Problem 2. Compute the cohomology ring of the Klein bottle using simplicial homology with the (simplicial) method we used in class for the torus.

Solution. Recall the homology of the Klein bottle K:

$$H_k(K) \cong \begin{cases} \mathbb{Z} & k = 0 \\ \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & k = 1 \\ 0 & \text{else} \end{cases}$$

Then we use the universal coefficient theorem to get that the cohomology with $\mathbb{Z}/2\mathbb{Z}$ coefficients:

$$H^0(K; \mathbb{Z}/2\mathbb{Z}) \cong \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \oplus \operatorname{Ext}(0, \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$$

$$H^1(K; \mathbb{Z}/2\mathbb{Z}) \cong \operatorname{Hom}(\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \oplus \operatorname{Ext}(\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$$

$$H^2(K; \mathbb{Z}/2\mathbb{Z}) \cong \operatorname{Hom}(0, \mathbb{Z}/2\mathbb{Z}) \oplus \operatorname{Ext}(\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$$

The cohomology ring (as a group) is therefore

$$H^{\bullet}(K; \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}\{1\} \oplus \mathbb{Z}/2\mathbb{Z}\{\alpha\} \oplus \mathbb{Z}/2\mathbb{Z}\{\beta\} \oplus \mathbb{Z}/2\mathbb{Z}\{\gamma\}$$

To get the ring structure, we need to consider the cup products between the generators. We know that 1 is the multiplicative identity, and h cupped with anything else is 0 for dimension reasons. Thus the only cup products of interest are $\alpha \smile \alpha$, $\alpha \smile \beta = \beta \smile \alpha$ (the equality follows since $-1 \equiv 1 \mod 2$), and $\beta \smile \beta$. Endowing K with a simplicial structure, we get:

I claim α is the cochain which is 1 on the blue 1-simplices and 0 on the other 1-simplices. Likewise, I claim β is the cochain which is 1 on the red 1-simplices and 0 on the other 1-simplices. Observe that α is a cocycle, as every 2-simplex either touches the blue twice or zero times (and is therefore 0 mod 2); the same reasoning shows that β is a cocycle. If α were a coboundary, then the 0-cochain σ it came from must satisfy $\sigma(7) \neq \sigma(4)$ since $\alpha([4,7]) = 1$. On the other hand, because $\alpha([1,7]) = \alpha([1,4]) = 0$, then we know that $\sigma(7) = \sigma(1) = \sigma(4)$, a contradiction. An analagous argument proves β is not a coboundary using the 0-simplices 3 and 2. When we compute $\alpha \smile \alpha$, we get a cochain which is 0 on all 2-simplices. On the other hand, observe that $(\beta \smile \beta)(P) =$

 $\beta([2,8]) \cdot \beta([8,9]) = 1$, which shows that $\alpha \neq \beta$, so the proposed forms of α and β are the two generators for the first cohomology. The full computation of $\beta \smile \beta$ shows that it is 0 on every other 2-simplex (ie $\beta \smile \beta$ is the indicator function on P). We know that the generator of $H_2(K)$ is the sum of the 2-simplices, ie $[K] = A + B + \ldots + R$. Since $(\beta \smile \beta)([K]) = 1$ this implies that $\beta^2 = \gamma$ (recall γ is the generator of the second cohomology). Finally when we compute $\alpha \smile \beta$, we get the indicator on I. Using the same reasoning, as for β^2 , we get that $\alpha \smile \beta = \gamma$. This determines the ring structure of the cohomology ring. Another presentation is given

$$H^{\bullet}(K; \mathbb{Z}/2\mathbb{Z}) \cong \frac{\mathbb{Z}/2\mathbb{Z}[\alpha, \beta]}{(\alpha^2, \alpha\beta - \beta^2, \beta^3)}$$

The map $H^{\bullet}(K; \mathbb{Z}/2\mathbb{Z}) \to \frac{\mathbb{Z}/2\mathbb{Z}[\alpha, \beta]}{(\alpha^2, \alpha\beta - \beta^2, \beta^3)}$ sending $1 \mapsto 1$, $\alpha \mapsto \alpha$, $\beta \mapsto \beta$, and $\gamma \mapsto \beta^2$ is a bijection of rings (both rings have 16 elements) so it is an isomorphism.

Problem 3. Use homology or cohomology to prove that $\mathbb{R}P^3$ and $\mathbb{R}P^2 \vee S^3$ are not homotopy equivalent.

Solution. We show that $X = \mathbb{R}P^3$ and $Y = \mathbb{R}P^2 \vee S^3$ are not homotopy equivalent by showing that their cohomology rings with \mathbb{Z}_2 coefficients are not isomorphic. We start by showing that

$$H^*(\mathbb{RP}^n; \mathbb{Z}_2) \cong \mathbb{Z}_2[x]/(x^{n+1})$$

for n = 2, 3.

Fix $0 \le k \le n$ an arbitrary manifold M. Note that

$$\operatorname{Ext}_{\mathbb{Z}_2}(H_{n-k-1}(M;\mathbb{Z}_2);\mathbb{Z}_2) = 0$$

since \mathbb{Z}_2 is a field. Therefore by the universal coefficients theorem, the map

$$h: H^{n-k}(M; \mathbb{Z}_2) \to \operatorname{Hom}_{\mathbb{Z}_2}(H_{n-k}(M; \mathbb{Z}_2), \mathbb{Z}_2)$$

is an isomorphism. Also, by Poincaré duality, since every manifold is Z₂-orientable,

$$[M] \frown : H_{n-k}(M; \mathbb{Z}_2) \rightarrow H^k(M; \mathbb{Z}_2)$$

is an isomorphism as well. Therefore, as we discussed in class, for any $f \in H^{n-k}(M; \mathbb{Z}_2)$ primitive, there is some $g \in H^k(M; \mathbb{Z}_2)$ so that $f \smile g \neq 0$.

Now for \mathbb{RP}^2 , recall from Problem 1 that the cohomology is given by

$$H^*(\mathbb{RP}^2; \mathbb{Z}_2) = \mathbb{Z}_2\{1\} \oplus \mathbb{Z}_2\{f\} \oplus \mathbb{Z}_2\{g\}.$$

We claim that $f \smile f = g$. Write $f \smile f = tg$, $t \in \mathbb{Z}_2$. By the discussion above, there is some $st \in H^1(\mathbb{RP}^2; \mathbb{Z}_2)$ so that $f \smile (sf) \neq 0$. Therefore

$$0 \neq s(f \smile f) = stg.$$

Therefore st = 1 so s = t = 1 and $f \smile f = g$. This shows that

$$H^*(\mathbb{RP}^2; \mathbb{Z}_2) \cong \mathbb{Z}_2[x]/(x^3).$$

For $H^*(\mathbb{RP}^3; \mathbb{Z}_2)$,

$$H^*(\mathbb{RP}^3; \mathbb{Z}_2) = \mathbb{Z}_2\{1\} \oplus \mathbb{Z}_2\{f\} \oplus \mathbb{Z}_2\{g\} \oplus \mathbb{Z}_2\{h\}.$$

We can use the same argument above to show that $g \smile f = h$ and use the embedding $\mathbb{RP}^2 \to \mathbb{RP}^3$ to show that $f^2 = g$ (as we did in class). This shows that

$$H^*(\mathbb{RP}^3; \mathbb{Z}_2) \cong \mathbb{Z}_2[x]/(x^4).$$

Finally, we are ready to show that X and Y are not homotopy equivalent. In Y, let

$$f \in H^1(\mathbb{RP}^2; \mathbb{Z}_2) = H^1(Y; \mathbb{Z}_2), \quad g \in H^2(\mathbb{RP}^2; \mathbb{Z}_2) = H^2(Y; \mathbb{Z}_2).$$

Here we are using that the cohomology of a wedge sum is the direct sum of the cohomologies (in degrees > 0). Technically, we should represent f and g in $H^*(Y; \mathbb{Z}_2)$ by images of the induced map of the retraction $r: Y \to \mathbb{RP}^2$. Then

$$r^*(f)\smile r^*(g)=r^*(f\smile g)=0$$

since $H^2(\mathbb{RP}^2; \mathbb{Z}_2)$ vanishes in degree 3. Therefore

$$H^1(Y; \mathbb{Z}_2) \smile H^2(Y; \mathbb{Z}_2) = 0.$$

This is not true of $H^*(X; \mathbb{Z}_2)$ because of the polynomial ring structure mentioned above. Therefore X and Y are not homotopy equivalent.

Problem 5. (a) Prove that every oriented surface S is the boundary $S = \partial M$ of some compact 3-manifold M.

(b) Prove that $\mathbb{R}P^2$ is not the boundary of any 3-manifold. $^{1/2}$

Solution.

(a) The boundary of a compact manifold is compact, so a non-compact surface cannot be the boundary of a compact manifold. We can also reduce to the connected surface case by considering each connected component separately. Thus, we let S be an oriented connected compact surface. By the classification theorem of closed surfaces, there is a homeomorphism φ from S to either the sphere or a genus g surface. We will show that spheres and genus g surfaces are the boundary of a compact 3-manifold M and give a CW structure on M. Since φ is a homeomorphism from S to ∂M , this procedure will induce a cell structure on a manifold N such that $S = \partial N$.

If S is homeomorphic to S^2 , we take M to be the ball D^3 , that has a cell structure given by 1 0-cell, 1 2-cell and 1 3-cell. If S is homeomorphic to the torus T, we take M to be the solid torus, that has a cell structure given by 1 0-cell, 2 1-cells, 2 2-cells and 1 3-cell. In general, for a genus g surface, we take M to be the solid genus g surface, that has a cell structure given by 1 0-cell, 2g 1-cells, (g+1) 2-cells and 1 3-cell. Indeed, we start from a cell structure of a genus g surface given by 1 0-cell, 2g 1-cells and 1 2-cell, then we attach a 2 cell to half of the 1-cells (see the drawing) and then we attach a 3 cell the (g+1) 2-cells by the natural maps. This induces a cell structure on a manifold N such that $S = \partial N$ since it gives a procedure to fill the surface S with a 3-cell. Note that the cell structure on M induces a cell structure on N since φ is a homeomorphism between their boundaries and the attaching maps of M induce the attaching maps of N.

Figure 1: The g 2-cells are shaded in blue.

(b) Since $\partial(\mathbb{R}P^2 \times [0,\infty)) = \mathbb{R}P^2 \times \partial[0,\infty) = \mathbb{R}P^2$, $\mathbb{R}P^2$ is the boundary of a non-compact 3-manifold. We will now show by contradiction that $\mathbb{R}P^2$ is not the boundary of any compact 3-manifold.

Assume $\mathbb{R}P^2$ is the boundary of a compact 3-manifold M, so that $\partial M = \mathbb{R}P^2$. Consider the double $D = M \cup_{\partial M} M$, which is also a 3-manifold, and therefore $\chi(D) = 0$ because it is a compact manifold of odd dimension. On the other hand, we can give D a cell structure by taking the cell structure induced by M on each copy of M in D and identifying the cells

¹Hint: Proceed by contradiction. Note that a 3-manifold with boundary can be doubled to get a closed 3-manifold.

²Hint: compute the Euler characteristic of the double in two ways to reach a contradiction. It may help to use the previous exercise.

contained in the boundary ∂M . Thus, the number of k-cells in D is equal to twice the amount of k-cells in M minus the amount of k-cells contained in ∂M , since we have counted them twice but they are identified in D. Therefore, by Problem 4a, $\chi(D)=2\chi(M)-\chi(\partial M)=2\chi(M)-\chi(\mathbb{R}P^2)=2\chi(M)-1\neq 0$, so we have reached a contradiction. We conclude that $\mathbb{R}P^2$ is not the boundary of any compact 3-manifold.