
Homework 3

Math 2420

Due Friday, Feb 16 by 5pm

Your Name: Bena

Collaborator names:

Topics covered: relative homotopy groups, LES of a pair, fibrations

Instructions:

• This assignment must be submitted on Gradescope by the due date.

• If you collaborate with other students (encouraged!), please list your collaborators above.

• If you are stuck, please ask for help (from me or a classmate). Use Campuswire!

• You may freely use any fact proved in class. Usually you should be able to solve the problems
without outside knowledge. You should provide proof for facts that you use that were not
proved in class.

• Please restrict your solution to each problem to a single page. Usually solutions can be even
shorter than that. If your solution is very long, you should think more about how to express
it concisely.
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Problem 1. Show Rn is not a union of finitely many k-dimensional planes when k < n. 1 2 3

Proof 1: induction on number of planes. We show that Rn is not a union of proper subspaces,
inducting on the number of subspaces. The case of 1 subspace is true because Rn doesn’t have
a basis of size < n. Now suppose W is a union of ` proper subspaces and suppose V is another
proper subspace. If either V ⊂ W or W ⊂ V , then W ∪ V 6= Rn by the induction hypothesis and
the base case. Assume V 6⊂ W and W 6⊂ V , choose w ∈ W \ V and v ∈ V \W , and consider the
line L spanned by {v, w}. Since L is not contained in either V or W , it intersects each in a finite
set. Hence there is x ∈ L so that x /∈ W ∪ V , which proves Rn 6= W ∪ V . This completes the
induction.

Proof 2: induction on ambient dimension. First observe that it suffices to assume k = n− 1, since
given a collection of k-planes, we can extend to a collection of n− 1 planes and this only makes the
union bigger. (There are many ways to do this, but this is irrelevant.)

Now we prove that Rn is not a union of n−1-planes by induction on n. For the base case n = 1, the
statement is that R1 is not a union of finitely many points, which is true because R1 is uncountable.
For the induction step, given a collection of (n− 1)-planes in Rn, consider the collection of normal
vectors to these (hyper)-planes. This is a finite subset of Sn−1, so there is some direction v ∈ Sn−1
so that v⊥ is not parallel to any of the given (n − 1)-planes. Then each of these planes intersects
v⊥ ∼= Rn−1 in an (n− 2)-plane. By the induction hypothesis, Rn−1 is not a union of finitely many
(n−2)-planes, which shows that the original collection of (n−1)-planes is a proper subset of Rn.

1Hint: it’s possible to argue by induction on the number of planes.
2Remark: this fact was used in the proof that πk(Sn) = 0 for k < n.
3Remark: this result is false for vector spaces over finite fields.
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Problem 2. Say/compute as much as you can about the homotopy groups of CPn. 4

Solution. There’s a fibration S1 → S2n+1 → CPn. Since πk(S2n+1) = 0 for k ≤ 2n, we conclude
that πk(CPn) ∼= πk−1(S

1) in this range. Furthermore, since πk(S1) = 0 for k ≥ 2, we conclude that
πk(CPn) ∼= πk(S2n−1) for k ≥ 2. Combining all of this with our current knowledge of πk(Sn), we
conclude

πk(CPn) =



0 k = 1

Z k = 2

0 3 ≤ k ≤ 2n

Z k = 2n+ 1

πk(S2n−1) k ≥ 2n+ 2

4Hint: Define a fibration over CPn that generalizes the Hopf fibration.

3



Problem 3. Let (B, b0) be any based space. Let PB = (B, b0)
(I,0) denote the path space. Show

that the map p : PB → B given by evaluation p(f) = f(1) is a fibration. Do this by solving the
lifting problem explicitly.5

Solution. Consider a lifting problem

Dn × 0 PB

Dn × I B

//
H0

��

p

� _

��
//h

::

H

For each x ∈ Dk, we are given a path γx : t 7→ h(x, t) and an element H0(x), which is a path from
b0 to h(x, 0). We want to define H(x, t) to be a path b0 to h(x, t) for each t (this is what it means
for H to be a lift). The obvious thing to do is to concatenate H0(x) with the path γx restricted (or
truncated) to the interval [0, t]. Combining formulas for concatenation and truncation, we obtain
the formula

H(x, t)(s) =

{
H0(x)(2s) s ≤ 1/2

h(x, t(2s− 1)) s ≥ 1/2.

For continuity of H : Dk × I → PB, we use the adjunction and show that the associated map
H : I ×Dk × I → B is continuous. This is true because the restriction to s < 1/2 and s > 1/2 is
continuous (by continuity of H0 and h) and true at s = 1/2 because the maps agree here and hence
glue continuously.

5Hint: concatenate.

4



Problem 4. Fix an embedding of A = S1 ∨ S1 in X = S2. Compute π2(X,A), and describe a
generating set for this group.

Solution. From the long exact sequence, we obtain

1→ π2(X)→ π2(X,A) 7→ π1(A)→ 1.

We know π2(X) = Z and π1(A) ∼= F2. Any extension like this splits because π1(A) is free, so
π2(X,A) is a semi-direct product π2(X,A) ∼= Z o F2. In fact, π2(X,A) ∼= Z× F2. To see this, use
an argument similar to the one that shows π2(X) is abelian to show that the image of π2(X) in
π2(X,A) is central.

The generator of π2(S
2) is the identity map. The loops in A = S1 ∨ S1 bound disks in S2 and

choosing a disk for each loop gives generators for F2 < π2(X,A).
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Problem 5. A section of p : E → B is a map s : B → E such that p ◦ s = 1B. We say p has local
sections if for each b ∈ B, there is section of p defined on an open neighborhood of b.

Let G be a topological group, let H < G be a subgroup, and consider the quotient map p : G→ G/H.
Prove that if p has local sections, then p is locally trivial.6 7

Solution. Fix gH ∈ G/H and a section s : U → G defined on a neighborhood of gH. Note that
p is defined as p(g) = gH, and by definition of s, gH = p(s(gH)) = s(gH)H for gH ∈ G/H. To
show p is locally trivial, we define φ : p−1(U)→ U ×H by

φ(g) =
(
p(g), g−1s(p(g))

)
and ψ : U ×H → p−1(U) by

ψ(u, h) = s(u)h−1.

Then
φ(ψ(u, h)) = φ(s(u)h−1) = (u, hs(u)−1s(u)) = (u, h)

and
ψ(φ(g)) = ψ(p(g), g−1s(p(g))) = s(p(g))s(p(g))−1g = g.

These maps are continuous since they’re defined using the group multiplication and inversion. Since
they’re inverses, this shows that p is locally trivial.

6Hint: the key thing to observe is that the action of H on G by right multiplication preserves each fiber of p.
7Remark: on HW2 you showed that SO(n+ 1) → Sn has local sections.
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