Problem 1. Assume X is locally compact, and let Y, T be spaces. Prove that if H : T — YX is
continuous, then the map h: T x X —'Y defined by h(t,xz) = H(t)(z) is also continuous.

Solution. We proved in class that the evaluation map YX x X 5 Y is continuous. Then h is the

- . H xid . : :
composition of continuous maps T’ x X ——— YX x X 5 Y. Thus h is continuous. ]



Problem 2. Finish the proof of the H-group theorem. Show that the multiplication p defined by
(1] = [p1] - [p2] € [Y x Y, Y] is associative up to homotopy and has inverses up to homotopy.

Solution. Let (Y,yo) be a based space. We assume that the functor (X,zg) — [X,Y] is group
valued. So, we have that [Y,Y] has a group structure.

identity

We checked in class that [uo (idy x ¢)] = [idy]| € [Y,Y], where ¢ : Y — Y is the constant map
c(y) = yo Yy € Y. Similarly we have [(idy x ¢) o u| = [idy] € [Y,Y].

associativity

Let 7y, 72,73 : Y XY XY — Y be the projection maps of the 1st, 2nd, 3rd coordinates respectively.
Since [Y x Y x Y, Y] has a group structure, its group operation is bijective, hence ([m]-[m2]) - [m3] =
[m1] - ([m2] - [m3])-

In [Y xY xY,Y], we have that [puo (u x idy)] = (u x idy)*([p]) = (u x idy)*([p1] - [p2]) =
(1 xidy)*([p1]) - (u x idy )*([p2]) = [p1 o (1 x idy)] - [p2 o (u x idy)] = ([m] - [m2]) - 3]

Likewise, [ o (idy x p)] = [p1 o (idy x p)] - [p2 o (idy x p)] = [m1] - ([m2] - [n3])

And so we have [po (pu x idy)] = [ o (idy x p)].

inverses

Since [Y,Y] has a group structure, for the element [idy] € [Y,Y] there is a unique inverse, say
[7] € [Y,Y], such that [idy] - [r] = [7] - [idy] = [c], where - denotes the group operation in [Y,Y].
Then, [po (idy x 7)] = [idy]-[7] = [c] € [Y,Y] (by the "key formula” we proved in class, [idy]- 7] =
(idy x 7)*([p]) = [po (idy x 7)]) and likewise [p o (7 x idy)| = [7] - [idy] = [c] € [V, Y].



Exercise 2.3. Ezplain why the correct version of the homeomorphism YT*X = (YT)X for based spaces
involves the smash product TAX rather than the “ordinary” product (T, to)x (X, z¢) = (T x X, (to, z0)).

Solution. Let xq,yo, and ty denote the base points of X,Y, and T respectively. First, notice that YX
is a based space with basepoint the constant map ¢: Y — X given by y — x( for all y.

Now, notice that the statement Y7*X = (YT)X resembles the tensor hom-adjunction, namely it states
that

Hom(7T x X,Y) = Hom(7T,Hom(X,Y)).

However, if we use the regular product 7" x X instead of 7' A X then the natural maps are not well-
defined. Specifically, the natural map

Hom(T x X,Y) — Hom(T,Hom(X,Y)) definedby f:T xX =Y — f(t)(z) = f(t,z)

However, notice that f (to) is not, in general, the constant map, but f is a based map so it must send
the base point ty of T to the basepoint ¢ : X — Y of YX. Therefore, this mapping is not well-defined.
To remedy this, we need to only consider maps f € Hom(7T x X,Y') such that f(ty,z) = yo for all
z. Additionally, note that f (t) is not, in general, a based map so we need to further only consider
maps f € Hom(7T x X,Y) satisfying f(t,z¢) = yo for all t. Therefore, we're only considering maps
f € Hom(T x X,Y) such that f is constant on {to} x X UT x {zy} C T x X, i.e., it’s constant on
T v X, sending each element of 7'V X to yp.

Thus, we've described a natural bijection between based maps f € Hom(7T'x X, Y) satisfying f(T'VX) =
yo and based maps T — Y X. By the universal property of quotient spaces, we have a natural bijection
between based maps f € Hom(T x X/T V X,Y) and based maps T — Y ~. Notice that by definition
TxX/TvX=TAX. This is why we must consider the smash product.

Moreover, I don’t think the problem asks for this so I won’t do it but to rigorously show this we

can define a homeomorphism Y7"X = (YT by f — f(t)(z) = f(t,z) with inverse mapping
g+ g(t,z) = g(t)(z), as described above, and check that both mappings are continuous.



Problem 4. Prove that there is no multiplication on R? that makes it into a field. * 2

Solution. We first claim that if e € R? is the multiplicative identity, then (ce) - v = cv for every
v € R? and scalar ¢ € R. By field properties, this already holds for ¢ € Q: if ¢ = p/q, then
(pe)-v=(e+e+---+e)-v=pv,and ((1/q)e-v+(1/q)e-v+...(1/q)e-v) (written ¢ times) is equal
to v, so (1/q)e-v = (1/q)v. By continuity of the multiplication (and since Q is dense in R), we have
(ce)-v = cv for all ¢ € R. Now, pick u ¢ span{e}, and define f: S — R3 by f(s) = (us) x s. Since
us is not parallel to s by construction, f(s) is perpendicular to s, and hence f is continuous since
the cross product is continuous and the multiplication is continuous. Thus, we have a nowhere
vanishing vector field on S? (this is nowhere vanishing since u # 0), which contradicts the hairy
ball theorem. O

"Hint: proceed by contradiction and construct a nowhere vanishing vector field on S?.
2Further hint: try fixing u € R* and defining vector field F(z) = uzx. This won’t quite work — how can you fix it?



Problem 5. Recall the special orthogonal group SO(n) is the group of n x n matrices that satisfy
A'A =1 and det(A) = 1.3 Let p: SO(n + 1) — S™ denote the map A — Ae,yy, where €,41 =
(0,...,0,1). Construct a section of p over S™ \ {—en+1}, i.e. construct a continuous map

s: 8"\ {—en41} = SO(n+1)

such that pos =id. 4 ®

Solution. First note that S™ is an n-dimensional manifold embedded in R"*!. Further, let ¢ denote
stereographic projection of S™ through —ey+1 to R™. Then (S™ \ {—€n+1,¢) is a smooth chart on
S™. For each u € 8™\ {—€,4+1} we can use this chart to find a basis of the tangent space 7,52
since it is isomorphic to 7, )R". We get that {%Lp(u)};‘:l is a basis for T,,)R™ and given this
basis, we can apply the Gram-Schmidt process to get an orthonormal basis, {v/}", in R". For
all 1 < i < n, let v; = (v,,0). Note that each v; is orthogonal to u by construction and so
{v1,-++ ,vp,u} is an orthonormal basis of R™*t!. Further, we can order these vectors so that the
vector space they span is positively oriented and place these vectors as the column vectors, in this
order into an (n + 1) x (n + 1) matrix A, such that u is the last column. Since the columns of
A, form an orthonormal basis for R"*1, Af{ A, = I and by construction, det A, = 1. Therefore,
A, € SO(n + 1). Notice further that this process is a composition of continuous functions so
is itself a continuous function s : S" \ {—e,+1} — SO(n + 1). Further, for u € S™ \ {—ep+1},
po s(u) = p(Ay) = Auén+1 = u. So, pos =id.

O

3Note: the condition A’A = I means that the columns of A form an orthonormal basis for R".
‘Remark: the significance of this example will be explained later.
*Suggestion: do the case n = 2 first. Then generalize.



Problem 5. Recall the special orthogonal group SO(n) is the group of n x n matrices that satisfy
A'A = I and det(A) = 1.> Let p: SO(n+ 1) — S™ denote the map A — Ae,yy, where e, =
(0,...,0,1). Construct a section of p over S™\ {—en+1}, i.e. construct a continuous map

s: 8"\ {—ent1} = SO(n+1)

such that pos =id. 4 °

Solution. Rephrasing our goal, we want to continuously assign to each vector z € S™ a positively
oriented ortonormal basis with x as last vector. Let us first give the intuition behind the process
for n = 2.

For any point 2 € S?, there exists a geodesic in S? from e3 to z, and it is unique unless z = —es.
Such geodesic is trivial if x = e3, otherwise it is obtained by intersecting the sphere with the plane
through the origin containing x and ez and then taking the smallest arc on the resulting great
circle. Let us assume x # e3. Now, let us call H, the plane containing 0, z, e3 and let n, be the line
orthogonal to H,. If 6, is the smallest angle in H, between x and ez and centered at the origin,
then we rotate S? by #, around n,. The rotation maps the standard (orthonormal, positively
oriented) basis e = {e1,e2,e3} of R? to a new orthonormal and positively oriented basis ex. By
construction, the rotation maps e3 to z, and then z is the last vector of ex. Since the geodesics
vary continuously on S? \ {—e3} and rotations vary continuously with the angle, the assignment
T > ey is a continuous function. Let A, be the matrix whose columns are the vectors of ex. Hence,
we can define s(z) := A, if z # e3 and s(e3) = I3.

In general, if z € ™\ {—€,4+1} and = # e,4+1, we can consider the unique geodesic between e,
and xz. Again, such geodesic is obtained by taking the smallest arc in the intersection of S™ with the
plane H, through 0,z,e,4+1. Let 6, be the smallest angle between x and e, in H, and centered
at the origin. If we denote by H; the orthogonal of H,, then since R"*! = H, @ H}, we can
define a linear transformation L: R"t! — R"*! that rotates of 6, the vectors in H, and fixes the
vectors in H;-. Then, called A, the matrix representing L, we get that A, € SO(n + 1), since it is
congruent (via a base change matrix) to the matrix

(Roz .0 )
and moreover A,e,4+1 = L(ey4+1) = x. Therefore, we can define s(z) = A, if x # e,4+1 and

s(én+1) = In+1. The resulting map is continuous because essentially it rotates the vectors of the
standard basis {e1,...,€,4+1} by an angle that depends continuously on z. .

*Note: the condition A’A = I means that the columns of A form an orthonormal basis for R".
‘Remark: the significance of this example will be explained later.
®Suggestion: do the case n = 2 first. Then generalize.



