Problem 1. Write down a linear system of differential equations in functions f,..., fe that is
satisfied by f =T -N, fo=T-B, fs=N-B, fy=T-T, fs=N-N, f¢ = B-B when T,N,B
satisfy the Frenet equations.® Verify that the functions fi = fo=fa=0and fs= fs=fs =1 isa

solution to your system of differential equations.

Solution. Utilizing the property that f =T -B = f'=T'-B+T - B’, we can differentiate each

of the 6 dot product relations, and plug in our known Fernet Equations:
=T -N4+T-N =k(N-N)=&(T-T)—7(T-B) =kfs —fs—Tfo
=T -B+T-B' =k(N-B)+7(T-N)=kfs+1h
f4=N-B+N-B'=—k(T-B)—7(B-B)+7(N-N)=—kfo—7fs+7f5
fi=T -T+T-T'"=k(N-T)+x(N-T) =2xf
=N -N+N-N'=—k(T-N)—=7(B-N)—k(N-T)—7(N-B)=-2kf1 — 273
fe=B' -B+B-B'=7(N-B)+71(B-N)=21f3

So our system of differential equations are:

fi=kfs—Kfa—1f
fa=kf3+7h
fi=—kfa—7f6+7f5
fi=2kfi

fs==2xf1 —21f3
fe=27f3

Finally to verify the solution (0,0,0,1,1,1) satisfies the found equations, we plug in below:
fi= k(1) = k(1) = 7(0) = 0

f5=r(0)+7(0) =0
fi=—-k0)—7(1)+7(1)=0

fi=2k0)=0
i =—2K(0) —2r(0) =0
fo=2r(0)=0
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We see that the derivatives of all 6 equations are 0, which implies the equations are all equal to

constants. Thus the solution (0,0,0,1,1,1) satisfies the found equations.

O

'Hint: differentiate these dot product functions, and express the answer back in terms of these functions. The

final answer should be a system of differential equations involving fy,..., fe, and not(!) involving T, N, B.




Problem 2. Use the previous problem to give a careful proof of the fundamental theorem of space
curves, finishing the argument from class. (Specifically, show for every k : [0,L] — [0,00) and
7:[0,L] = R, there is a unit speed curve with curvature . and torsion 7.)

Solution. The fundamental theorem of space curves states that given x : [0,L] — (0,00) and
7 :[0,L] = R, there exists a unit speed curve ¢ : [0, L] — R® with curvature x and torsion 7,
unique up to isometry.

To construct ¢, we first start with constructing a basis 7, N, B from & and 7.
First, we want 7, N, B to fulfill the Frenet equations:
T = kN N =—kT+ 1B B' =—7N

This is a system of differential equations, so by the ODEs blackbox, we know there exists a unique
solution for 7, N, B up to initial conditions. We can simply choose the initial conditions to be
7(0) = (1,0,0), N(0) = (0,1,0), and B = (0,0,1), since the goal is for them to be orthonormal.

Now, we show that T, N, B are orthonormal for all . From question 1, we know that since T, N, B
satisfy the Frenet equations, that they also satisfy the system of differential equations given by
flof5 ooy f6. We also chose T, N, B so that at t = 0, f1(0) = f)2(0) = f3(0) = 0 and f4(0) =
f5(0) = f6(0) = 1.
However, recall that f; = fo = f3 = 0 and f; = f5 = f¢ = 1 are also solutions to the system of
differential equations, with the same initial conditions as given by 7', N, B. Thus, by uniqueness of
ODE solutions up to initial conditions, we have that for all ¢,

(T,N)y=f1=0 (T,B)=fa=0 (N,B)y=f3=0

(I.T) = fs =1 (N.N)=f5=1 (B.B) = fo=1
Therefore T, N, B are an orthonormal basis that satisfy the Frenet equations.
Now, we define the curve ¢(t) = fot T'(s)ds. First, note that this is unit speed, as |(t)| = |T'(t)| = 1

for all t. Now, we show that its Frenet frame 7., N., B, is exactly equal to T, N, B, and that its
curvature and torsion k., 7. are exactly the k, 7 we were given.

First, note that 7, = ¢ = T. Then, it follows that
ke = |T;| = |T'| = |kN| = &
From there, we have that
B g T kN
ke K K

N,

It follows that
B.=T.xN.=TxN=B
Finally, we have that
Te = —(NeyBly = —(N,B'y = —(N,—7N) =7(N,N) =1

To conclude, we have found that if we fix £ and 7 and fix initial conditions, we can derive a unique
orthonormal basis T\, N, B which is exactly the Frenet frame for a unit speed curve c. It follows that
the curvature and torsion of ¢ are exactly the x and 7 we were given. Hence, ¢ can be completely
determined by s and 7, and is unique up to isometry. |




Problem 3. Let ¢ : [0, L] — R? be a unit-speed plane curve, and assume c¢(0) = ¢(L) and ¢/(0) =
d(L). Write ¢(t) = (cos0(t),sin0(t)). where 6 : [0,L] — R. Then 5-(6(L) — 0(0)) is an integer,
called the turning number of o. Compute the turning number of the following curves.”

@& oo @)

Solution. The way 1 did this was just to follow the tangent vector ¢/ with my eyes, and count
how many times it points straight up. A positive turn happens when the tangent rotates counter-
clockwise, meaning when its derivative |¢”| is positive (i.e. curvature is positive). A negative turn
occurs when it rotates clockwise (i.e. curvature is negative). So, for a positive count, ¢’ should be
pointing to the left each time ¢’ is pointing up. For a negative count, ¢” will be pointing right.
Following these rules, I got the following turning numbers:

Left curve: turning number = +2

Middle curve: turning number = +1

Right curve: turning number = 0 O

2Hint: Fix a direction, e.g. (1,0) and find all the points on the curve where the tangent vector points in the
direction of (1,0) (not its negative). Then count these points with sign...




Problem 4. For the hyperboloid ¢(u,v) = (u,v,v* — u®) with unit normal N = ¢y X ¢y/|Pu X 0,
compute DN, at p = (0,0,0).

Solution. We begin by determining the tangent plane for p = (0,0,0). The tangent space is spanned
by the partial derivatives of ¢, which we can determine as

%(u, v, 0% —u?) = (1,0, —2u)

%(u, v,v% —u?) = (0,1,2v)

At p = (0,0,0), we have z, = (1,0,0) and z, = (0,1,0), so that T,,S = span{z,,z,}. Now, we
consider that the action of dN, on the basis vectors z, and x, is given by the partial derivatives of
the normal:

dNpy(zy) = Ny
dNp(zy) = Ny

Our goal now is to calculate the partial derivatives N, and N,. We have the normal as N =
by X Oy/|du X Py|, while we know that

by = (1,0, —2u)
oy = (0,1,20)
Such that we have the following
(2u, —2v,1)

Ny = =
V1 + 4u? + 402
Let R = /1 + 4u? + 4v?. Applying the product rule, we obtain:

Ny = (=2,0,0)R™! — (—2u,2v,1)4R 3 u
Nu(0,0,0) = (—2,0,0)(1) + (0,0,1)(0)
Nu(p) = (—2,0,0)

We calculate N, through applying the product rule as well:

= (—2u,2v,1)R™!
N, = (0,2,0)R™! 4+ —(—2u, 2v, 1)R‘2((%R)
N, = (0,2,0)R™" + (2u,2v,1)4R " %v
Ny(0,0,0) = (0,2,0)(1) + (0,2,1)(0)
Ny(p) = (0,2,0)

0 2
O

As our basis vectors are simply x, = (1,0,0) and z, = (0,1,0), we conclude that DN, is [_2 0]



Problem 5. Describe the image of the Gauss map of the following surfaces. Do not compute using
a chart. Instead, reason geometrically.

(a) Paraboloid = = x* + y>.
erboloid = + y* — z° = 1.
(b) Hyperboloid x? + y*> — 22

Solution. (a) We can get the figure as the following.

From there, we observe the normal at (0,0,0) is (0,0, —1), and with z, y increase, the normal
is becoming closer and closer horizontal, but never downward. So the Image is a open bottom
hemisphere

{Z<0}c$?
for S? the unit 2-sphere.

(b) We can get the figure

Normals are horizontal at z = 0; as |z| — oo, the shape is asymptotic to the cone 22 +y? = 22,
so normals approach 7

Image(N) = {(X,Y,Z) € §?: |Z| <1/V2}.




Problem 6. In this problem you prove the spectral theorem for self-adjoint linear operators A :
R? — R? (using differential geometry!). 3

Consider the composition f o c, where ¢ : [0,27] — R? is the standard parameterization of the unit
circle, and f : R? — R is defined by f(p) = (A(p),p).

(a) Compute (foc)'(t) and prove thatt is a critical point of foc if and only if ¢(t) is an eigenvector
of A. Relate the corresponding eigenvalue to f.

(b) Use facts from calculus to deduce that either A is a scalar matriz or A has two distinct
eigenvalues.

(¢) Prove that there exist a pair of eigenvectors for A that form an orthonormal basis for R?. *

Solution. 1.
c(t) = (cos(t),sin(t))
(foc)(t) = (A(c(t)), c(t))
(foc)(t) = (Ac(t), € (t)) + (A'(c(t))c (1), c(t)) = (A(e(t), ¢'(t)) + (A(c(t)), (1))
= ((), A(c(t))) + (A (1)), c(t))

Since A is self-adjoint, we have

(c(t), Alc(t))) + (A(c (1), e(t) = 2(c/(t), Ale(?)))

By definition, ¢ is a critical point of f o ¢ if and only if (f o ¢)'(t) = 0. We also know that
(foc)'(t) = 2(c(t), A(c(t))). So, t is a critical point if and only if ¢/(t) is orthogonal to A(c(t)).
In R?, if A(c(t)) is orthogonal to ¢/(t), it is parallel to c(t). So, there must be some A € R
such that A(e(t)) = Ae(t). Therefore, ¢(t) is an eigenvector of A if and only if  is a critical
point of foec.

Since |e(t)] = 1, we have f(c(t)) = (Ae(t),c(t)) = Me(t),e(t)) = A. So, when ¢(t) is an
eigenvector of A, the corresponding eigenvalue is f(c(t)).

2. Since ¢ : [0,27] — R?, we know that f o ¢ must have maximum and minimum values. The
maximum and minimum values are considered to be critical points. Let t; be the max and
t2 be the min. Then, ¢(t1) and ¢(t2) are eigenvectors of A. So, f(c(t1)) and f(c(t2)) are
eigenvalues. If these are distinct values, then we have two distinct eigenvalues of A.

Otherwise, since the max and min are the same, the function f o ¢ must be constant. Then,

(A(p),p) = Ap,p) for any p. Therefore, A is a scalar matrix.

3. If A is a scalar matrix, any vector p is an eigenvector. So, we can take any two orthonormal
vectors to create an orthonormal basis. Otherwise, Let A have two distinct eigenvalues such
that A(v) = \jv and A(u) = A\pu. Then, since A is self-adjoint,

Au(v,u) = (Mv,u) = (A(v), u) = (v, Aw) = (v, Azu) = Aa(v, u)
Since A and A, are distinct eigenvalues, then (v, u) = 0 so v and u are orthonormal. Therefore,

v and u are a pair of eigenvectors for A that form an orthonormal basis for R

O

3Remark: This special case of the theorem is the most important case for us in the course.
“Hint: this is just a linear algebra exercise. Make sure to use the hypothesis...




