Problem 1. Let X be a finite graph, and let $T \subset X$ be a maximal tree. Prove that $H^1(X; \mathbb{Z})$ is isomorphic to the group of cochains supported on the edges of $X \setminus T$.

Solution. As in Hatcher, we denote the set of all functions from vertices of X to \mathbb{Z} by $\Delta^0(X;\mathbb{Z})$ and the set of all function from edges of X to \mathbb{Z} by $\Delta^1(X;\mathbb{Z})$. We note that both sets form abelian groups.

Let $G \subset \Delta^1(X; \mathbb{Z})$ be the subgroup of cochains supported on the edges of $X \setminus T$, that is, $G = \{f \in \Delta^1(X; \mathbb{Z}) : f(e) = 0 \ \forall e \in T\}$. Consider the map $\varphi : G \to H^1(X; \mathbb{Z})$ defined by $\varphi(f) = [f]$. We will see that φ is a group isomorphism by seeing that it is a bijective group homomorphism. φ is an homomorphism because it is the restriction of the quotient map $\Delta^1(X; \mathbb{Z}) \to H^1(X; \mathbb{Z})$, which is a (surjective) group homomorphism. Let us see that it is bijective:

- φ is injective: If [f] = [g] for $f, g \in G$, then there is $h \in \Delta^0(X; \mathbb{Z})$ such that $f g = \delta h$. Let $e \in X \setminus T$ be an edge from u to v. Then, $f(e) g(e) = \delta h(e) = h(\partial e) = h(v) h(u)$. Since T is a maximal tree, there exists a unique path from u to v in the tree. By induction along this path, we see that h(u) = h(v) because f and g are zero on the edges of T. Thus, f(e) = g(e), and we conclude that φ is injective.
- φ is surjective: Let $[f] \in H^1(X; \mathbb{Z})$ for $f \in \Delta^1(X; \mathbb{Z})$. Let u_0 be any vertex of T and let $n \in \mathbb{Z}$. Define $h \in \Delta^0(X; \mathbb{Z})$ in the following way: set $h(u_0) = n$ and define h(v) for every edge $e \in T$ by induction on the edges of the unique path in T from u_0 to v, imposing that $f(\tilde{e}) = h(\partial \tilde{e})$ for every edge \tilde{e} in the path. This uniquely determines h on each vertex of X up to a constant n. Now, define $g \in G$ by g(e) = 0 if $e \in T$ and g(e) = h(u) h(v) + f(e) if $e \in X \setminus T$ from u to v. Then, $f g = \delta h$, so [f] = [g] and we conclude that φ is surjective.

¹Hint: Using cellular chains/cochains/cohomology, there is a map from the latter to the former. Show it is an isomorphism.

Problem 2. Let $S_*(X)$ denote the singular chain complex of a connected space X. Regard a homomorphism $f: S_1(X) \to M$ as an M-valued function on paths in X. Assume f is a cocycle, and prove the following:

- (a) $f(\alpha * \beta) = f(\alpha) + f(\beta)$ (* = concatenation of paths)
- (b) f is zero on constant paths
- (c) f takes the same value on homotopic paths
- (d) f is a coboundary if and only if $f(\alpha)$ depends only on the endpoints of α , for every α .

Deduce that there is a homomorphism $H^1(X; M) \to Hom(\pi_1(X), M)$. What does the universal coefficient theorem say about it?

Solution. (a) As f is a cocycle, we have that $\delta f = 0$. There is a natural 2-simplex $p : \Delta^2 \to X$ for which the images of the oriented sides are the paths α, β and the concatenation $\alpha * \beta$. The boundary of this 2-simplex is equal to $\beta - (\alpha * \beta) + \alpha$. Since

$$0 = \delta f(p) = f(\partial p) = f(\beta) - f(\alpha * \beta) + f(\alpha),$$

we get the desired formula.

(b) Given any constant path α equal to a point, we consider the 2-simplex $p: \Delta^2 \to X$ that is constantly equal to this point. Naturally $\partial p = \alpha - \alpha + \alpha = \alpha$. Then

$$0 = \delta f(p) = f(\partial p) = f(\alpha),$$

showing the desired property.

- (c) If two paths α and β are homotopic relative to their boundary, their homotopy can also be seen through the map of a 2-simplex $p: \Delta^2 \to X$ whose oriented sides are α , the constant path at one of the endpoints, and β . As again $\delta f(p) = 0$ and $\partial p = \gamma \beta + \alpha$, where γ is the constant path at the endpoint, we see from the previous properties that $f(\alpha) = f(\beta)$.
- (d) Suppose that f is a coboundary, $f = \delta g$. Then for any path α , with endpoints oriented from u to v, we get that

$$f(\alpha) = \delta g(\alpha) = g(v) - g(u),$$

so that the value of α under f depends only it is endpoints. Conversely, assume that for every path α , $f(\alpha)$ depends only on its endpoints. We fix a point $u_0 \in X$, and define a function $g: X \to M$ given by $g(v) = f(\alpha)$, where α is any oriented path joining u_0 to v (this assumes path-connectedness of X). This is well-defined by the hypothesis that f only depends on the endpoints of the path. Let β be an oriented path with endpoints u and v. If γ is a path from u_0 to u, $\gamma * \beta$ is a path from u_0 to v, so that

$$f(\beta) = f(\gamma * \beta) - f(\gamma) = g(v) - g(u) = g(\partial \beta) = \delta g(\beta),$$

so that $f = \delta g$.

With all of these facts proven, We see that any cocycle f induces a group homomorphism from $\pi_1(X)$ to M, since the cocycle respects concatenation of loops viewed as paths, is zero on constant

paths and is well-defined with respect to the quotient by homotopy classes of loops. Moreover, if the cocycle $f = \delta g$ is a coboundary, since the evaluation of depends only on the endpoints of the path, it will be evaluated to 0 on any loop; so this map descends to the quotient as a group homomorphism $H^1(X; M) \to \operatorname{Hom}(\pi_1(X), M)$.

We recall that, assuming path-connectedness, there is a natural surjective map $\pi_1(X) \to H_1(X)$ that induces an isomorphism $\pi_1(X)^{ab} \cong H_1(X)$, and also that there is a natural identification $\operatorname{Hom}(\pi_1(X),M) \cong \operatorname{Hom}(\pi_1(X)^{ab},M) \cong \operatorname{Hom}(H_1(X),M)$, since M is abelian. Moreover, since $H_0(X)$ is free abelian, we get that $\operatorname{Ext}(H_0(X),M) = 0$, so that by the universal coefficient theorem we have $H^1(X;M) \cong \operatorname{Hom}(H_1(X),M)$. The map $H^1(X;M) \to \operatorname{Hom}(\pi_1(X),M)$ described previously in fact coincides with the map from the universal coefficient theorem up to these isomorphisms, showing that it itself must be an isomorphism.

Problem 3. Let M be an abelian group. Show that Hom(-,M) preserves split short exact sequences of abelian groups, i.e. if $0 \to A \xrightarrow{i} B \xrightarrow{p} C \to 0$ is a split short exact sequence, then

$$0 \to Hom(C,M) \xrightarrow{p^*} Hom(B,M) \xrightarrow{i^*} Hom(A,M) \to 0$$

is also a split short exact sequence.² Deduce³ from this (and the zig-zag lemma) that there is a long exact sequence in cohomology, i.e. given a pair (X,A) (that is X is a space and $A \subset X$ is a subspace, possibly with some mild assumptions), then there is a long exact sequence

$$\cdots \to H^k(X,A;M) \to H^k(X;M) \to H^k(A;M) \to H^{k+1}(X,A;M) \to \cdots$$

Here $H^k(X, A; M)$ is defined by dualizing the chain complex $S_k(X, A) := S_k(X)/S_k(A)$.

Solution. We first show that the dual sequence is exact. From the Moral exercise we know that p^* is injective, and $\operatorname{Ker}(i^*) = \operatorname{Im}(p^*)$, so it suffices to show that i^* is surjective. First, since $0 \to A \xrightarrow{i} B \xrightarrow{p} C \to 0$ splits, there exists $s: B \to A$ such that $si = \mathbb{1}_A$. Now, suppose we have $f: A \to M$, define $g: B \to M$ as $g = s^*f$. Notice that $i^*g = i^*(s^*f) = (si)^*f = \mathbb{1}_A^*f = f$. This shows i^* is surjective, so the sequence

$$0 \to \operatorname{Hom}(C,M) \xrightarrow{p^*} \operatorname{Hom}(B,M) \xrightarrow{i^*} \operatorname{Hom}(A,M) \to 0$$

is exact. To see that it splits, observe that $s^* : \text{Hom}(A, M) \to \text{Hom}(B, M)$ satisfies $i^*s^* = (si)^* = (\mathbb{1}_A)^*$ is the identity on Hom(A, M), so by the splitting lemma the above short exact sequence splits.

To show that there is a long exact sequence of cohomology, we start by showing that $0 \to S_k(A) \to S_k(X) \to S_k(X,A) \to 0$ splits. Recall that $S_k(X)$ is free, so we may define a projection homomorphism $p: S_k(X) \to S_k(A)$ by sending each singular k-simplex $\sigma \in S_k(X)$ to σ if $\text{Im}(\sigma) \subset A$, or 0 if $\text{Im}(\sigma) \not\subset A$. It clearly follows that $pi = \mathbbm{1}_{S_k(A)}$, where $i: S_k(A) \to S_k(X)$ is the inclusion homomorphism. By the splitting lemma, the exact sequence $0 \to S_k(A) \to S_k(X) \to S_k(X,A) \to 0$ splits. This implies we have a dual split short exact sequence

$$0 \to \operatorname{Hom}(S_k(X, A), M) \to \operatorname{Hom}(S_k(X), M) \to \operatorname{Hom}(S_k(A), M) \to 0.$$

Then, by the zigzag lemma, the homology groups of these three chain complexes form a long exact sequence, which is the one desired in the problem statement. \Box

²You may assume that Hom(-, M) is left exact, c.f. the related Moral Exercise.

³You will need to explain why the exact sequence $0 \to S_k(A) \to S_k(X) \to S_k(X,A) \to 0$ splits.

⁴Hint: it may help to first remember how you derived the long exact sequence in homology in 2410.

Problem 6. Let G be a group and let M be a $\mathbb{Z}[G]$ module, where $\mathbb{Z}[G]$ denotes the group ring. The cohomology of G with coefficients in M is defined as

$$H^k(G;M) := Ext^k_{\mathbb{Z}[G]}(\mathbb{Z},M).$$

(a) Prove that $H^0(G; M)$ is isomorphic to the fixed submodule

$$M^G := \{ x \in M : gx = x \text{ for all } g \in G \}.$$

(b) For $G = \mathbb{Z}/2\mathbb{Z}$, identifying $\mathbb{Z}[G] \cong \mathbb{Z}[t]/(t^2-1)$, there is a free resolution of \mathbb{Z} by $\mathbb{Z}[G]$ modules given by

$$\cdots \xrightarrow{t-1} \mathbb{Z}[G] \xrightarrow{t+1} \mathbb{Z}[G] \xrightarrow{t-1} \mathbb{Z}[G] \xrightarrow{\epsilon} \mathbb{Z} \to 0$$

where ϵ is the augmentation map (in terms of polynomials, it is evaluation at 1), and the other maps are multiplication by the element given in the label.

Use this resolution to compute $H^*(\mathbb{Z}/2\mathbb{Z};\mathbb{Z})$.

Solution. (a)

$$H^0(G; M) = Ext^0_{\mathbb{Z}[G]}(\mathbb{Z}, M) = Hom_{\mathbb{Z}[G]}(\mathbb{Z}, M)$$

Let $f \in Hom_{\mathbb{Z}[G]}(\mathbb{Z}, M)$. Then f(1) = x for some $x \in M$. For any $g \in G$, $gx = gf(1) = f(g \cdot 1) = f(1) = x$. Hence, $x \in M^G$. Hence, there is a map $\phi : H^0(G; M) \to M^G$ mapping $f \mapsto f(1)$.

(This is indeed a Z[G]-module homomorphisms since for any $f, h \in H^0(G; M)$ and any $g \in G$, $\phi(f+h) = (f+h)(1) = f(1) + h(1) = \phi(f) + \phi(h)$ and $\phi(g \cdot f) = (g \cdot f)(1) = gf(1) = g\phi(f)$.)

For injectivity, if f(1) = h(1) for some $f, h \in H^0(G; M)$, then f(n) = nf(1) = nh(1) = h(n) for all $n \in \mathbb{Z}$. So f = h.

For surjectivity, take any $x \in M^G$ and define $f: \mathbb{Z} \to M$ via f(n) = nx all $n \in \mathbb{Z}$. Then, for any $m, n \in \mathbb{Z}$ and $g \in G$, f(n+m) = (n+m)x = nx + mx = f(n) + f(m) and $f(g \cdot n) = f(n) = nx = gnx = gf(n)$ since $x \in M^G$.

(b) There is an isomorphism $\psi : Hom_{\mathbb{Z}[G]}(\mathbb{Z}[G], \mathbb{Z}) \to \mathbb{Z}$ given by $f \to f(1)$. If $f, h \in Hom_{\mathbb{Z}[G]}(\mathbb{Z}[G], \mathbb{Z})$ satisfy f(1) = h(1), then f(t) = tf(1) = f(1) = h(1) = th(1) = h(t) and

$$f(n+mt) = (n+mt)f(1) = (n+m)f(1) = (n+m)h(1) = (n+mt)h(1)) = h(n+mt)$$

for any $n+mt \in \mathbb{Z}[G]$. Given any n, we can also define $f: \mathbb{Z}[G] \to Z$ with f(n+mt) = n+m. Hence, ψ is an isomorphism. In other words, $Hom_{\mathbb{Z}[G]}(\mathbb{Z}[G],\mathbb{Z}) = \mathbb{Z} \cdot \epsilon$.

Dualize the free resolution in part (b) gives

$$\cdots \xrightarrow{(t-1)^*=0} \mathbb{Z} \xrightarrow{(t+1)^*=2} \mathbb{Z} \xrightarrow{(t-1)^*=0} \mathbb{Z} \to 0.$$

with $(t-1)^*(\epsilon) = \epsilon \circ (t-1) = 0$ and $(t+1)^*(\epsilon) = \epsilon \circ (t+1) = 2\epsilon$. Take the homology to obtain:

$$H^{k}(\mathbb{Z}/2\mathbb{Z};\mathbb{Z}) = \begin{cases} \mathbb{Z}, & \text{if } k = 0\\ \mathbb{Z}/2\mathbb{Z}, & \text{if } k \neq 0 \text{ even },\\ 0, & \text{otherwise} \end{cases}$$

with cohomology ring $H^*(\mathbb{Z}/2\mathbb{Z};\mathbb{Z}) = \mathbb{Z}[\alpha]/(2\alpha)$ where $|\alpha| = 2$, agreeing with $H^*(\mathbb{R}P^{\infty};\mathbb{Z})$ from page 222 in Hatcher.

Problem 6. Let G be a group and let M be a $\mathbb{Z}[G]$ module, where $\mathbb{Z}[G]$ denotes the group ring. The cohomology of G with coefficients in M is defined as ⁷

$$H^k(G;M) := Ext^k_{\mathbb{Z}[G]}(\mathbb{Z},M).$$

(a) Prove that $H^0(G; M)$ is isomorphic to the fixed submodule ⁸

$$M^G := \{ x \in M : gx = x \text{ for all } g \in G \}.$$

(b) For $G = \mathbb{Z}/2\mathbb{Z}$, identifying $\mathbb{Z}[G] \cong \mathbb{Z}[t]/(t^2-1)$, there is a free resolution of \mathbb{Z} by $\mathbb{Z}[G]$ modules given by

$$\cdots \xrightarrow{t-1} \mathbb{Z}[G] \xrightarrow{t+1} \mathbb{Z}[G] \xrightarrow{t-1} \mathbb{Z}[G] \xrightarrow{\epsilon} \mathbb{Z} \to 0$$

where ϵ is the augmentation map (in terms of polynomials, it is evaluation at 1), and the other maps are multiplication by the element given in the label.

Use this resolution to compute $H^*(\mathbb{Z}/2\mathbb{Z};\mathbb{Z})$.

Solution. $H^0(G; M) := \operatorname{Ext}_{\mathbb{Z}[G]}^0(\mathbb{Z}, M) = \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, M)$. A map $\mathbb{Z} \to M$ is determined by where it sends 1. This gives an injection $i : \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, M) \to M$. A value $m \in M$ is a valid target for 1 if and only if the action of G of m is compatible with that of G on 1. In other words, one requires G to fix m. Thus, im $i = M^G$. Injections are isomorphisms onto images, so part (a) is proven.

To compute $H^*(\mathbb{Z}/2\mathbb{Z};\mathbb{Z})$, we must dualize the given resolution and compute the homology. Dualizing gives

$$\ldots \leftarrow \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}[G],\mathbb{Z}) \leftarrow \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}[G],\mathbb{Z}) \leftarrow \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}[G],\mathbb{Z}) \leftarrow \operatorname{Hom}_{\mathbb{Z}[G]}(0,\mathbb{Z})$$

The image of 1 may be freely specified, and doing so determines a $\mathbb{Z}[G]$ -module map $\mathbb{Z}[G] \to \mathbb{Z}$. Thus, replacing groups with isomorphic ones, we have

$$\dots \leftarrow \mathbb{Z} \leftarrow \mathbb{Z} \leftarrow \mathbb{Z} \leftarrow 0$$

The maps are pullbacks of t-1 and t+1. Composing $\epsilon \circ (t-1)$ is the 0 map, so the rightmost $\mathbb{Z} \leftarrow \mathbb{Z}$ is a 0 map. Composing $\epsilon \circ (t+1)$ sends 1 to 2, so the second rightmost $\mathbb{Z} \leftarrow \mathbb{Z}$ is a multiplication-by-2 map. This pattern repeats, so the resolution goes

$$\dots \stackrel{0}{\leftarrow} \mathbb{Z} \stackrel{2}{\leftarrow} \mathbb{Z} \stackrel{0}{\leftarrow} \mathbb{Z} \leftarrow 0.$$

Taking homology of this chain complex is straightforward, and gives

$$H^k(\mathbb{Z}/2\mathbb{Z};\mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{if } k = 0\\ 0 & \text{if } k \text{ is odd}\\ \mathbb{Z}/2\mathbb{Z} & \text{if } k \text{ is non-zero even.} \end{cases}$$

⁷Small clarification from class for the general definition of $Ext_R^k(N, M)$. The formula $Ext_R^k(N, M) := H^k(C_*, M)$ from class needs to be interpreted properly: here C_* is a chain complex of R-modules, and $H^k(C_*; M)$ should be defined as the cohomology of the chain complex $Hom_R(C_k, M)$ of R-module maps (the groups $Hom_R(C_k, M)$ form a chain complex of abelian groups). This more general interpretation of $H^k(C_*; M)$ might not be standard.

⁸Recall that there is a general fact about $Ext_R^0(N, M)$, c.f. the relevant Moral Exercise.

⁹Aside: your computation should agree with the cohomology of $\mathbb{R}P^{\infty}$. This is because an equivalent way to define $H^k(G; M)$ (when the module M is trivial) is as the cohomology of the Eilenberg–Maclane space K(G, 1) with coefficients in M, and here $\mathbb{R}P^{\infty} \simeq K(\mathbb{Z}/2\mathbb{Z}, 1)$.

Problem 6. Let G be a group and let M be a $\mathbb{Z}[G]$ module, where $\mathbb{Z}[G]$ denotes the group ring. The cohomology of G with coefficients in M is defined as ⁷

$$H^k(G; M) := Ext^k_{\mathbb{Z}[G]}(\mathbb{Z}, M).$$

(a) Prove that $H^0(G; M)$ is isomorphic to the fixed submodule ⁸

$$M^G := \{ x \in M : gx = x \text{ for all } g \in G \}.$$

(b) For $G = \mathbb{Z}/2\mathbb{Z}$, identifying $\mathbb{Z}[G] \cong \mathbb{Z}[t]/(t^2-1)$, there is a free resolution of \mathbb{Z} by $\mathbb{Z}[G]$ modules given by

$$\cdots \xrightarrow{t-1} \mathbb{Z}[G] \xrightarrow{t+1} \mathbb{Z}[G] \xrightarrow{t-1} \mathbb{Z}[G] \xrightarrow{\varepsilon} \mathbb{Z} \to 0$$

where ε is the augmentation map (in terms of polynomials, it is evaluation at 1), and the other maps are multiplication by the element given in the label.

Use this resolution to compute $H^*(\mathbb{Z}/2\mathbb{Z};\mathbb{Z})$.

Proof. (a) To calculate $H^0(G; M)$, we use the following set of equivalences outlined by Hatcher for H^0 and Ext^0 groups:

$$\operatorname{Ext}^{0}(\mathbb{Z}, M) = H^{0}(G; M) = \operatorname{Hom}_{Z[G]}(\mathbb{Z}, M). \tag{4}$$

 $\mathbb{Z}[G]$ -module homomorphisms from $\mathbb{Z} \to M$ are entirely determined by where 1 is sent, and satisfy $f(g \cdot n) = g \cdot f(n) = f(n)$. Then we send each map $f \in \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, M) \mapsto f(1)$ such that gf(1) = f(1), meaning that $f(1) \in M^G$. Since f is entirely determined by where 1 is sent, this map is injective. This map is also surjective since for any $x \in M^G$, we may send 1 to x = f(1) such that gf(1) = f(1), giving us a map in $\operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, M)$ that corresponds to x. Thus we have an isomorphism.

(b) Let $G = \langle t \mid t^2 = 1 \rangle$ To compute the cohomology using the free resolution, we dualize and compute $\operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}[G],\mathbb{Z})$. Given that we evaluate polynomials in t at 1, for $f \in \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}[G],\mathbb{Z})$, we find that f(1) entirely determines the map, and $t \mapsto \varepsilon(t) = 1$. Then $\operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}[G],\mathbb{Z}) = \mathbb{Z} \cdot \varepsilon \cong \mathbb{Z}$. This gives us a dual chain

$$0 \longrightarrow \mathbb{Z} \xrightarrow{(t-1)^*} \mathbb{Z} \xrightarrow{(t+1)^*} \mathbb{Z} \xrightarrow{(t-1)^*} \dots$$

However, since t is evaluated by ε to be 1, the maps $(t-1)^*$ and $(t+1)^*$ correspond to the 0 map, and multiplication by 2 respectively.

$$0 \longrightarrow \mathbb{Z} \stackrel{0}{\longrightarrow} \mathbb{Z} \stackrel{\cdot 2}{\longrightarrow} \mathbb{Z} \stackrel{0}{\longrightarrow} \dots$$

⁷Small clarification from class for the general definition of $Ext_R^k(N,M)$. The formula $Ext_R^k(N,M) := H^k(C_*,M)$ from class needs to be interpreted properly: here C_* is a chain complex of R-modules, and $H^k(C_*;M)$ should be defined as the cohomology of the chain complex $Hom_R(C_k,M)$ of R-module maps (the groups $Hom_R(C_k,M)$ form a chain complex of abelian groups). This more general interpretation of $H^k(C_*;M)$ might not be standard.

⁸Recall that there is a general fact about $Ext_R^0(N, M)$, c.f. the relevant Moral Exercise.

⁹Aside: your computation should agree with the cohomology of $\mathbb{R}P^{\infty}$. This is because an equivalent way to define $H^k(G; M)$ (when the module M is trivial) is as the cohomology of the Eilenberg–Maclane space K(G, 1) with coefficients in M, and here $\mathbb{R}P^{\infty} \simeq K(\mathbb{Z}/2\mathbb{Z}, 1)$.