Exam practice problems

Problem. True or false. Be sure to explain your answer. (E.g. if the answer is true, you might give a direct argument or an explanation that refers to some theorem from class or homework. If the answer is false, you most likely should give a counterexample.)

- (a) Gauss–Bonnet can be used to compute the area of the unit sphere.
- (b) A geodesic $c:[a,b]\to S$ on a surface S has constant speed, i.e. |c'| is constant.
- (c) The covariant derivative $\nabla_c w$ of a tangent vector field w along a curve c on a surface is always tangent to the surface.
- (d) Let c = c(t) is a geodesic on a surface S and assume w = w(t) is a parallel vector field along c. Then the angle between w(t) and c(t) is constant.
- (e) Let S be the surface $x^2 + y^2 + 2z^2 = 1$. For any plane P through the origin, the intersection of P with S is a geodesic (when given a constant speed parameterization).
- (f) Let $c: [0,1] \to S$ and $\hat{c}: [0,1] \to S$ be two curves with the same endpoints, i.e. $c(0) = p = \hat{c}(0)$ and $c(1) = q = \hat{c}(1)$. Fix a tangent vector $w_0 \in T_pS$ and write w, \hat{w} for the parallel transport of w along c, \hat{c} , respectively. Then $w(1) = \hat{w}(1)$.
- (g) The surfaces $x^2 y^2 = 1$ and $x^2 y^2 = 2$ are isometric.
- (h) By Gauss–Bonnet, there is no embedding of the 2-sphere in \mathbb{R}^3 with a point with negative Gaussian curvature.

Problem. Given an example or explain why there is no example.

- (a) A surface S with a point $p \in S$ such that there are infinitely many geodesics that pass through p.
- (b) A surface S with a point p such that there is no geodesic on S that passes through p.
- (c) A unit speed curve on a cylinder that is not a geodesic.
- (d) A tangent vector field w on the torus that is nowhere zero (i.e. $w(p) \neq 0$ for all $p \in S$).

Problem. Show that stereographic projection chart for the unit sphere is isothermal.

Problem. Fix $\theta \in (0, \pi)$, and let R be a triangle on the sphere whose sides are geodesics and with interior angles $\frac{\pi}{2}, \frac{\pi}{2}, \theta$. Compute the angle of parallel transport of vectors along the boundary of R.

Problem. Compute Christoffel symbols for a surface that's the graph of a function.