Problem 1. Let ¢ : [0, L] — R? be a unit-speed plane curve. Write ¢/ (t) = (cos0(t),sin0(t)), where
6 :(0,L] - R. Show that differentiability of ¢ implies differentiability of 6. ' 2

Solution. Suppose c(t) = (z(t),y(t)), therefore, we can get ¢/(t) = (2/(t),%'(t)). Since we know c is
differentiable, z,y should also be differentiable.

We get the following equations from above
z'(t) = cosO(t) Y (t) = sind(t).
Therefore, we can get
0(t) = cos™' 2/ (t) 0(t) = sin~' y/(t)

However, we should be aware that inverse trigonometric functions have branch issues when cos = (0
or sinf) = 0. To avoid this, we define # piecewise:

(arcsin(y/(t)), 2'(t) > 0,
m —arcsin(y'(t)),  a'(t) <0,

arccos(2’'(t)), y'(t) >0,

| 27 — arccos(2/(t)), ¥'(t) <O.

These agree on overlaps and give a continuous # with cos@ = 2/, sinf = y/.

Differentiating on {z' # 0} we get §' = {’r—lf, and on {y’ # 0} we get §' = —’u—',' Unit speed implies
2’2" + y'y” = 0, so these formulas coincide on overlaps. Thus @ is differentiable. O

'Recall: for us (and do Carmo) differentiable means “infinitely differentiable”.
?Remark: we used this problem in our proof of the fundamental theorem of plane curves.




Problem 2. In this problem you work out a formula for curvature of a space curve that’s not
necessarily unit speed. Let f : [a,b] — R3 be a curve (not necessarily unit speed), and let r(t) =
fat |f'(uw)| du be its arclength function (in particular r'(t) = |f'(t)|). From class, we can define a
unit speed curve ¢ so that cor = f. The curvature k(t) of f at time t € [a,b], is defined as the
curvature of ¢ at time r(t), which we defined in class as |c"(r(t))|.

(a) Derive from this setup that the curvature of f is give by the formula

o | T'@)]
w0 = ")
where T(t) is defined as f'(t)/|f'(t)| = f'(t)/r'(t). ®
(b) Derive the formula
I£'8) x £"(®)]

0 =" P

Solution. (a) First, we know that f(¢) = ¢(r(t)) or cor. Let us first begin by differentiating f:

f'(it) = %C(T(t)) =1'(t)d (r(t)) (6)
Then, knowing f’ = r'T', we can set the above equation equal to r'T"
PO (r(#) = P (OT = (1) =T (7)
Next let’s differentiate for T’
T'(t)
r(t)

As we now have a relation for ¢”(r(t)), and recalling curvature is defined by this, we can now
relate curvature as such: ,
17" (1)

(1) = 1€/ (O)] = T 9)

Finally, as we expect r'(t) to be strictly positive by definition (r/(t) = |f'(t)| which |f(¢)]
always be greater than 0), we can drop the absolute value bars to conclude:

T'(t) =r'(t)"(r(t) = "(r(t)) = (8)

T'(t)
() = ) (10)
(b) First, we begin by differentiating the provided relation, f’ = »'T"
ff= d%—r'T =T +7'T (11)
Now, let us find the cross product of f and f”:
fxf'=0'T)x (T ++'T) (12)

3Hint: differentiate! and again!
‘Hint: first differentiate f’ = r'T to get a formula for f”.




Because the cross product is linear, we have:
('T) x (P"T 4+7'"T") = (*'T x "T) + (©'T x 'T") (13)

We also know the first cross product evaluates to 0 as through bilinearity it is equivalent to
(r'r"(T x T')) where T' x T' = 0. Using bilinearity on the second term, we see:

fxf'=r@®)*TxT) (14)
Now, taking the norm on both sides we see:
|f' x '] = ' (¢)*|T x T'| (15)

We know |T| = 1, implying |T|?> = 1. Next, if we differentiate this term we see 27 - T = 0,
implying orthogonality of T and T. Finally, let’s analyze the cross product |T" x 7’| with
this in mind. For two orthogonal cross products, the norm can be simplified to |T'||T’|. And
knowing that |T'| = 1 implies that |T" x 7’| = |7”|. Plugging back in we see:
o M 12 o xS
=rt)*|T"| = |T'| = —=5— 16
\f x 7| =r'(t)°|T"| | ()2 (16)
Finally, plugging this new equation for —T"— into our curvature equation for part a), and
recalling that 7/(t) = | f'(t)|, we see:

o 1T 1 x £ 1 x £

r(t) () ()3

(17)

O



Problem 3. Let ¢ : I — R be a smooth function, and consider f(t) = (t,d(t)) (a parameterization
of the graph of ®). Compute the curvature of f.

Solution. We find the curvature using the formula derived in the previous question. First, we
compute some derivatives:

f'(t) = (1,4'(t)) f(t) = (0,¢"(t))
') = V1+¢/(t)?

Now, we compute f'(t) x f”(t):

FRL

Hence, using our formula, we have that

6" (2)]

0 = T oDe

ot




Problem 4. The tangent line is the line that best approximates a curve at a point. Similarly,
the osculating circle is the circle that best approximates a plane curve at a point. Recall that for
points a, b, c in the plane, not on a line, there is a unique circle passing through these points. Write
Cl(a,b,c) for the center of this circle. The osculating circle at a(t) is defined as the circle through
a(t) with center
C =lim C(a(t — s),a(t),a(t + s)).
s—0

(i) Fiz X > 0 and define B(s) = (s,\s?). For s # 0, compute the center of the circle that passes
through B(s), 3(0), and B(—s). °

(ii) Assume a satisfies a(0) = (0,0) and o’(0) = (1,0). Use the preceding part and the Taylor
expansion of a(t) to show the radius of the osculating circle at a(0) is 1/k, where k = k(0)
is the curvature. % 7

Solution. (i) We have B(s) = (s, As?), 3(0) = (0,0), and 3(—s) = (—s,As?). If they are all on a
circle, then
(s — @)% + (As? — )% = (—a)? + (—b)? = (=5 — )2 + (As? — b)?

(s? — 2sa + a?) + (A2s? — 2As%b + b?) = a? + b2 = (s + 2sa + a®) + (NZs? — 2)s%b + b?)
The right and left equation cancel to —sa = sa, so a = 0 since s # 0 for those equations. Then,
using the left and middle equations, we get
0 =s%+ A%s* —2)s%
82 4+ N34 1+ 252

b= =
2)\s2 2\

So, the center of the circle that passes through 3(s), 3(0), and 3(—s) is (0, %)

(ii) Since |a’(0)| = |(1,0)] = 1, the curve is unit speed at ¢ = 0. Then, the curvature at 0
is k(0) = |a”(0)|. Since a’(0) and a”(0) must be orthogonal, we can use the orientation where
a”(0) = (0, k). The degree 2 Taylor approximation of a(t) at 0 is

&

2= (t,5)

aII(O)

a(0) + o' (0)(t — 0) + T(t —0)? = (0,0) + (1,0)t +

(0, )
2

Then, if we set A = 5, we have the form (t, At?) like in the previous part. By definition, the

osculating circle at «(0) is
ll_’ll(l) C(a(_b)s a(O)v a(b))

We can then use the formula we found from the previous part to find the center. Therefore, the
center of the osculating circle is

1+A232)_i_1
20 72

lim (0, -
sl—l}(l)( 2A K

®Hint: You can solve this by finding a, b, so that 8(%s), 8(0) satisfy the equation (x — a)? + (y — b)* = r°.
SHint: use specifically the degree-2 Taylor approximation.
"Remark: this problem gives a geometric interpretation for the curvature.




Problem 5. Resolve the cycloid parador. Suggestion: first solve the paradox for a square wheel
(consider a smaller concentric square and keep track of the times when the smaller square has its
sides parallel to the x,y-axes). This should give a good clue for what is going on (viewing the circle
as the limit of reqular n-gon as n goes to infinity). To explain what’s going on in the circle case,
it may help to draw the path traced by a point on a smaller concentric circle and compare it to the

cycloid.

Solution. We begin first by stating the paradox, for two concentric circles of differing radius that
roll simultaneously, we expect the smaller circle to traverse a distance of 277 while the larger circle
traverses a distance of 2w R. However, this is not what happens, and both circles roll a distance of
27 times the larger circle’s radius. This looks like:

Let’s first consider two concentric squares that are undergoing the same effect. We notice for a
90 degree rotation, the larger square would span the whole distance traveled. However, for the
smaller square, there is a distance that was not covered by it rotating over it. This looks like:
The conclusion is that for a full 360 degree rotation, the distance traveled will be the perimeter of
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the larger square, however, this distance cannot equal the perimeter of the smaller square. This
is because of the slipped or missing distance, which when added to the perimeter of the smaller

square would equal the perimeter of the larger square.

It is also worth pointing out that the smaller this center square is, the greater distance it skips
when rotating with the larger square.

Extrapolating this behavior to larger and larger n-gons, we would expect that every rotation from
one face to another to result in the smaller n-gon skipping some fixed distance. Although for




larger and larger n-gons, this skipped distance gets smaller from one face to another, the increasing
amount of faces makes it an important factor to consider each time. Here is an example of what I
am talking about in a hexagon:

Finally, we conclude that taking n — oo, we have a circle, which would still be subject to the same
behavior. Thus for each minute rotation, the larger circle ‘drags’ on the smaller circle, pulling it
an extra distance. Adding up all these minute distances over a full rotation of 360 degrees we see:

2R = 27r + dyor (33)

Showing that in fact 2w R # 27r, resolving the cycloid paradox.




Problem 6. The url below takes you to an image of a curve. Let T, N, B denote the Frenet frame
at the specified point. Rotate the image so that you are looking down at the plane spanned by T, N.
Do the same with T, B, and with N, B. Submit screenshots of your answer, and draw and label the
T,N,B azxes. Make sure to explain your answer.

https://www.wolframcloud. com/obj/077c82ab-4b22-4,588-8936-b76a5e2698a9

Solution.

/ \ 4

\\/’

The curve looks locally quadratic if B vanishes, cubic if N vanishes, and as 22 if 7" vanishes - this
is the consequence of so-called "stick theorem” proven in the class.

O




Problem 6. The url below takes you to an image of a curve. Let T, N, B denote the Frenet frame
at the specified point. Rotate the image so that you are looking down at the plane spanned by T, N.
Do the same with T, B, and with N, B. Submit screenshots of your answer, and draw and label the
T,N, B axes. Make sure to explain your answer.

https://www.wolframcloud.com/obj/077c82ab—4b22-4588-8936-b76a5e2698a9

Solution. As seen in class and in textbook, for the space curve a(t) and the third-order Taylor
approximation:

2 3
a(s) = a(0) + sa’(0) + %(1"(0) - Sga"c{l’(ﬂ)

we have the following parameterizations for z(s),y(s), and 2(s) on (7', N, B):

k233
z(s) =8 — 5
(s) = k " K s3
y(s) =33 5
2(s) = _gTs:*

Taking T, N as the axes with B set to 0, we will obtain a parabola:

Taking T, B as the axes with N set to 0, we will obtain a cubic:

Taking B, N as the axes with T set to 0, we will obtain a parabolic cusp:




