Problem 1. Let X, Y be cell complexes, and give $X \times Y$ the product cell structure. Prove (with care!) that $C_*(X \times Y)$ and $C_*(X) \otimes C_*(Y)$ are isomorphic chain complexes.

Solution. Claim: $\partial: C_k(X \times Y) \to C_{k-1}(X \times Y)$ is given by $\partial(e^p_\alpha \times e^q_a) = (\partial e^p_\alpha) \times e^q_a + (-1)^p e^p_\alpha \times \partial e^q_a$. Please see proof of this claim at the end of question 1 solution. We now assume this claim.

Then for p+q=k, define $C_p(X)\times C_q(Y)\to C_k(X\times Y)$ via $(e^p_\alpha,e^q_a)\mapsto e^p_\alpha\times e^q_a$ on basis element and extend by bilinearly. Then, bilinearity gives a map from the tensor product. Take the direct sum of these maps to obtain a map $\phi:\bigoplus_{p+q=k}C_p(X)\otimes C_q(Y)\to C_k(X\times Y)$. This map is indeed an isomorphism because it gives a bijection on generators

$$\{(e_{\alpha}^{p}, e_{a}^{q}) \forall \alpha, a, p+q=k\} \xrightarrow{\phi} \{e_{\alpha}^{p} \times e_{a}^{q} \forall \alpha, a, p+q=k\}$$

Since ∂ on tensor product of chains is given by

$$\partial(e^p_\alpha\otimes e^q_a)=(\partial e^p_\alpha)\otimes e^q_a+(-1)^pe^p_\alpha\otimes\partial e^q_a,$$

we have $\phi \partial = \partial \phi$ and thus ϕ is a chain map.

Proof of claim: I will use d to denote the ∂ map above and below, to differentiate between taking the boundary of a cell. Consider attaching maps of non-zero degrees, which will either be of the form

$$S^{n-1} \cong \partial(e_{\alpha}^p \times e_{\alpha}^q) \to (X \times Y)^{n-1} \to e_{\alpha}^p \times e_b^{q-1} \cong S^{n-1} \forall b, \tag{1}$$

or

$$S^{n-1} \cong \partial(e^p_\alpha \times e^q_a) \to (X \times Y)^{n-1} \to e^{p-1}_\beta \times e^q_a \cong S^{n-1} \forall \beta. \tag{2}$$

The boundary of the n-cell can be written as the fibered product

$$\partial(e^p_\alpha \times e^q_a) = \partial(e^p_\alpha) \times e^q_a \cup_{\partial e^p_\alpha \times \partial e^q_a} e^p_\alpha \times \partial(e^q_a).$$

Observe that

$$\partial(e_{\alpha}^{p}) \times e_{a}^{q} \xrightarrow{\psi_{X} \times id} e_{\beta}^{p-1} \times e_{a}^{q}$$

$$e_{\alpha}^{p} \times \partial(e_{a}^{q}) \xrightarrow{id \times \psi_{Y}} e_{\alpha}^{p} \times e_{b}^{q-1}$$

where ψ_X, ψ_Y are the attaching maps from X, Y with degree $d_{\alpha\beta}, d_{ab}$ respectively. In contrast, the following two maps are both the map collapsing down to a point.

$$\partial(e^p_\alpha) \times e^q_a \to e^p_\alpha \times e^{q-1}_b$$

 $e^p_\alpha \times \partial(e^q_a) \to e^{p-1}_\beta \times e^q_a$

Hence, the magnitude of the degrees of maps (1) and (2) are d_{ab} , $d_{\alpha\beta}$ respectively.

Since $\partial e_a^q \subset e_a^q$, it also inherits its orientation, which is fixed by some ordered basis of its tangent space. Let (y_1, \ldots, y_{q-1}) be a basis of the tangent space of ∂e_a^q , then completing the basis to obtain $(v, y_1, \ldots, y_{q-1})$ for the tangent space of e_a^q . This is the ordered basis used in the attaching map ψ_Y .

Let (x_1, \ldots, x_p) be a basis of the tangent space of e^p_α . Hence, the tangent space of $e^p_\alpha \times e^q_a$ has basis $(v, x_1, \ldots, x_p, y_1, \ldots, y_{q-1})$. This is the ordering of the basis used in $id \times \psi_Y$. In order to write

the $D(id \times \psi_Y)$ as a block diagonal matrix, we need to first permute the basis via p number of transpositions

$$(v, x_1, \ldots, x_p, y_1, \ldots, y_{q-1}) \mapsto (x_1, \ldots, x_p, v, y_1, \ldots, y_{q-1}).$$

We know that the determinant of block diagonal matrix is the product of determinant of each block. Combining with the determinant of the permutation matrix, we obtain degree of $id \times \psi_Y = (-1)^p d_{ab}$.

For the other map $\psi_X \times id$, no permutation matrix is needed for

$$(v, x_1, \dots, x_{p-1}, y_1, \dots, y_q) \mapsto (v, x_1, \dots, x_{p-1}, y_1, \dots, y_q).$$

Hence we have

$$d(e_{\alpha}^{p} \times e_{a}^{q}) = \sum_{b} (-1)^{p} d_{ab} e_{\alpha}^{p} \times e_{b}^{q-1} + \sum_{\beta} d_{\alpha\beta} e_{\beta}^{p-1} \times e_{a}^{q}$$

$$= (-1)^{p} e_{\alpha}^{p} \times (\sum_{b} d_{ab} e_{b}^{q-1}) + (\sum_{\beta} d_{\alpha\beta} e_{\beta}^{p-1}) \times e_{a}^{q}$$

$$= (-1)^{p} e_{\alpha}^{p} \times (\partial e_{a}^{q}) + (\partial e_{\alpha}^{p}) \times e_{a}^{q}$$

Problem 2. Prove that Euler characteristic of compact spaces is multiplicative

$$\chi(X \times Y) = \chi(X)\chi(Y),$$

where $\chi(X) = \sum (-1)^i \beta_i$ and β_i is the rank of $H_i(X)$ (known as the i-th Betti number).

Solution. For a topological space Z, let's denote $\beta_i(Z) := \operatorname{rank} H_i(Z)$. Since X and Y are compact cell complexes, $X \times Y$ is also a compact cell complex and the homology groups $H_k(X)$, $H_k(Y)$'s and $H_k(X \times Y)$'s are finitely generated, hence their ranks are finite and only finitely many homology groups have non-zero ranks. Therefore all these spaces has well defined Betti numbers; hence Euler characteristics. Also $\operatorname{Tor}(A,B) = \operatorname{Tor}(T_A,B)$ where $T_A \oplus \mathbb{Z}^\alpha = A$ is decomposition into torsion and free parts because for free groups $\operatorname{Tor}(\mathbb{Z}^\alpha,B) = 0$. Since the torsion groups T_A and T_B of $A = H_p(X)$ and $B = H_q(Y)$ are finite direct sum of finite cyclic groups, $\operatorname{Tor}(A,B)$ is a torsion group because for cyclic groups we have $\operatorname{Tor}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/m\mathbb{Z}) = \ker[\mathbb{Z}/n\mathbb{Z} \xrightarrow{m} \mathbb{Z}/n\mathbb{Z}]$ is a finite cylic group; hence $\operatorname{rank}(\operatorname{Tor}(A,B)) = 0$.

By the topological Künneth theorem, we have following split short exact sequence;

$$0 \to \bigoplus_{p+q=k} H_p(X) \otimes H_q(Y) \to H_k(X \times Y) \to \bigoplus_{p+q=k} \operatorname{Tor}(H_p(X), H_q(Y)) \to 0.$$

Since this splits and rank is additive over direct sum, if $G_k = \bigoplus_{p+q=k} H_p(X) \otimes H_q(Y)$ we have,

$$rank(H_k(X \times Y)) = rank(G_k) + \sum_{p+q=k} rank(Tor(H_p(X), H_q(Y)))$$
$$= rank(G_k).$$

Now let's compute the rank of G_k using the additivity of rank over direct sums and multiplicativity over the tensor product;

$$\operatorname{rank} G_k = \sum_{p+q=k} \operatorname{rank}(H_p(X) \otimes H_q(Y)) = \sum_{p+q=k} \beta_p(X) \beta_q(Y)$$

Therefore,

$$\begin{split} \chi(X\times Y) &= \sum_{k\geq 0} (-1)^k \mathrm{rank}\; G_k \\ &= \sum_{k\geq 0} (-1)^k \sum_{p+q=k} \beta_p(X) \beta_q(Y) \\ &= \sum_{p,q\geq 0} (-1)^p \beta_p(X) (-1)^q \beta_q(Y) \\ &= \chi(X) \chi(Y). \end{split}$$

-

Problem 3. Fix n, and let X_d be the space obtained from attaching an n-cell to S^{n-1} by a map of degree d. Use Künneth to compute the homology of $X_d \times X_{d'}$ for any d, d'. ²

Solution. First we'll compute the homology of X_d :

$$\tilde{H}_p(X_d) = \begin{cases} \mathbb{Z}/d\mathbb{Z} & p = n - 1\\ \mathbb{Z} & p = 0\\ 0 & \text{else} \end{cases}$$

By Kunneth, we know that

$$H_k(X_d \times D_{d'}) \cong \left(\bigoplus_{p+q=k} (H_p(X_d) \otimes H_q(X_{d'})) \right) \oplus \left(\bigoplus_{p+q=k-1} \operatorname{Tor}(H_p(X_d), H_q(X_{d'})) \right)$$

Let's start by computing the tensor products. Observe that if either $H_p(X_d) = 0$ or $H_q(X_{d'}) = 0$ then the tensor product will be 0. Thus we only get a few nonzero terms:

- If p = q = 0, then we have a term $\mathbb{Z} \otimes \mathbb{Z} \cong \mathbb{Z}$.
- If p = 0 and q = n 1 we get $\mathbb{Z} \otimes \mathbb{Z}/d'\mathbb{Z} \cong \mathbb{Z}/d'\mathbb{Z}$.
- If p = n 1 and q = 0 we get $\mathbb{Z}/d\mathbb{Z} \otimes \mathbb{Z} \cong \mathbb{Z}/d\mathbb{Z}$.
- if p = q = n 1, then we have $\mathbb{Z}/d\mathbb{Z} \otimes \mathbb{Z}/d'\mathbb{Z} \cong \mathbb{Z}/\gcd(d,d')\mathbb{Z}$. For convenience I denote $\ell = \gcd(d,d')$.

When we consider the torsion component, we know that Tor(A, B) is nontrivial if and only if A and B both have a nontrivial torsion component. In our setup, this only happens when p = q = n - 1. In this case, we have that

$$\operatorname{Tor}(\mathbb{Z}/d\mathbb{Z}, \mathbb{Z}/d'\mathbb{Z}) \cong \ker(\mathbb{Z}/d'\mathbb{Z} \xrightarrow{d} \mathbb{Z}/d'\mathbb{Z}) \cong \mathbb{Z}/\ell\mathbb{Z}$$

For the second isomorphism, write $d' = \ell \cdot r$. Then we know that $n \in \mathbb{Z}/d'\mathbb{Z}$ is in the kernel if and only if d'|dn so that both $\ell|dn$ and r|dn. We know $\ell|d$ and $r \nmid d$ by definition of gcd, d'|dn necessarily implies that r|n, and r|n is clearly a sufficient condition. Thus the kernel consists of elements of the form $r \cdot \mathbb{Z}/d'\mathbb{Z}$. An isomorphism $r \cdot \mathbb{Z}/d'\mathbb{Z} \to \mathbb{Z}/\ell\mathbb{Z}$ is given by division by r, with the reverse map being multiplication by r. In any case, this shows that the only contribution from Tor is when p = q = n - 1, corresponding to k = 2n - 1. Overall, this tells us that

$$H_k(X_d \times X_{d'}) \cong \begin{cases} \mathbb{Z} & k = 0\\ \mathbb{Z}/d\mathbb{Z} \oplus \mathbb{Z}/d'\mathbb{Z} & k = n - 1\\ \mathbb{Z}/\ell\mathbb{Z} & k = 2n - 2\\ \mathbb{Z}/\ell\mathbb{Z} & k = 2n - 1\\ 0 & \text{else} \end{cases}$$

²The answer should be an (explicit) abelian group that depends on d, d'.

Problem 4. Use the acyclic models method to prove:

- (a) There is a natural chain map $S_*(X \times Y) \to S_*(X) \otimes S_*(Y)$ with the property that $\theta(x, y) = x \otimes y$ for $(x, y) \in X \times Y \subset S_0(X \times Y)$.
- (b) Any two natural chain maps $\phi, \psi : S_*(X) \otimes S_*(Y) \to S_*(X) \otimes S_*(Y)$ that agree in degree 0 are chain homotopy equivalent.

Solution.

(a) Let $(x,y) \in X \times Y \subset S_0(X \times Y)$ and define $\theta(x,y) = x \otimes y$. Then, $\partial \theta(x,y) = 0 \otimes 0 = \theta \partial(x,y)$. Now, suppose that θ is defined for degrees less than k for a certain k > 0 and that $\partial \theta = \theta \partial$ for those degrees.

Let Δ^k be the standard k-simplex and let $d_k: \Delta^k \to \Delta^k \times \Delta^k$ be the diagonal map, so that $d_k \in S_k(\Delta^k \times \Delta^k)$. Since $\partial d_k \in S_{k-1}(\Delta^k \times \Delta^k)$, by the induction hypothesis $\theta(\partial d_k)$ is defined and $\partial \theta(\partial d_k) = \theta(\partial^2 d_k) = 0$, so $\theta(\partial d_k)$ is a cycle. Since Δ^k is contractible, $S_*(\Delta^k) \otimes S_*(\Delta^k)$ is acyclic, i.e. $\tilde{H}_*(S_*(\Delta^k) \otimes S_*(\Delta^k)) = 0$, so $\theta(\partial d_k)$ is also a boundary, and thus there exists σ such that $\theta(\partial d_k) = \partial \sigma$. Define $\theta(d_k) = \sigma$.

Let $\pi_X: X \times Y \to X$ and $\pi_Y: X \times Y \to Y$ be the projection maps. Consider a singular k-simplex $\tau: \Delta^k \to X \times Y$ and the map $\pi_X \tau \times \pi_Y \tau: \Delta^k \times \Delta^k \to X \times Y$ which induces a chain map $(\pi_X \tau, \pi_Y \tau)_{\#}: S_*(\Delta^k \times \Delta^k) \to S_*(X \times Y)$. We see that $\tau = (\pi_X \tau, \pi_Y \tau)_{\#}(d_k)$ because $(\pi_X \tau \times \pi_Y \tau) \circ d_k = \tau$. Then, since $\theta(\tau) = \theta((\pi_X \tau, \pi_Y \tau)_{\#}(d_k))$, θ is a natural chain map if we define $\theta(\tau) = ((\pi_X \tau)_{\#} \otimes (\pi_Y \tau)_{\#})(\theta(d_k))$. Moreover,

$$\partial \theta(\tau) = \partial (((\pi_X \tau)_\# \otimes (\pi_Y \tau)_\#)(\theta(d_k))) \stackrel{\text{chain map}}{=} ((\pi_X \tau)_\# \otimes (\pi_Y \tau)_\#)(\partial \theta(d_k)) \stackrel{\text{definition of } \theta}{=} \theta$$
$$= ((\pi_X \tau)_\# \otimes (\pi_Y \tau)_\#)(\theta(\partial d_k)) \stackrel{\text{naturality}}{=} \theta((\pi_X \tau, \pi_Y \tau)_\#(\partial d_k)) \stackrel{\text{chain map}}{=}$$
$$= \theta(\partial (\pi_X \tau, \pi_Y \tau)_\#(d_k)) = \theta \partial (\tau).$$

Therefore, we have inductively defined θ to be a natural chain map.

(b) Let $\phi, \psi: S_*(X) \otimes S_*(Y) \to S_*(X) \otimes S_*(Y)$ be natural chain maps that agree in degree 0. We will inductively construct a chain homotopy D with $D\partial + \partial D = \phi - \psi$. We start by defining D to be zero on 0-chains. Since ϕ and ψ agree in degree 0, $D\partial + \partial D = 0 = \phi - \psi$ in degree 0. Now, suppose that D is defined for degrees less than k for a certain k > 0. Let $i_n \in S_n(\Delta^k)$ be the identity map and let p + q = k. Then,

$$\begin{split} \partial(\phi - \psi - D\partial)(i_p \times i_q) &= \partial\phi(i_p \times i_q) - \partial\psi(i_p \times i_q) - \partial D\partial(i_p \times i_q) \overset{\text{chain map}}{=} \\ &= \phi\partial(i_p \times i_q) - \psi\partial(i_p \times i_q) - \partial D(\partial(i_p \times i_q)) \overset{\text{induction}}{=} \\ &= \phi\partial(i_p \times i_q) - \psi\partial(i_p \times i_q) - (\phi - \psi - D\partial)(\partial(i_p \times i_q)) \overset{\partial^2 = 0}{=} 0, \end{split}$$

so $(\phi - \psi - D\partial)(i_p \times i_q)$ is a cycle. Since $S_*(\Delta^k) \otimes S_*(\Delta^k)$ is acyclic, there exists σ such that $(\phi - \psi - D\partial)(i_p \times i_q) = \partial \sigma$. We define $D(i_p \times i_q) = \sigma$. Now, consider singular simplices $\tau : \Delta^p \to X$ and $\kappa : \Delta^q \to Y$, so that $(\tau, \kappa)_\#(i_p \times i_q) = \tau_\#(i_p) \times \kappa_\#(i_q) = \tau \times \kappa$, and define $D(\tau \times \kappa) = (\tau_\# \otimes \kappa_\#)(D(i_p \times i_q))$. We extend the definition of D to $S_*(X) \otimes S_*(Y)$ by linearity, which implies that $D\partial + \partial D = \phi - \psi$ is satisfied in degree k.

Thus, we conclude that ϕ and ψ are chain homotopy equivalent.