¢ surface, we take M to be the solid genus g surface, that has a cell structure given
by 1 0-cell, 2g 1-cells, (g + 1) 2-cells and 1 3-cell. Indeed, we start from a cell structure of a
genus g surface given by 1 0-cell, 2¢ 1-cells and 1 2-cell, then we attach a 2 cell to half of the
1-cells (see the drawing) and then we attach a 3 cell the (g + 1) 2-cells by the natural maps.
This induces a cell structure on a manifold N such that S = dN since it gives a procedure to
fill the surface S with a 3-cell. Note that the cell structure on M induces a cell structure on
N since ¢ is a homeomorphism between their boundaries and the attaching maps of M induce
the attaching maps of N.

S

Figure 1: The g 2-cells are shaded in blue.

(b) Since A(RP? x [0,0¢)) = RP? x 9[0,00) = RP?, RP? is the boundary of a non-compact 3-
manifold. We will now show by contradiction that RP? is not the boundary of any compact
3-manifold.

Assume RP? is the boundary of a compact 3-manifold M, so that OM = RP?. Consider
the double D = M Ugys M, which is also a 3-manifold, and therefore x(D) = 0 because it
is a compact manifold of odd dimension. On the other hand, we can give D a cell structure
by taking the cell structure induced by M on each copy of M in D and identifying the cells

'Hint: Proceed by contradiction. Note that a 3-manifold with boundary can be doubled to get a closed 3-manifold.
2Hint: compute the Euler characteristic of the double in two ways to reach a contradiction. It may help to use
the previous exercise.




contained in the boundary dM. Thus, the number of k-cells in D is equal to twice the amount
of k-cells in M minus the amount of k-cells contained in M, since we have counted them
twice but they are identified in D. Therefore, by Problem 4a, x(D) = 2x(M) — x(0M) =
2x(M) — x(RP?) = 2x(M) — 1 # 0, so we have reached a contradiction. We conclude that
RP? is not the boundary of any compact 3-manifold.




