Problem 1. Let a: I — R3 and 3 : I — R3 be two curves. Let (a,3) : I — R be the function
defined by (o, B)(t) = (a(t), B(t)), where {-,-) denotes the standard inner product on R3. Prove that

(a, B (1) = (@ (2), B(1)) + (a(t), B'(1)).

Solution. By the definition of the standard inner product, we have

3
(a, BY () = % > ait)i(h) (1)
s
= ; E(I;(f.)b’;(t) (2)
3
=Y al(t)Bi + ailt)Bl(1) (3)
i=1
3 3
=) ai®)Bi+ > ai(t)Bi(t) (4)
i=1 i=1
= ((t), B(t)) + (a(t),5'(t)) (5)

Where (1) follows from the definition of the inner product, (2) from the linearity of the derivative,
(3) from the product rule, (4) from the linearity of finite sums, and (5) from the definition of the
inner product. O




Problem 2. Show that the cylinder {(x,y,z) : * + y* = 1} is a surface by covering it with two
coordinate charts.

Solution. Let U C R? with U = (=2,0) x (—oc,o0) U (0,2) x (—00,00). We define two charts
01:U = R3, ¢ : U = R? as follows:

by = (V1-=(u—1)2%u-1v), wue(0,2)
UV @ DR u+ 1) we(=20) T T momm-—emo
o = (

u—1,y/1-(u—1)%v) we(0,2)
(u+1,—y\/1=(u+1)%v) ue(-20)

Now we show that these are charts.

For injectivity, suppose ¢1(u,v) = &1(x.y). Then there are two possibilities: (u,v), (z,y) are both
in (0,2) x (—o0,00) or both in (—2,0) x (00, —00), or they are in different intervals.

However, note that the latter case is not possible, as that would imply that /1 — (u—1)? =
—v/1=(x +1)2, which is only possible when /1 —(u—1)2 = —/1—(z+1)? = 0. Then it
would have to be that « = 2 and # = —2, but then (u,v) and (x,y) are not in our domain U. So,
we can disregard this case.

So, we know that if ¢;(u,v) = ¢(z,y), then (u,v) and (z,y) are in the same interval, so it must
bethat u—-1=x~1oru+1=2x+1, and v = y. It is easy to see that in both cases, we
have that (u,v) = (x,y). Hence ¢, is injective, and by similar reasoning, it follows that ¢, is
injective (the only difference is that the coordinates are rearranged, but there is no difference in
the computations).

Now we show that they are differentiable. Note that u—1,u+ 1, v are linear and thus differentiable

everywhere. As for /1 — (u—1)? and /1 — (u + 1)2, note that they are defined on U, and that

they are the composition of functions v/ and 1 — (t —1)2,¢ — (¢ + 1), which are both differentiable
on the intervals (0,2) and (—2,0). Hence the composition is also differentiable on those intervals.
Since each of the component functions of ¢; and ¢, are differentiable, they are differentiable.

Now, we compute D¢, and Doo:

i u—1 (
. 1
(-7 O (1 0
1 o ue(0,2) Vi 0| we©2)
0 1 | \ 0 1
D¢y = < \ . Dy = ¢
(e O (1o
1 0 u € (-2,0) m 0 u € (=2,0)
[\ o 1 [\ o0 1

Note that-in-all these matrices, the columns are linearly independent, as the first column can never
be a scalar multiple of the s'écom]-culmlln. Then, since D¢, and D¢, are linear maps, this shows

that they are injective.

Finally, we show that these charts cover all of the cylinder. First, note that Im ¢, Im ¢ C
{(x,y,z) : 2> + y*> = 1}. Next, observe that ¢; almost fully covers the cylinder, as it covers two
halves of it, but not the seams of the halves. However, those seam points are covered by ¢». So, for
every point on the cylinder, there exists a chart mapping onto it. Thus the cylinder is a surface. []




Problem 3. Let o : I — R® be a curve. Prove that |a(t)| is constant if and only if a(t) is
orthogonal to o/ (t) for allt € I.

Solution. Suppose |a(t)| is constant, i.e., |a(t)| = ¢ for all ¢ € I and some ¢. Equivalently, we
have (a(t),a(t)) = ¢*. We have by Problem 1 that (a,8)'(t) = (a(t),B(t)) + (a(t), F'(t)).
Differentiating both sides of our original expression, we obtain

(o, a)'(t) = (a(t), a(t)) + (a(t),a(t)’) =0

As the derivative of a constant vanishes. But the inner product on R is symmetric, so we swamp
combine terms to yield

2a(t),a(t)) =0 = (a(t),a(t)) =0
And so a(t) is orthogonal to o/(t) for all t € I.

Suppose «a(t) is orthogonal to o/(t) for all t € I, so that (a(t),a/(t)) = 0 for all £. We then have
that
2(a(t),a’(t)) =0
And so by symmetry
{a(t), /(1)) + (d/(t), a(t)) = (a(t),a(t))’ =0
This implies
(la@®)?) =0
For all t, and so |a(t)|? is constant for all ¢, since the derivative of a differentiable function vanishes
everywhere if and only if it is constant. This implies that |a(t)| is constant as well, as desired.

O




Problem 4. Let N = (0,0, 1) € S? be the north pole. Define stereographic projection m : S*\{N} —
R? as follows. Given p = (x,y,z), define w(p) as the intersection of the line between N and p with
the xy-plane.' Derive a formula for the inverse of w, and check that it is a chart. ?

Solution. Suppose we have (u,v,0) in the zy-plane. We want to find the point p = (z,y, z) such
that 7(p) = (u,v,0).

¢ - | Nice picture!

We do this by noting that there are two restrictions for p: it needs to lie on Sz, and it needs to
lie on the line between N and (u,v,0), which can be parameterized as (0,0,1) + ¢(u,v, —1) for
t € R. The first condition means that x? + y* + 22 = 1, and the second condition means that
(z,9,2) = (0,0,1) + t(u,v,—1) for some t. Hence, we have that z = tu,y = tv,2 = 1 — ¢, and
plugging this into our first equation gives us that

(tu)® + (tv)’ + (1 -t)? =1

tPu? + 0P + 1 -2t + 6% =1

ttu? +t® +t—2)=0

Now we can have t = 0 or (tu® + tv? +t — 2) = 0; note that ¢ = 0 just gives us the point (0,0, 1),
which is not the point we are looking for, so we consider the other option:
tu> +tv* +t—-2=0
tu?+v>+1)=2
b= 2
Tut4v241

2u v u2+v2—1)

Hence p = . )
P (u2+v2+l wWHvi+1 u+02 41

2u 2v w?+v?—1

Thus we can define an inverse map 7' : R? — S defined as 77! (u,v) = (b s srior sy )-

We show this is a chart.

"Draw a picture.
2This problem gives yet another way to cover the sphere by coordinate charts.




For injectivity, suppose that 7' (u,v) = 7~ !(x,y). Then we have

w+vi-1 2?+y% -1
u+v2+1 2249241
W+ -1+ +1) =@ +2+1)(z2+y°-1)
Wt —a? -y = —u? =0+ 2?4y
2u® +20% =222 + 2y2

u? +v? = 2%+ y2

We also have that

2u _ 2x
u24+v2+1 224241
o) 2u2 =— 2J;2 from what we showed above
*+y*+1 x4y +1
2u =2z
u=ux

Similarly, we can obtain that v = y, and hence 7~! is injective.

Now we compute Dr~!:

—2u? 420242 —4uv
(u2+v2+1) (w25 v2+1)2

-1 —4uv 2u?—20242
Dr=" = (w2 +v2+1)7  (uZ+0v2+1)2
4u 4v

(u2+v2+1)2  (u?+v2+1)2

Note that since (u2 +v2 + 1)2 > 0, the derivative is always defined. Additionally, each component

function of 7! is the product of functions that are differentiable on k2, and so each component is

differentiable. Thus, so is 71.

Now, we note that the two columns of D7~! are linearly independent: suppose, for sake of con-
tradiction, that the left column is a scalar multiple of the right column. Then, in particular, there

. . du _ 4v . . _ v . .
exists a such that a Wi = @) It is evident that a = 7, but note that if we multiply
—4

uv , v ; 2u?—2v242 . e C . "
Ty by £, we do not get T an 2 Hence the columns cannot be scalar multiples of each

other, and Dz~ is injective.

We can conclude that 7! is a chart.




Problem 5. Show that the tangent plane of the graph of a function f : R*> = R at p = (u,v, f(u,v))
is the graph of the differential D f,, ..

Solution. Consider the canonical coordinate chart ¢ : R? — R3 given by (u,v) = (u,v, f(u,v)).

1 0 1
Then, (D)) = 0 1 , so the tangent space is spanned by 0 and
fu(u,v) folu,v) fulu,v)
0 a
1 , which is b for real a,b. Note that the z-coordinate is precisely
fo(u,v) afu(u,v) + bfy(u,v)
a

the differential Df(, ) = afu(u,v) + bf,(u,v), so b , is the graph of this

afu(u,v) + bfy(u,v)

differential.




Problem 6. Derive a formula for a differentiable map from a rectangle in R? whose image is a
MGabius strip in R®. Do the same for an annulus with two twists. Include an image of your surfaces,
plotted using ParametricPlot3D in Mathematica, or similar.

Solution. We derive our formula by considering the M&bius strip as almost a surface of revolu-
tion—almost in that the curve in the zz-plane rotates as the surface is rotated about the z-axis.
This is to say we will parameterize the rotation in the vertical plane by the same parameter used
for the rotation in the horizontal plane. We begin by parameterizing a line through the origin
c = (0,t,0) for t € (—1/2,1/2). To make this line complete exactly half of a period of rotation
during the full revolution about the z-axis (as defines the Mdobius strip), we apply the rotation
matrices

1 0 0 coss —sins 0
R,= |0 cosj —sing Rj = | sins coss 0
0 sing cosj 0 0 1

Where R, provides the rotation in the vertical plane and Rj, in the horizontal plane, presuming
s € (0,2m). That is to say that our surface S(s,t) = Ry, (s)(Ry(s)c(t) +(0,1,0)), where the (0,1,0)
provides an offset from the z-axis so as to avoid overlap. Applying these transformations yields the
formula
tsinssin § —sins
S(s,t) = | —tcosssin 3 +coss

t(,o.s.z

To convert this formula into that of a double-twisted annulus, we need only double the speed at
which the curve rotates in the vertical plane, which is to say change the s/2 terms in R, to s. This
yields the analogous formula

tsin® s — sin s
S(s,t) = | —tcosssins + coss
tcoss
Where s and ¢ have the same bounds as before. A Mathematica-generated plot of each surface is

included below.

O
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Figure 2: A double-twisted annulus plotted with ParametricPlot3D.




