
Homework 1

Math 2420

Due Friday, Feb 2 by 5pm

Your Name: Bena

Collaborator names:

Topics covered: Homotopy groups, H-groups, mapping spaces

Instructions:

• This assignment must be submitted on Gradescope by the due date. Gradescope Entry Code:
GPB45Y.

• If you collaborate with other students (which is encouraged!), please list your collaborators
above.

• If you are stuck, please ask for help (from me or a classmate). Use Campuswire!

• You may freely use any fact proved in class. Usually you should be able to solve the problems
without outside knowledge. You should provide proof for facts that you use that were not
proved in class.

• Please restrict your solution to each problem to a single page. Usually solutions can be even
shorter than that. If your solution is very long, you should think more about how to express
it concisely.
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Problem 1. Version 1: Show that the set [X,Y ] of based homotopy classes of maps does not depend
on the basepoints if X,Y are path-connected. 1

Version 2: Assume given x0 ∈ X and y0, y1 ∈ Y . Show the two definitions of [X,Y ] are the same.

Proof of Version 2. For this argument we need (X,x0) to satisfy the HEP. In this case people call
(X,x0) is a “well-pointed space”. For example, this is true if X is a cell complex with x0 in the
0-skeleton.

Defining a map. First we define a map [(X,x0), (Y, y0)] → [(X,x0), (Y, y1)]. Fix a path γ :
I → Y from y0 to y1. For each f : (X,x0) → (Y, y0), consider the homotopy extension problem
h : X × {0} ∪ {x0} × I → Y where h = f on X × 0 and h = γ on x0 × I. By HEP, there exists
H : X× I → Y , which is a homotopy from f to a map f1 such that f1(x0) = y1. We want to define
[f ] 7→ [f1]. We need to check several things.

Well-defined. There are two choices we made in defining the map. We chose a representative f of
[f ] and we chose the homotopy extension H. We should check that the map on homotopy classes
is independent of these choices.

First suppose we chose a different solution H ′ to the homotopy extension problem. Any two
solutions are homotopic. A homotopy X×I×I → Y can be constructed by setting up a homotopy
extension problem where h = H on X × I × 0, h = H ′ on X × I × 0, h(x, 0, t) = f(x) on X × 0× I
and h(x0, t, s) = γ(t) on {x0} × I × I. This is equivalent to a homotopy extension problem for
(X × I × I, x0 × I × I), and the HEP gives then a homotopy between H and H ′ that restricts to a
homotopy between f1 and f ′1.

Suppose f, g : (X,x0) → (Y, y0) are homotopic (rel basepoints), i.e. there exists G : X × I →
Y homotopy. We will homotope G to a homotopy between f1, g1 (rel basepoints). Consider a
homotopy extension problem h : (X × I) × 0 ∪ {x0} × I × I, where h = G on X × I × 0 and
h(x0, t, s) = γ(s). Note that h(x0, t, 0) = G(x0, t) = x0 = γ(0) = h(x0, t, 0) for all t, so these two
maps glue continuously. Our assumption implies (X×I, x0×I) has HEP, so there is a homotopy H,
which induces a homotopy between f1, g1, or at least a homotopy between maps that are homotopy
equivalent (rel basepoint) to f1, g1 respectively (by the previous paragraph).

Inverse. We can construct an inverse in an obvious way using the reverse path γ̄. In this way we
obtain a map f 7→ f1 7→ f2. By construction there is a homotopy G : X × I → Y between f and
f2, but such that G restricts to γ ∗ γ̄ on x0. Nevertheless, again we can use HEP to homotope G
to a homotopy that’s constant on x0. To do this, we define h : X × I × 0 ∪ {x0} × I × I → Y
by h = G on X × I × 0 and by a homotopy between γ ∗ γ̄ to the constant x0 on {x0} × I × I.
Now apply HEP to get the desired homotopy, which shows that [f ] = [f2] in [(X,x0), (Y, y0)].
This shows that the composite [X, (Y, y0)] → [X, (Y, y1)] → [X, (Y, y0)] is the identity. Arguing
similarly shows the other composite is the identity two, so we conclude that [f ] 7→ [f1] is a bijection
[X, (Y, y0)] ∼= [X, (Y, y1)].

1Hint: use the homotopy extension property. Applying this probably requires some additional mild assumption
on X,Y (I will let you think about this).
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Problem 2. Let p : X̃ → X be the universal cover of a path connected space X. Show that p
induces an isomorphism on homotopy groups πk for k ≥ 2.

Solution.

Defining a map. Fix basepoints x̃0 ∈ X̃ and x0 ∈ X. Consider the map πk(X̃, x̃0) → πk(X,x0)
defined by [f ] 7→ [p ◦ f ]. It’s easy to see that this is well-defined since a homotopy ft induces a
homotopy p ◦ ft.

Surjectivity. A given [g] ∈ πk(X,x0) is represented by a map g : (Sk, s0) → (X,x0). By the
homotopy lifting criterion, since π1(S

k) = 0, there is a lift g̃ : (Sk, s0) → (X̃, x̃0) (there are many
lifts, depending on a basepoint and here we choose the (unique) lift that sends s0 to x̃0).

Injectivity. Suppose [f0], [f1] ∈ πk(X̃, x̃0) and [p ◦ f0] = [p ◦ f1]. This means there is a (based!)
homotopy h : Sk × I → X such that the restriction of h to Sk × {i} is p ◦ fi for i = 0, 1. By the
homotopy lifting property, there is a map h̃ : Sk × I → X̃ such that h̃ restricts to f0 on Sk × 0.
Since h is a based homotopy (i.e. s0× I maps to x0), the lift h̃ is also based (because the preimage
of x0 in X̃ is discrete). Therefore, h̃ is a homotopy between f0 and a map that lifts p◦f1. Since f1 is
such a lift and these two lifts agree at s0, they are equal. Hence [f0] = [f1], proving injectivity.
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Problem 3. For a based space X, ΩX denotes the loop space, and c ∈ ΩX denotes the constant
map. Show that the map ΩX → ΩX defined by γ 7→ γ ∗ c is homotopic to the identity, i.e. there is
a homotopy I × ΩX → ΩX. 2 3

Solution. Consider the map I × ΩX → ΩX defined by (s, γ) 7→ [t 7→ γ((1 − s)t + sδ(t))] with
δ(t) = 2t for t ≤ 1/2 and δ(t) = 1 for t ≥ 1/2. We want to show this map is continuous. Doing this
directly is tedious. But by a lemma from class, this map is equivalent to a map I × I × ΩX → X.
We’ll show this map is continuous. It factors

I × I × ΩX
φ×1−−→ I × ΩX

ε−→ X

where φ(s, t) = (1 − s)t + sδ(t) is the re-parameterization, and ε is the evaluation map. Both of
these maps are continuous (the latter from class), so the composition is continuous, as desired.

2Remark: last semester you (probably) showed that γ ' γ ∗ c for each fixed γ. This is weaker than what is asked
for here.

3Remark: arguing similarly for associativity and inverses shows that ΩX is an H-group.
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Problem 4. Let A,B1, B2 be based spaces.

(a) Prove that (B1 ×B2)
A ∼= BA

1 ×BA
2 (homeomorphism).

(b) Prove that [A,B1 ×B2] ∼= [A,B1]× [A,B2] (bijection of sets).

Solution. Let pi : B1×B2 → Bi be the projection. Define (B1×B2)
A → BA

1 ×BA
2 by f 7→ (p1◦f, p2◦

f). This map has inverse given by (f1, f2) 7→ f1×f2. These maps are continuous. We check this on
open sets generating the topology. The pre-image of N(K,U1×U2) is N(K,U1)×N(K,U2), which is
open. Similarly, the preimage of N(K1, U1)×N(K2, U2) is N(K1, U1×B2)∩N(K2, B1∩U2), which
is also open. By definition of the compact open topology, this implies both maps are continuous.

(b) follows from (a) together with a few general facts. Recall from class that [X,Y ] is the same as
components π0(Y

X) (suppressing basepoints). Then

[A,B1 ×B2] = π0((B1 ×B2)
A) ∼= π0(B

A
1 ×BA

2 ) ∼= π0(B
A
1 )× π0(BA

2 ) ∼= [A,B1]× [A,B2].

Here we use general facts π0(U ×V ) ∼= π0(U)×π0(V ) and that a homeomorphism Ω1
∼= Ω2 induces

a bijection on π0.
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Problem 5. Identify X = RP∞ with the projectivization of the space of polynomials with coef-
ficients in R, and use this to define a monoid structure m : X × X → X. Show that the map
X 3 f 7→ m(f, f) ∈ X is homotopic to a constant.4 Conclude that RP∞ is an H-group.

Solution. Write φ : X → X for the map f 7→ m(f, f). Consider the induced map φ∗ : π1(X) →
π1(X).

Main Claim. φ∗ is the trivial map.

First we use the claim to solve the problem. By the lifting criterion, φ lifts to a map φ̃ : X → S∞.

In other words, φ factors as X
φ̃−→ S∞

p−→ X, where p : S∞ → X is the covering map. Since S∞

is contractible, it follows that φ̃ is homotopic to a constant, which implies φ is homotopic to a
constant, as desired.

Proof of claim. The map φ(f) = m(f, f) can be expressed as a composition

RP∞ id×id−−−→ RP∞ × RP∞ m−→ RP∞.

Look at these maps on π1. The first map is the diagonal map Z/2Z→ Z/2Z×Z/2Z, i.e. 1 7→ (1, 1).
The second map Z/2Z×Z/2Z→ Z/2Z sends (1, 0) and (0, 1) to 1 (by straightforward computation).
Combining these computations, we see that φ∗(1) = 0, as desired.

4Hint: use the fundamental group, covering spaces.
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