Problem 1. Let S be the torus of revolution defined in class. Is the Gauss Map for S injective?
Surjective? Explain your answer

Solution. We first recall the parameterization for the torus we’ve defined in class
o(t,0) = ((2+ cost)cosf, (2 + cost)sinf,sint)

For t € (0,27) and 6 € (0, 27)
We get the Gauss map by obtaining the cross product of the partials to find the normal vector at
a point p on our torus. Thus we first find the partials to our parameterization

09 = (—(2+ cost)sinf, (2 + cost) cos8,0) (1)

¢r = (—cosBsint, —sinfsint, cost) (2)

Next, we calculate the normal vector, which forms the Gauss map

Po X
= S8 Gt 3
|y X i )
bo X ¢y = ((2 + cost) cos B cost, (2 + cost)sinf cost, (2 + cost) sint cos® 6 + (2 + cost) sint sin” 6)
(4)
= ((2+ cost)cosfcost, (2 + cost)sinf cost, —2 + cost) sint) (5)
|do X bt = \/(2 + cost)2 cos? 0 cos? t + (2 + cost)?sin® @ cos? t + (2 + cost)? sin ¢ (6)
— \/(2 + cost)2cos?t + (2 + cost)?sin? ¢ (7)
= 2+ cost (8)
N = (cosfcost,sinf cost,sint) 9)

Using this, we can prove that the Gauss map is not injective but surjective. To prove non-injectivity,
we show that for 2 different (¢,0), the gauss map returns the same vector.

Consider the point at (0,0), where N(0,0) = (1,0,0). Next, consider the point (m,7), where
N(m,m) = (1,0,0) as well. This proves non-injectivity.

To observe surjectivity in our Gauss map, we note that our map resembles the parameterization of
S2. only with ¢ being in the bounds (0, 27) instead of (0, 7). Because of this, we can see that our
map covers every single point on S2, so given a point p € 52, there exists (¢, ) such that N(¢,6) = p
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2. This proposition is strikingly false, as if a is a circle of radius r then it has curvature % ca is then
a circle of radius ¢r with curvature %

More generally, « is the curvature of «, consider ca for constant c.
(ca) = ca’

The major item of note here is that, if « is unit speed, then ca will not be unit speed. Regardless of
whether ca is unit speed or not, we will be working with the general notion of curvature as derived
in a homework.

(ca)" = ca”

- |(ca)’ x (ca)”|
- |(ca)|3
_el?la’ x o
cor = |c|3|a’|3
1 -

Rea = mn

With this, the proposition is generally false.



Problem 3.

Solution. 3

Part a)

Begin by computing the partials for the coordinate chart:
¢ = (1, f'(t) cos O, f'(t) sin6)
do = (0,—f(t)sin 8, f(t) cosf)
The first fundamental form is defined as E = ¢; - ¢y, F = ¢, - ¢g, G = ¢y - g
E = (1, f'(t) cos®, f'(t)sin®) - (1, f'(t) cos @, f'(t)sin @) = 12+ f'(t)? cos® 0+ f'(t)* sin? 0 = 1+(f'(t))?
F = (1, f'(t) cos@, f'(t)sin8) - (0, —f(t)sin b, f(t) cos@) = 0—f'(t) f(t) cos O sin @+ f'(t) f(t) sinf cos = 0
G = (0,—f(t)sin®, f(t)cosh) - (0,—f(t)sinb, f(t)cosh) = 0+ f(t)*sin® 6 + f(t)? cos? 6 = f(t)?

In matrix form, we have:
‘1 +(f'®))? 0
0 (f(t))?

To compute the second fundamental form, we need the normal unit vector first:

_ O X Og
|e % g

i J k
1 f'(t)cos@ f'(t)sinf
0 —f(t)sinf f(t)cosO

= (f'(t)f(t)cos® O + f'(t)f(t)sin? 0, — f(t) cos B, — f(t)sin @) = (f'(t)f(t), —f(t) cos B, —f(t)sin )

The magnitude is

Ot X g =

VP @202 + F(t)2 cos 0+ F(1)2sin? 0 = /TR + TP = F()/F O +1

Note we can pull out f(¢) from the square root without absolute value signs because we are given

f(t)>0

So we get

(f'()f(t),—f(t)cosB, —f(t)sinf) _ (f'(t), —cosf,—sinf)
fOVI(t)?+1 fr(t)?+1

Next, we need the second partials:

du = (0, f(t) cosB, f"(t) sin6)

oo = (0, —f'(t)siné, f'(t) cos )
dpp = (0, —f(t) cos @, — f(t)sinB)




Finally, to obtain the the second fundamental form:

1 " i " B . _f”(t)
e=q¢y-N= W(O_f (t)cos? @ — f"(t)sin? 0) = W
f=d¢w -N= \/ﬁm + f'(t)sinfcosh — f(t) cosfsinf) =0
1 . f(t)
g= e N = W(O+f(t)cos20+f(t)311126) = m

Therefore the matrix for the second fundamental form is:

—f"'(t)
VI(t)?+1
0 f(t)
VI (#)%+1

To find the principal curvatures, we know from class and homework 5 that k;(p) and ky(p) are
eigenvalues of DN, such that form an eigenbasis for DN, in the form of

ki(p) 0 ‘
0 ka(p)

We also know from class that we can calculate DN, with

e fl|lE F
f gl|lF G

If we substitute our answers from earlier, we have

-1
DN, = —

—f"(t) 1
DN, = |[V7ORT L+ (@) 0
p— t 0 t
O Vrom o
-1
. a b o i d _b
Using the formula c d Ta@w|_e 4

_fngtz

_ _ |[VFr®+1 1 fF2(t) 0
HBESE Shp SO [ POHFOTFOT [ 0 1+ (f(t))?
VI ()2 +1
—f"(t) . 0 ((fl({;’)2t+l)2 0
Which equals -| V ((#)?+1 1+(f(0)? _
0 _fm 0 - B
VI (1)1 £ 0 e
FOV (' (1) +1
6




Therefore th incinal abares ¢ () d —=l
erefore the principal curvatures are —— an 0T ORI

Part b)

5 oq— f2
From class, the formula for the Gauss curvature is K = LLZ—_%,

Plugging in our results from we before, we have

—f"(t) f(t)

k- YToraveera "0 - f'@)

A+ (@AM (F®2+12F2) (1) +1)f(1)

We are given that f(t) > 0 V¢, so we conclude that the Gauss curvature is positive for ¢ where

f"(t) < 0 and negative for t where f”(t) > 0
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Problem 4.

Solution. (a) We have that

a'(t) = (=r/esin(t/c),r/ccos(t/c), h/c),

SO
r2 4+ h2

|/ (t)|? = r?/c?sin(t/c)? + 1r2/c? cos(t/c)® + h?/c* = =

. Setting this equal to 1 gives 12 + h? = ¢2.
(b) First, we will calculate the curvature x and torsion 7 of a. We will assume that r > 0,
because negating r just rotates the helix by w. We have the following calculation:

T = d/(t) = (—r/esin(t/c),r/ccos(t/c), h/c)
N =T'/|T"| = (=r/c*cos(t/c), —r/c*sin(t/c),0)/(r/c?) = (— cos(t/c), —sin(t/c),0)
B=T x N = (h/esin(t/c),—h/ccos(t/c),r/c)

Now, we have that k = |T'| = r/c? from a step in our calculation, and this is equal to r/(r? 4+ h?)
because we are assuming « is a unit-speed helix. By the Frenet equations we have that B’ = —7N,
so 7 = —B'- N. We have that B’ = (h/c?cos(t/c), h/c*sin(t/c),0), so T = h/c* = jz'—. Thus,
curvature and torsion are constant.

Now, suppose that some curve a with constant curvature x and torsion 7. If K = 0, then « is
a line and is thus isometric to the helix with » = 0 and h = ¢. Therefore, we can assume that
k # 0. The curvature is positive by definition since it is the absolute value of o”. We want to find r»
and h such that the unit speed helix with parameters r = r, h = h, and ¢ = v/r? + h? has curvature
and torsion equal to x and 7. By the fundamental theorem of space curves this implies that they
are isometric, and we are done.

Using our previous calculation, we want to find » > 0 and h such that ;,ﬁg = k and ;2%; =T,

This is the formula for circular inversion about a circle of radius 1 centered at the origin, and
circular inversion is its own inverse, so we can check that r = —%— and h = T satisfy the

+ +
requisite equations. Note that £ > 0 so we can divide by k% + 72. Because £ > 0, we have that
r = %> > 0 as well, so we are done. O
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Problem 5. The url below takes you to an image of a curve. Let T, N, B denote the Frenet frame
at the specified point. Rotate the image so that you are looking down at the plane spanned by T, N.
Do the same with T, B, and with N, B. Submit screenshots of your answer, and draw and label the
T,N,B axes. Please explain your answer.

https: //www. wolframcloud. com/ obj/ 077c82ab-4b22-4588-8936-b76a5e2698a9

Solution. In coordinates of the Frenet frame, the third-degree Taylor approximation of a curve is

2

We can use this approximation to reason about how the curve looks projected onto each plane:

at) = (ap(t),an(t),ap(t)) = (t, lfetz, —%n'rt:S) .

e ay = %na%, so in the T, N-plane, the curve looks parabolic around a(t).

. —
e ap = —(l—im-a:}, so in the T, B-plane, the curve looks cubic with an inflection point at a(t). S
e ay = (ag)?/? times some constant, so in the N, B-plane, the curve has a cusp at a(t). O
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