
Homework 4

Math 2420

Due Friday, Feb 23 by 5pm

Your Name: Bena

Collaborator names:

Topics covered: fibrations, fiber bundles, πn(Sn)

Instructions:

• This assignment must be submitted on Gradescope by the due date.

• If you collaborate with other students (encouraged!), please list your collaborators above.

• If you are stuck, please ask for help (from me or a classmate). Use Campuswire!

• You may freely use any fact proved in class. Usually you should be able to solve the problems
without outside knowledge. You should provide proof for facts that you use that were not
proved in class.

• Please restrict your solution to each problem to a single page. Usually solutions can be even
shorter than that. If your solution is very long, you should think more about how to express
it concisely.
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Problem 1. Use the connecting homomorphism in the long exact sequence of the Hopf fibration
p : S3 → S2 to argue that π2(S2) is generated by the identity map.

Solution. We want to prove that the identity of CP 1 is mapped to the identity of S1 under the
connecting map δ : π2(S2)→ π1(S1) for the Hopf fibration

S1 → S3 p−→ S2.

First note that we can translate between maps CP 1 → CP 1 and maps (D2, S1) → (CP 1, [0 : 1])
by precomposing with the quotient map q : D2 → CP 1 defined by q(z) = [z :

√
1− |z|]. Then

instead of computing the image of idS2 under the connecting homomorphism, it suffices to show
that the image of [q] under the connecting homomorphism is idS1 . Recall that δ is a composition
of isomorphisms

π2(S2)
(p∗)−1

−−−−→ π2(S3, S1)
∂−→ π1(S1)

To compute (p∗)
−1([q]) we want to find a map f : (D2, S1)→ (S3, S1) so that p∗([f ]) = [q]. Observe

that f : D2 → S3 defined by f(z) = (z,
√

1− |z|) satisfies p ◦ f = q. Note that on ∂D2, we have
f(eiθ) = (eiθ, 0), so ∂([f ]) = [idS1 ], as desired.
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Problem 2. Let p : E → B be a Serre fibration and assume B is connected. Fix b, b′ ∈ B with
fibers F, F ′, respectively. Define a homomorphism πk(F )→ πk(F

′), and show that it’s a bijection.
1

Solution. Fix basepoints e ∈ F . Fix a path γ : I → B from b to b′, and let γ̃ : I → E be a lift with
γ̃(0) = e. Set e′ = γ̃(1) ∈ F ′.

Defining a homomorphism. First we define a map Φ : πk(F, e) → πk(F
′, e′). Given f :

(Dk, ∂Dk)→ (F, e0), consider maps

h : Dk × I → I
γ−→ B

where the first map is projection, and define

H0 : Dk × 0 ∪ ∂Dk × I → E

to be the map that restricts to f on Dk× 0 and restricts to ∂Dk× I as the composition ∂Dk× I →
I

γ̃−→ E. Applying the HLP (note that the pair (Dk × I,Dk × 0 ∪ ∂Dk × I) is homeomorphic to
the pair (Dk × I,Dk × 0)), we obtain f ′ : (Dk, ∂Dk)→ (F ′, e′) as the time one map of a homotopy
lifting Hf : Dk × I → E, i.e. f ′ = Hf |Dk×1. We define Φ([f ]) = [f ′].

Well defined: Suppose [f0] = [f1], and let ft : Dk → F be a based homotopy between f0, f1. Now
set up a homotopy lifting problem with

(Dk × I)× I → I
γ−→ B

defined in the obvious way, and

(Dk × I × 0) ∪ (Dk × 0× I) ∪ (Dk × 1× I) ∪ (∂Dk × I × I)→ E

defined on Dk × I × 0 to be the homotopy ft; for i = 0, 1, it’s defined on Dk × {i} × I to be the
homotopy lifting Hfi defined above; on ∂Dk × I × I the map factors through γ̃. By the HLP, we
obtain a lifting (Dk × I) × I → E, which by construction restricts to Dk × I × 1 as a homotopy
between f ′ and g′. This shows Φ is well defined.

Homomorphism: We want to show (f ∗ g)′ is homotopic to (f ′) ∗ (g′). Recall from above that we
have defined (f∗g)′ = Hf∗g |Dk×1 and f ′ = Hf |Dk×1 and g′ = Hg |Dk×1. The key observation is that
(f ′) ∗ (g′) is the time-1 map of the concatenation Hf ∗Hg of the homotopies Hf , Hg (concatenation
happening in one of the Dk directions) and that Hf ∗ Hg is a solution to the homotopy lifting
problem for f ∗ g. Since solutions to HLP are unique up to homotopy, this implies that Hf∗g and
Hf ∗Hg are homotopic (it’s slightly better than this – there’s is a “fiber preserving” homotopy).
Any such homotopy restricts to a homotopy between (f ∗ g)′ and (f ′) ∗ (g′).

Bijection: Using the reverse γ, we define a homomorphism Ψ : πk(F
′, e′)→ πk(F, e). We need to

check these are inverses. We show this using the following claim.

Claim: If γ0, γ1 are homotopic rel endpoints b, b′, then for any f , the time-1 maps of the homotopies
Hγ0,f andHγ1,f are homotopic and consequently the time-1 maps of these homotopies are homotopic
(rel endpoints).

1Hint/suggestion: revisit the similar argument from class. Be thorough and give details for parts of the argument
that were skimmed over in lecture.
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First we use the claim to finish the problem. Observe that for [f ] ∈ πk(F, e), the map (f ′)′ is
the time-1 map of the concatenation of homotopies Hf ∗Hf ′ (concatenation in the I direction of
Dk × I), and this is a solution to the HLP for f over γ ∗ γ̄. By the claim, this is homotopic to
a solution for the HLP for f over the constant map. But a solution to the latter is the constant
homotopy at f . This shows that (f ′)′ is homotopic to f .

To prove the claim, we once again set up a homotopy lifting problem. Fix a homotopy Γ : I×I → B
between γ0 and γ1. And as above, fix lifts γ̃i that are paths e to e′. It is easy to argue as before
that Γ can be lifted to a homotopy rel endpoints Γ̃ between γ̃0 and γ̃1. (For this it may help to
view Γ as a null homotopy of γ0 ∗ γ̄1.)

Now consider maps

Dk × I × I → I × I Γ−→ B

and
(Dk × 0× I) ∪ (Dk × 1× I) ∪ (∂Dk × I × I)→ E

defined by Hγi,f on Dk × {i} × I and defined on ∂Dk × I × I by the composition ∂Dk × I × I →

I × I Γ̃−→ E. Now the HLP gives a homotopy Dk × I × I → E between Hγ0,f and Hγ1,f , which
restricts to a homotopy (rel endpoints even) between the time-1 maps.
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Problem 3. Show every map f : Sn → Sn is homotopic to a multiple of the identity map by the
following steps.

(a) Use local PL lemma to reduce to the case that there exists q ∈ Sn with f−1(q) = {p1, . . . , pk}
and f is an invertible linear map near each pi.

(b) For f as in (a), consider the composition g ◦ f where g : Sn → Sn collapses the complement
of a small ball about q to the basepoint. Use this to reduce (a) further to the case k = 1. 2

(c) Finish the argument by showing that an invertible n × n matrix can be joined by a path of
such matrices to either the identity matrix or a reflection.

Solution. We work with maps f : (Sn,∞)→ (Sn,∞).

(a) By local PL, given f , there exists a polyhedron L ⊂ Rn ⊂ Sn (the domain) and an open set
U ⊂ Rn (the codomain) such that f is PL on L and f−1(U) ⊂ L.

Next we choose q ∈ U . Write L = L1∪L2, where L1 is a union of polyhedra such that f is injective
on each, and f is not injective on the L2. Choose q disjoint from the image f(L2) (possible since
f(L2) is a union of k-planes with k < n). Since an injective linear map Rn → Rn is an isomorphism,
the pre-image f−1(q) is a finite set {p1, . . . , pk}.

(b) The composition of g ◦ f is a map that is constant away from small balls around p1, . . . , pk.
From this we quickly deduce that g ◦ f is the concatenation of k local maps. Since g is homotopic
to the identity, g ◦ f ∼ f , so we see that [f ] = [f1] ∗ · · · ∗ [fk], where fi is the map defined in a
neighborhood of pi, hence is a linear map.

(c) First we recall that GLn(R) has two path components determined by the determinant. One
way to see this is to use Gram–Schmidt to connect any matrix by a path to an orthogonal matrix;
then use that SO(n) is connected (because of the fibration SO(n)→ Sn−1). (Since a reflection has
determinant −1, composing with a fixed reflection gives an element in SO(n), and we can take a
path to the identity. This construction gives a path from any det = −1 matrix to a fixed reflection.)

Given this, we see that each [fi] in (b) is either homotopic to I (identity) or R (reflection). To finish
the proof, it remains to show that I ∗R is homotopic to a constant (so these are inverses in πn(Sn)).
This is easy to see using Ik coordinates. The reflection in the first coordinate concatenated with
the identity is the map

t 7→

{
2t t ≤ 1/2

2− 2t t ≥ 1/2

and this map is easily seen to be homotopic to a constant. Using this we can homotope I ∗ R to
the constant.

2Hint: Express f as a concatenation.
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Problem 4. Give a decomposition of the trefoil knot complement S3 \K into a union of copies of
a punctured torus, index by points in the circle.3 4 5

Solution. No one solved this. I’m sad by the effort. I know it’s not easy, but you can and should
ask questions if you’re stuck and discuss with me whether your’e on the right track.

There will be a related problem on a future assignment.

3Remark: in fact there is a fiber bundle S3 \ K → S1, where the fibers are punctured tori. This fiber bundle
structure gives a decomposition of S3 \K into a union of fibers. I’m not asking you to prove there’s a fiber bundle,
only to explain the decomposition into a union of fibers.

4Hint: it’s helpful to recall that S3 is a union of solid tori S1 ×D2 and D2 × S1 (an “inside” and an “outside”
solid torus), glued along a torus S1×S1. Put the trefoil knot on the surface of the torus. The fibers can be described
in terms of their intersections with the solid tori. You can do this so that each fiber intersects the outside solid torus
in two disjoint (meridinal) disks. This should help to pin down how to choose the intersection with the inside solid
torus.

5Hint: it’s likely that some combination of pictures and explanation are most effective for expressing a solution.
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