
1. Introduction and 
fundamental concepts  

1.1 What is a graph?  

Graphs express relationships between objects.  
Examples:  

Formal definition: a graph is a pair , where  is 
a set and  

Example:  and . Often easier to draw 
a picture.  

(V, E ) V
E ⊂ {two-element subsets of V}

V = {1,2,3,4} E = { {1,2}, {1,4}, {3,4} }

Family tree methane Petersen graph 
Subsets of {1,2,3,4,5} 

connected by disjointness



Remarks.  
• Our definition excludes multiple edges and self loops (different from 

West!) 

• Usually V is finite for us.  
• When drawing graphs, not every place where lines cross is a vertex. 

• Variations on the definition (not our focus, but will appear) 
- directed graphs 
- weighted graphs 

1.2 Vertex degrees 

Definition. We say  and  are incident if v ∈ e, i.e. v is an 
endpoint of e. The degree of v, denoted deg( ), is the number of edges 
incident to v.  

v ∈ V e ∈ E
v



Example:  

Exercise. Construct a graph with 7 vertices, each of degree 2; degree 3; 
degree 4.  

Is there a graph with 7 vertices, each of degree 3? Remark a graph where 
every vertex has degree d is called d-regular.  

Lemma (degree sum formula). For , 
  

. 

Corollary. In a graph, the number of vertices with odd degree is even. In 
particular, there is no 7-vertex, 3-regular graph.  

Proof of Lemma. Each edge has two vertices, so counting each verticex 
degree counts each edge twice. More precisely,  

   

☐  

G = (V, E )

∑
v∈V

deg(v) = 2 |E |

∑
v∈V

deg(v) = ∑
v∈V

∑
v∈e

1 = ∑
e∈E

∑
v∈e

1 = ∑
e∈E

2 = 2 |E | .



Example. The complete graph  has vertices  and all possible 
edges.  

In , each vertex has degree , so  

Also , the number of 2-element subsets of . Then the 

degree sum formula, gives the (perhaps familiar) identity  

. 

1.3 Isomorphic graphs 

Definition. Graphs  and  are isomorphic if there is 
a bijection  such that  if and only if .  

Example 1: The following graphs are isomorphic 

An explicit isomorphism is given by .  

Kn {1,…, n}

Kn n − 1 ∑ deg(v) = n(n − 1)

|E | = (n
2) {1,…, n}

(n
2) = n(n − 1)

2

G1 = (V1, E1) G2 = (V2, E2)
f : V1 → V2 {u, v} ∈ E1 { f (u), f (v)} ∈ E2

a ↦ 1, b ↦ 2, c ↦ 3, d ↦ 4



We think of isomorphic graphs as “the same”.   

Example 2: Are these graphs isomorphic?  

The isomorphism problem is hard in general. In this case we can look at 
vertex degrees to conclude .  

1.4 Subgraphs 

Definition. Say  is a subgraph of  if  
 and .  

A subgraph isomorphic to  is called a path. A subgraph isomorphic to  
is called a cycle.  

A (connected) graph that does not contain any cycle is called a tree.  

G1 ≠ G2

H = (V(H ), E(H )) G = (V(G), E(G))
V(H ) ⊂ V(G) E(H ) ⊂ E(G)

Pn Cn



1.5 What is graph theory?  

In short, graph theory studies properties of graphs and solves problems 
using graphs. It’s a big subject, so this doesn’t really capture the richness of 
the subject. For now we will use graph coloring to illustrate some of the 
kinds of problems we’ll consider and tools we’ll use.  

Given a map, try to color the regions so that adjacent regions have different 
colors. How many colors are needed?  
 

 



This problem translates to a graph theory problem. A coloring of a graph is 
a coloring of the vertices so that adjacent vertices have different colors.  

Extremal problem: Given a graph G, what is the minimum number of 
colors needed to color G ? This is called the chromatic number χ(G). Later 
we will show (using a greedy algorithm) that   

, 
where Δ(G) is the maximum vertex degree. (Applied to the example above 
gives an upper bound of 7, which is not optimal.)  

Classification problem: Which graphs can be colored with 2 colors? We’ll 
prove: A graph can be 2-colored if and only if it has no odd cycle.  

Counting/combinatorics: How many different ways are there to color G 
with t colors? Let this number be , which we view as a function of t. 
Surprisingly,  is a polynomial(!) whose degree is . This makes this 
function somewhat computable (for any fixed graph). Furthermore, we can 
use facts about polynomials/algebra to study graphs (e.g. what do the roots 
of  tell us about ? If , does that mean  are 
isomorphic?) 

The function  was introduced by Birkhoff to study the map coloring 
problem.  

Application. Often there are surprising applications of graph theory 
problems to the “real world”. Consider the problem of exam scheduling for 
Spring 2023 courses. We want to assign each course an exam day/time so 
that there are no conflicts (a student with two exams at the same time).  

χ (G) ≤ Δ(G) + 1

χ (G, t)
χ (G, t) |V |

χ G χ (G, t) = χ (G′ , t) G, G′ 

χ (G, t)



To formulate this graph theoretically, let V be the set of Spring 2023 
courses. Form a graph G where two courses are connected by an edge if 
there is a student enrolled in both. Viewing colors as exam times, a coloring 
of G gives a way to schedule the exams without conflicts. In particular, 
χ(G) is the minimum number of different exam times needed to schedule 
without conflict.  

Summary. There are many different kinds of problems studied in graph 
theory. Correnspondingly there are many different techniques that can be 
used to study graphs. In this course, this will include combinatorics, 
algebra, linear algebra, topology, and probability.  

Consequently, this course, which doesn’t assume you are already familiar 
with all these subjects, is a good opportunity to see different parts of math 
“in action”.  
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