Problem 1. Let X,Y be cell complexes, and give X x Y the product cell structure. Prove (with
care!) that Co(X xY) and Cu(X) ® C.(Y) are isomorphic chain complezes.

Solution. Claim: 9 : C(X xY) — Cr_1(X xY) is given by d(eh xed) = (0eh) x ea+(—1)Peh x Ded.
Please see proof of this claim at the end of question 1 solution. We now assume this claim.

Then for p + q = k, define Cp,(X) x Cy(Y) = Cr(X x Y) via (eh,el) > ek x el on basis element
and extend by bilinearly. Then, bilinearity gives a map from the tensor product. Take the direct
sum of these maps to obtain a map ¢ : €9, ,— Cp(X) @ Cy(Y') = Ci(X x Y). This map is indeed
an isomorphism because it gives a bijection on generators

{(e’,ed)Va,a,p+q=k} 5 {€! x eWVa,a,p+ q = k}

Since @ on tensor product of chains is given by
0(eh ® el) = (0eh) ® el + (—1)Pel, ® Oel,

we have ¢9d = d¢ and thus ¢ is a chain map.

Proof of claim: I will use d to denote the 9 map above and below, to differentiate between taking
the boundary of a cell. Consider attaching maps of non-zero degrees, which will either be of the

form
S" =9l x ef) & (X x V)" s ek x ef ! = 5w, )

or
Sl g(el x ed) - (X x V)" = 57! x el 2 77V, (2)

The boundary of the n-cell can be written as the fibered product
Oel, x €8) = BeD) x e Upez g ek x (el).

Observe that
Px xid s
A(eh) x el “XZ5 bt x ef

> gy idxvy )
eh x0(el) —— P x e

qg—1
where ¥y, 1y are the attaching maps from X, Y with degree d, 3, dq respectively. In contrast, the
following two maps are both the map collapsing down to a point.

A(el) x el — el x el !

el x d(el) — e

x el

Hence, the magnitude of the degrees of maps (1) and (2) are dgp, d,3 respectively.

Since defl C el, it also inherits its orientation, which is fixed by some ordered basis of its tangent
space. Let (y1,...,y4-1) be a basis of the tangent space of ded, then completing the basis to obtain

(v,91,....Yq—1) for the tangent space of ef. This is the ordered basis used in the attaching map
Yy

Let (z1,...,z,) be a basis of the tangent space of €. Hence, the tangent space of e, x e has basis
(v,z1,...,Zp,Y1,...,Yq—1). This is the ordering of the basis used in id x ¥y. In order to write




the D(id x 1y) as a block diagonal matrix, we need to first permute the basis via p number of
transpositions
(5B 50 05 Bpy Y15 » 5 3 Pg—1) F¥ (BLyis o 5 Bpg ¥y Yy =« 5 Yg—1 )

We know that the determinant of block diagonal matrix is the product of determinant of each block.
Combining with the determinant of the permutation matrix, we obtain degree of idx vy = (—1)Pd,,.

For the other map v’y X id, no permutation matrix is needed for

(v, @1, o oy Tp—1,Y1y -+, Yg) M (0, T1, oo, Tp—1, Y1, - - Yq)-

Hence we have

q—1 —1
d(eh x el) =Y " (~1)Pdaeh x ef '+ dagel " x €l
b 3

= (—1)Pel x (Z da;,cg_l) + (Z d,,gcf;'l) x el
b 8

= (—1)Pel x (0el) + (0el) x €l




Problem 2. Prove that Euler characteristic of compact spaces is multiplicative

X(X xY) = x(X)x(Y),

where x(X) = S_(—1)'8; and B; is the rank of Hy(X) (known as the i-th Betti number).

Solution. For a topological space Z, let’s denote 3;(Z) := rank H;(Z). Since X and Y are compact
cell complexes, X x Y is also a compact cell complex and the homology groups Hy(X), Hi(Y)’s and
Hi(X x Y)’s are finitely generated, hence their ranks are finite and only finitely many homology
groups have non-zero ranks. Therefore all these spaces has well defined Betti numbers; hence Euler
characteristics. Also Tor(A, B) = Tor(T4, B) where Ty & Z* = A is decomposition into torsion
and free parts because for free groups Tor(Z®, B) = 0. Since the torsion groups T4 and T of
A = H,(X) and B = H,(Y) are finite direct sum of finite cyclic groups, Tor(A, B) is a torsion
group because for cyclic groups we have Tor(Z/nZ,Z/mZ) = ker[Z/nZ = Z/nZ)] is a finite cylic
group; hence rank(Tor(A, B)) = 0.

By the topological Kiinneth theorem, we have following split short exact sequence;

0= P Hy(X)® Hy(Y) = Hi(X xY) = @ Tor(H, H,(Y)) = 0.
ptq=k p+g=k

Since this splits and rank is additive over direct sum, if G = @ w Hp(X) ® Hy(Y') we have,

ptq=

rank(H(X x Y)) = rank(Gy) + Z rank(Tor(H,(X), Hy(Y))
p+q=k
= rank(Gp,).

Now let’s compute the rank of G, using the additivity of rank over direct sums and multiplicativity
over the tensor product;

rank G = Z rank(H,(X) ® Z Bp(X)Bq(Y)

pta=k ptq=Fk

Therefore,

X(X xY)= Z(—l)kl'ank G

k>0

=S 10F 3 B(X)B(Y)
k>0 p+q=k

= Y (1)PB(X)(—1)1B,(Y)
p.q=0

= x(X)x(Y).




Problem 3. Fizn, and let X4 be the space obtained from attaching an n-cell to S"~1 by a map of
degree d. Use Kiinneth to compute the homology of X4 x X for any d,d'. *

Solution. First we’ll compute the homology of X;:

ZldZ p=n-—1
Hp(Xq) = Z p=0

0 else

By Kunneth, we know that

Hi(Xax D)= | @ (Hp(Xa) @ Hy(Xa)) | © | €D Tor(Hy(Xa), Ho(Xar))
ptg=k p+q=k—1

Let’s start by computing the tensor products. Observe that if either H,(X4) = 0 or Hy(Xgz) =0
then the tensor product will be 0. Thus we only get a few nonzero terms:

e If p=¢q =0, then we have a term Z ® Z = Z.
elfp=0andg=n—1weget ZRZ/dZ=7Z/d'Z.
elfp=n—1and q=0 we get Z/dZ R Z = Z/dZ.

e if p=¢g=mn—1, then we have Z/dZ @ Z/d'Z = 7/ ged(d,d')Z. For convenience I denote
¢ = ged(d,d').

When we consider the torsion component, we know that Tor(A, B) is nontrivial if and only if A and
B both have a nontrivial torsion component. In our setup, this only happens when p=¢ =n — 1.
In this case, we have that

Tor(Z/dZ,Z/d'Z) = ker(Z/d'Z % Z/d'Z) = Z/(Z

For the second isomorphism, write d’ = ¢ -r. Then we know that n € Z/d'Z is in the kernel if
and only if d'|dn so that both £|dn and r|dn. We know £|d and r { d by definition of ged, d'|dn
necessarily implies that r|n, and r|n is clearly a sufficient condition. Thus the kernel consists of
elements of the form r - Z/d'Z. An isomorphism r - Z/d'Z — Z/{Z is given by division by r, with
the reverse map being multiplication by r. In any case, this shows that the only contribution from
Tor is when p = ¢ = n — 1, corresponding to k = 2n — 1. Overall, this tells us that

(Z k=0
ZJAZSZL/dZ k=n-1

Hi(Xax Xo) 2 2/02 k=2n—2
Z/tZ k=2n-1
L0 else

2The answer should be an (explicit) abelian group that depends on d. d'.




Problem 4. Use the acyclic models method to prove:

(a) There is a natural chain map S, (X xY) = S.(X)®S.(Y) with the property that 0(z,y) = xRy

for (z,y) e X xY C Sp(X xY).

(b) Any two natural chain maps ¢, : Su(X) @ Su(Y) = Su(X) @ S.(Y) that agree in degree 0

are chain homotopy equivalent.

Solution.

(a)

(b)

Let (z,y) € X xY C Sp(X xY) and define 0(z,y) = z®@y. Then, d0(z,y) =020 = 00(z, y).
Now, suppose that # is defined for degrees less than k for a certain k > 0 and that 90 = 60
for those degrees.

Let A* be the standard k-simplex and let dy. : AF — A¥ x A¥ be the diagonal map, so that
dy € Sk(AF x AF). Since ddy € Sk_1(AF x AF), by the induction hypothesis 8(9d},) is defined
and 90(9dy,) = 0(9dy) = 0, so #(dy) is a cycle. Since A* is contractible, S,(A*) @ S, (AF) is
acyclic, i.e. H,(S,(A%)® S,(A%)) =0, so 8(dd}) is also a boundary, and thus there exists o
such that 08(9dy) = do. Define 6(d}.) = o.

Let 1x : X xY — X and 7y : X xY — Y be the projection maps. Consider a singular
k-simplex 7 : A¥ — X x Y and the map 7x7 x 7y 7 : A¥ x A¥ 5 X x Y which induces a chain
map (Tx7T,TyT)x : S.(AF x AF) - S,(X xY). We see that 7 = (7xT, my T)#(dy) because
(mxT x myT) ody, = 7. Then, since 6(7) = O((mx7, 7y 7)4(dy)), € is a natural chain map if we
define 0(7) = ((7x7)4 @ (7y7T)%)(0(dk)). Moreover,

M(t) = 0(((7TXT)# ® (FYT)#)(H(dk))) chain map ((WxT)# ® (WYT)#)(ae(dk)) definition of ¢

chain map

= ((rx7)4 ® (ry 7)) (0(0dy)) "= O((mxT, myT) (D)) "L
= 0(0(mxT, Ty T)x(di)) = 60(T).

Therefore, we have inductively defined € to be a natural chain map.

Let ¢, : Su(X) @ Si(Y) — Si(X) ® Si(Y') be natural chain maps that agree in degree 0. We
will inductively construct a chain homotopy D with D9 + 0D = ¢ — ). We start by defining
D to be zero on 0-chains. Since ¢ and 1) agree in degree 0, DJ + 9D = 0 = ¢ — 1) in degree 0.
Now, suppose that D is defined for degrees less than k for a certain k > 0. Let i, € S,(AF)
be the identity map and let p + ¢ = k. Then,

A — 1 — DO)(ip X iq) = OP(ip X ig) — My X i) — DDA(ip X ig) "2
= ¢d(ip X ig) — VO(ip X ig) — OD((ip X ig)) "ML
22 —

= 60(ip X ig) — Vi X ig) — (& — ¥ — DO)(D(ip x ig)) "="0,
so (¢ — ¥ — DO)(ip x i4) is a cycle. Since S,(A¥) ® S.(A¥) is acyclic, there exists o such
that (¢ — ¢ — DO)(ip x iq) = do. We define D(iy X iq) = 0. Now, consider singular simplices
7:AP = X and & : A7 = Y, so that (7,k)x(ip X iq) = Tw(ip) X kx(ig) = 7 X K, and define
D(1mx k) = (4 @k4)(D(ip xiq)). We extend the definition of D to S.(X)® S.(Y) by linearity,
which implies that D9 + 9D = ¢ — 1) is satisfied in degree k.

Thus, we conclude that ¢ and v are chain homotopy equivalent.




