Problem 1. Let X be a finite graph, and let T C X be a mazimal tree. Prove that H'(X;Z) is
isomorphic to the group of cochains supported on the edges of X \ T. !

Solution. As in Hatcher, we denote the set of all functions from vertices of X to Z by A%(X;Z)
and the set of all function from edges of X to Z by A'(X;Z). We note that both sets form abelian

groups.

Let G C A'(X;Z) be the subgroup of cochains supported on the edges of X \ T, that is, G = {f €
AY(X;Z): f(e) = 0 Ve € T}. Consider the map ¢ : G — H'(X;Z) defined by ¢(f) = [f]. We will
see that ¢ is a group isomorphism by seeing that it is a bijective group homomorphism. ¢ is an
homomorphism because it is the restriction of the quotient map A'(X;Z) — H'(X;Z), which is a
(surjective) group homomorphism. Let us see that it is bijective:

o o is injective: If [f] = [g] for f,g € G, then there is h € AY(X;Z) such that f — g = dh. Let
e € X\ T be an edge from u to v. Then, f(e) — g(e) = dh(e) = h(de) = h(v) — h(u). Since T
is a maximal tree, there exists a unique path from u to v in the tree. By induction along this
path, we see that h(u) = h(v) because f and g are zero on the edges of T. Thus, f(e) = g(e).
and we conclude that ¢ is injective.

o o is surjective: Let [f] € HY(X;Z) for f € AY(X;Z). Let up be any vertex of T and let
n € Z. Define h € A°(X;Z) in the following way: set h(ug) = n and define h(v) for every
edge e € T by induction on the edges of the unique path in 7" from ug to v, imposing that
f(€) = h(0é) for every edge € in the path. This uniquely determines h on each vertex of X
up to a constant n. Now, define g € G by g(e) =0 if e € T and g(e) = h(u) — h(v) + f(e) if
e € X\ T from u to v. Then, f — g = dh, so [f] = [¢g] and we conclude that ¢ is surjective.

O

"Hint: Using cellular chains/cochains/cohomology, there is a map from the latter to the former. Show it is an
isomorphism.




Problem 2. Let S.(X) denote the singular chain complexr of a connected space X. Regard a
homomorphism f : S1(X) = M as an M-valued function on paths in X. Assume f is a cocycle,
and prove the following:

(a) f(ax*pB)= f(a)+ f(B) (x = concatenation of paths)
(b) f is zero on constant paths
(¢) f takes the same value on homotopic paths

(d) f is a coboundary if and only if f(«) depends only on the endpoints of «, for every a.

Deduce that there is a homomorphism HY(X; M) — Hom(m (X), M). What does the universal
coefficient theorem say about it?

Solution. (a) As f is a cocycle, we have that 6 f = 0. There is a natural 2-simplex p : A2 - X
for which the images of the oriented sides are the paths a, 8 and the concatenation «a * 3.
The boundary of this 2-simplex is equal to 3 — (a * 3) + a. Since

0=24f(p) = f(9p) = f(B) — flaxB)+ f(a),
we get the desired formula.

(b) Given any constant path a equal to a point, we consider the 2-simplex p : A2 — X that is
constantly equal to this point. Naturally dp = a@ — a + a = a. Then

0=24f(p) = f(9p) = f(a),
showing the desired property.

(c) If two paths a and 3 are homotopic relative to their boundary, their homotopy can also be
seen through the map of a 2-simplex p : A2 — X whose oriented sides are «, the constant
path at one of the endpoints, and 5. As again §f(p) = 0 and dp = v — 3 + a, where 7 is the
constant path at the endpoint, we see from the previous properties that f(a) = f(/3).

(d) Suppose that f is a coboundary, f = §g. Then for any path «, with endpoints oriented from
u to v, we get that

fla) = dg(a) = g(v) — g(u),

so that the value of o under f depends only it is endpoints. Conversely, assume that for every
path «, f(a) depends only on its endpoints. We fix a point vy € X, and define a function
g: X — M given by g(v) = f(«), where « is any oriented path joining ug to v (this assumes
path-connectedness of X). This is well-defined by the hypothesis that f only depends on the
endpoints of the path. Let 3 be an oriented path with endpoints v and ». If v is a path from
ug to u, v * 3 is a path from ug to v, so that

f(B) = f(y*B) = f(v) = g(v) — g(u) = g(98) = dg(B),
so that f = dg.

With all of these facts proven, We see that any cocycle f induces a group homomorphism from
m1(X) to M, since the cocycle respects concatenation of loops viewed as paths, is zero on constant



paths and is well-defined with respect to the quotient by homotopy classes of loops. Moreover,
if the cocycle f = dg is a coboundary, since the evaluation of depends only on the endpoints of
the path, it will be evaluated to 0 on any loop; so this map descends to the quotient as a group
homomorphism H'(X; M) — Hom(m(X), M).

We recall that, assuming path-connectedness, there is a natural surjective map m(X) — Hy(X)
that induces an isomorphism 7 (X)® = H;(X), and also that there is a natural identification
Hom(7y(X), M) = Hom(m (X)®, M) = Hom(H;(X), M), since M is abelian. Moreover, since
Hy(X) is free abelian, we get that Ext(Ho(X), M) = 0, so that by the universal coefficient the-
orem we have H'(X; M) = Hom(H,(X),M). The map H'(X; M) — Hom(m(X), M) described
previously in fact coincides with the map from the universal coefficient theorem up to these iso-
morphisms, showing that it itself must be an isomorphism.

O




Problem 3. Let M be an abelian group. Show that Hom(—, M) preserves split short exact se-
quences of abelian groups, i.e. if 0 > A= B BC>0isa split short exact sequence, then

0— Hom(C,M) ¥, Hom(B, M) LN Hom(A,M) — 0

is also a split short ezact sequence.? Deduce® from this (and the zig-zag lemma) that there is a
long exact sequence in cohomology, i.e. given a pair (X, A) (that is X is a space and A C X is a
subspace, possibly with some mild assumptions), then there is a long exact sequence

oo = HY(X,A; M) —» HY(X; M) —» HY(A; M) - HMY(X, A M) — -

Here H*(X, A; M) is defined by dualizing the chain complex Sp(X, A) := Si(X)/Sp(A). 4

Solution. We first show that the dual sequence is exact. From the Moral exercise we know that
p* is injective, and Ker(i*) = Im(p*), so it suffices to show that i* is surjective. First, since
0A5BSC—>0 splits, there exists s : B — A such that si = 1 4. Now, suppose we have
f:A— M, define g : B — M as g = s*f. Notice that i*g = i*(s*f) = (si)*f = 1% f = f. This
shows i* is surjective, so the sequence

0 — Hom(C, M) &5 Hom(B, M) s Hom(A, M) — 0

is exact. To see that it splits, observe that s* : Hom(A, M) — Hom(B, M) satisfies i*s* = (si)* =
(L4)* is the identity on Hom(A, M), so by the splitting lemma the above short exact sequence
splits.

To show that there is a long exact sequence of cohomology, we start by showing that 0 — Si(A) —
Sk(X) — Sp(X,A) — 0 splits. Recall that Si(X) is free, so we may define a projection homo-
morphism p : Si(X) — Sp(A) by sending each singular k-simplex o € Si(X) to o if Im(o) C A,
or 0 if Im(c) ¢ A. It clearly follows that pi = 1g,(4), where i : Sp(A) — Sp(X) is the inclusion
homomorphism. By the splitting lemma, the exact sequence 0 — Si(A) = Sp(X) — Sp(X,A4) — 0
splits. This implies we have a dual split short exact sequence

0 — Hom(Sk(X, A), M) — Hom(S(X), M) — Hom(Si(A), M) — 0.

Then, by the zigzag lemma, the homology groups of these three chain complexes form a long exact
sequence, which is the one desired in the problem statement. O

2You may assume that Hom(—, M) is left exact, c.f. the related Moral Exercise.
#You will need to explain why the exact sequence 0 — Si(A) = Sk(X) — Sik(X, A) — 0 splits.
1Hint: it may help to first remember how you derived the long exact sequence in homology in 2410.




Problem 6. Let G be a group and let M be a Z[|G]| module, where Z[G] denotes the group ring.
The cohomology of G with coefficients in M is defined as

H*(G; M) := Exty(Z, M).
(a) Prove that HO(G; M) is isomorphic to the fizred submodule
MC :={x e M:gzx =z for all g € G}.
(b) For G = Z/2Z, identifying Z[G] = Z[t]/(t*—1), there is a free resolution of Z by Z[G] modules

given by
t

4260 Eh z[6) 5 Z[6) S 2 - 0
where € is the augmentation map (in terms of polynomials, it is evaluation at 1), and the

other maps are multiplication by the element given in the label.
Use this resolution to compute H*(Z/2Z;7Z).

Solution. (a)
H°(G; M) = Eatyg(Z, M) = Homyg)(Z, M)

Let f € Homgg(Z,M). Then f(1) = z for some x € M. For any g € G, gz = gf(1) =
f(g-1) = f(1) = 2. Hence, x € M. Hence, there is a map ¢ : H(G; M) — M mapping
f=fQ).
(This is indeed a Z[G]—module homomorphisms since for any f,h € H(G; M) and any g € G,
o(f+h)=(f+h)(1) = f(1)+h(1) = o(f) +¢(h) and &(g- f) = (g~ f)(1) = gf(1) = g&(f).)
For injectivity, if f(1) = k(1) for some f,h € H°(G; M), then f(n) = nf(1) = nh(1) = h(n)
for all n € Z. So f = h.
For surjectivity, take any € MY and define f : Z — M via f(n) = nx all n € Z. Then,
for any m,n € Z and g € G, f(n+m) = (n+ m)x = nx + mx = f(n)+ f(m) and
f(g-n) = f(n) = nx = gnz = gf(n) since z € MC.

(b) There is an isomorphism v : Homg;(Z[G], Z) — Zgiven by f — f(1). If f,h € Homg(Z[G], Z)
satisfy f(1) = h(1), then f(t) =tf(1) = f(1) = h(1) = th(1) = h(t) and
fn+mt)=(n+mt)f(1) =(n+m)f(l) = (n+m)h(1) = (n+ mt)h(1)) = h(n + mt)

for any n+mt € Z[G]. Given any n, we can also define f : Z|G] — Z with f(n+mt) = n+m.
Hence, v is an isomorphism. In other words, Homy ) (Z(G],Z) = Z - €.

Dualize the free resolution in part (b) gives

O GV s NP GV e NP GV NS
with (t —1)*(e) = eo(t—1) =0 and (t +1)*(e) = eo (t + 1) = 2¢. Take the homology to
obtain:
Z, ifk=0
HMZ/2Z;Z) = { Z/2Z, if k # 0 even
0, otherwise

with cohomology ring H*(Z/2Z;Z) = Z[a|/(2a) where |a| = 2, agreeing withH*(RP>;Z)
from page 222 in Hatcher.

O
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Problem 6. Let G be a group and let M be a Z|G) module, where Z|G] denotes the group ring.
The cohomology of G with coefficients in M is defined as

HY(G; M) := Eaty (Z, M).
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given by
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» ZIG) 25 Z[6) 5 Z[6) S Z > 0

where € is the augmentation map (in terms of polynomials, it is evaluation at 1), and the
other maps are multiplication by the element given in the label.

Use this resolution to compute H*(Z/2Z;7Z). °

Solution. H°(G; M) := ExtOZ[G] (Z, M) = Homgg)(Z,M). A map Z — M is determined by where
it sends 1. This gives an injection 7 : HomZ[G](Z, M) — M. A value m € M is a valid target for 1
if and only if the action of G of m is compatible with that of G on 1. In other words, one requires
G to fix m. Thus, imi = M. Injections are isomorphisms onto images, so part (a) is proven.

To compute H*(Z/27Z;7Z), we must dualize the given resolution and compute the homology. Dual-
izing gives

... & Homg|(Z[G], Z) <+ Homgz)(Z[G], Z) + Homg)(Z[G], Z) + Homgg(0, Z)

The image of 1 may be freely specified, and doing so determines a Z[G]-module map Z[G] — Z.
Thus, replacing groups with isomorphic ones, we have

L +—Z—Z+0

The maps are pullbacks of t — 1 and t + 1. Composing € o (¢ — 1) is the 0 map, so the rightmost
Z « Zis a 0 map. Composing € o (t + 1) sends 1 to 2, so the second rightmost Z + Z is a
multiplication-by-2 map. This pattern repeats, so the resolution goes

Lzézlzo.
Taking homology of this chain complex is straightforward, and gives

Z if k=0
HYZ2/22:7) = { 0 if k is odd

Z/2Z if k is non-zero even.

O

"Small clarification from class for the general definition of Bzt (N, M). The formula Exth,(N, M) := H*(C,. M)
from class needs to be interpreted properly: here C. is a chain complex of R-modules, and H*(C.; M) should be
defined as the cohomology of the chain complex Homg(Cr, M) of R-module maps (the groups Hompg(C, M) form
a chain complex of abelian groups). This more general interpretation of H*(C'.; M) might not be standard.

®Recall that there is a general fact about Ext% (N, M), c.f. the relevant Moral Exercise.

9Aside: your computation should agree with the cohomology of RP>. This is because an equivalent way to
define H®(G; M) (when the module M is trivial) is as the cohomology of the Eilenberg-Maclane space K (G, 1) with

coefficients in M, and here RP™ ~ K(Z/2Z,1).



Problem 6. Let G be a group and let M be a Z[G] module, where Z|G] denotes the group ring.
The cohomology of G with coefficients in M is defined as 7

HY(G; M) := Eatfye (Z, M).
(a) Prove that H°(G; M) is isomorphic to the fived submodule ®

MC :={zeM:gzx=z foralgecG)}.

(b) For G = Z/2Z, identifying Z[G] = Z[t]/(t*—1), there is a free resolution of Z by Z[G] modules
given by
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where ¢ is the augmentation map (in terms of polynomials, it is evaluation at 1), and the
other maps are multiplication by the element given in the label.

Use this resolution to compute H*(Z/2Z;Z). °

Proof. (a) To calculate H°(G; M), we use the following set of equivalences outlined by Hatcher
for H and Ext® groups:

Ext’(Z, M) = H(G; M) = Homgg)(Z, M). (4)

Z|G)-module homomorphisms from Z — M are entirely determined by where 1 is sent, and
satisfy f(g-n) = g- f(n) = f(n). Then we send each map f € Homgy(g(Z, M) +— f(1) such
that gf(1) = f(1), meaning that f(1) € M®. Since f is entirely determined by where 1 is
sent, this map is injective. This map is also surjective since for any z € M, we may send 1
to o = f(1) such that gf(1) = f(1), giving us a map in Homz(g)(Z, M) that corresponds to
2. Thus we have an isomorphism.

(b) Let G = (t | > = 1) To compute the cohomology using the free resolution, we dualize
and compute Homgq(Z[G],Z). Given that we evaluate polynomials in ¢ at 1, for f €
Homg;¢;)(Z[G], Z), we find that f(1) entirely determines the map, and t + () = 1. Then
Homgq(Z[G],Z) = Z - € = Z. This gives us a dual chain

0 — z ¥ g & 5 EDY

However, since t is evaluated by £ to be 1, the maps (t — 1)* and (¢ + 1)* correspond to the
0 map, and multiplication by 2 respectively.

0 y T —y T —R L
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