Homework 1

Math 123

Due February 3, 2023 by 5pm

Name:

Topics covered: graph, subgraph, cycle, path, vertex degrees,

Instructions:

- This assignment must be submitted on Gradescope by the due date. Gradescope Entry Code: RZ277D.
- If you collaborate with other students (which is encouraged!), please mention this near the corresponding problems.
- If you are stuck, please ask for help (from me, a TA, a classmate).

Problem 1. Prove that the graph below is isomorphic to the Petersen graph.¹

 \Box

Problem 2. How many cycles of length n are there in the complete graph K_n ?

Solution. \Box

Problem 3. Define the hypercube graph Q_k as the graph with a vertex for each tuple (a_1, \ldots, a_k) with coordinates $a_i \in \{0,1\}$ and with an edge between (a_1, \ldots, a_k) and (b_1, \ldots, b_k) if they differ in exactly one coordinate.²

- (a) Prove that two 4-cycles in Q_k are either disjoint, intersect in a single vertex, or intersect in a single edge.
- (b) Let $K_{2,3}$ be the complete bipartite graph with 2 red vertices, 3 blue vertices, and all possible edges between red and blue vertices. Prove that $K_{2,3}$ is not a subgraph of any hypercube Q_k .

Solution. \Box

Problem 4. For a graph G = (V, E), the complement of G is the graph $\bar{G} = (V, \bar{E})$, where $\{u, v\} \in \bar{E}$ if and only if $\{u, v\} \notin E$. Prove or disprove: If G and H are isomorphic, then the complements \bar{G} and \bar{H} are also isomorphic.

 \Box

Problem 5.

- (a) Determine the complement of the graphs P_3 and P_4 . (Recall that P_n is the path with n vertices. It has n-1 edges.)
- (b) We say that G is self-complementary if G is isomorphic \bar{G} . Prove that if G is self-complementary with n vertices, then either n is divisible by 4 or n-1 is divisible by 4.

In fact, whenever n or n-1 is divisible by 4, there is a self-complementary graph with n vertices – see the bonus problem below.

 \square

¹Hint: label the graph.

²Suggestion: Draw Q_k for k=2 and k=3.

³Hint: count edges

Problem 6. Prove that the Petersen graph has no cycles of length 3 or 4. 4	
Solution.	
Problem 7 (Bonus). Let G, H be a self-complementary graphs, and assume G has with Construct a self-complementary graph obtained by taking the union of G and H and edges. ⁵ Deduce that if either n or $n-1$ is divisible by 4 , then there is a self-complementary with n vertices.	$adding\ some$
Solution.	

 $^{^4}$ Hint: use the definition of Petersen graph given in class. 5 Hint: How does the degree of even/odd vertices of G change after taking the complement?