Problem 1. Give a unit-speed parameterization of the logarithmic spiral.
Solution. Let the parameterization of the logarithmic spiral be
a:Rso— R2, t— (e"‘cost, et sint) .
The parameterization a is regular because
o/(t) = e ' (—sint — cost, —sint +cost) => |d/(t)| = e V2.

Follow the proof of the existence of unit-speed, there are three steps

e For each z > 0, define

o(z) = /0 " lo/(0)] dt
_ / " ety T2dt

0

= /0I = (\/ﬁe_‘)ldt

=\/§(1—e‘x).

e g:[0, +00) = [O, \/5) is a bijection, and its inverse f is given by
t— —In (1 - L)
i)

e Define 8 = aof which maps ¢ to <1 - \/iﬁ) (cos (— In (l — %)) , sin (— In (l -

Then 3 has unit speed.



Problem 2. In this problem you work out a formula for curvature of a space curve that’s not
necessarily unit speed. Let B : [a,b] — R3 be a curve (not necessarily unit speed!), and let g(t) =
f |3 (u)|du be its arclength function (in particular ¢'(t) = |8'(t)|). From class, we can define a unit
speed curve « so that oo g = 3. The curvature k(t) of B at time t, is by definition the curvature of
a at time g(t), which we will define in class as |a”(g(t))|.

(a) Derive from this setup that the curvature of 8 is give by the formula

7" ()]
Kk(t) = ;
) g'(t)
where T(t) is defined as B'(t)/|8'(t)| = B'(t)/g'(t). !
(b) Derive the formula

p'(t) x B()

"0 = 5P

Solution. (a) If we set B = « o g, this means that 5(t) = «(g(t)). Using chain rule we see

B(t)

B(t) =4O (gt) = T = o/ (9(t)
Let T(t) = E ; so we now have T(t) = o(g(t)).
T'() = 4 (00 () = ) = o (9(0)
a0 = [o)
A(t) = %

(b) Since we know 3’ = ¢'T, we can take the derivative to get 5" = ¢"T + ¢'T". So
,8, X '3” — (ng) % (g”T + gITl)
=(¢'Txg"T)+ (¢'T x g'T")
=(¢)*(Tx T

Since T" and 7" are orthogonal, we can say that |7 x T"| = |T||T'| and |T'| = ||“:,Eg|| =1, so we can
now say
/ X f214
|TI| — |,B ’5 I
d
Substitute that into the answer from part (a) to get
- |'3/ X ﬁlll
lg'°

"Hint: apply the first rule of differential geometry (twice).
2Hint: first differentiate 8’ = ¢'T to get a formula for 3”.



Problem 3 (B, 1.3.4). Let f : I — R be a smooth function, and define a(t) = (t, f(t)) (the trace
of « is the graph of f). Compute the curvature of «.

Solution. Consider « as a three-dimensional curve in the xzy-plane, so the third component of « is
zero. The first and second derivatives of o are

o/(t) = (1.£(2),0),
o () = (0, 1"(£),0).

By Problem 2(b), the curvature of « as a three-dimensional curve is

_ '@ xa”®)] _ (1, £'(),0) x (0, f"(t),0)]
la’(t)[3 (1, £/(2),0)|?
_|(0,0,8"®)| ()]

- 2 3~ 3"
IO (e (o)

One caveat is that the two-dimensional curvature can be negative depending on the direction of
curvature. We can solve this by using the z-component of the cross product instead of its magnitude.
That is, the curvature of a(t) is really

K(t)

f'(t)
( T+ ( f’(t))2)

We justify this as follows. Let 7'(¢) be the unit tangent vector to a at ¢, and let N(¢) be the
unit normal vector, defined as a 90° counterclockwise rotation of T'(t) in the xy-plane. Mirroring
Problem 2(b), we obtain that o(¢) x o’ (t) is a positive multiple of T'(¢) x T"(t). We know that 7" (t)
is a multiple of N(¢). If it is a positive multiple, then T'(¢) x T"(t) points in the positive z-direction,
and so does /() x o (t), and the curvature is positive. Likewise, if 7"(¢) is a negative multiple of
N(t), then the curvature is negative. This is the desired behavior. OJ

k(t) =

3°



Problem 4. Consider a bike traveling in the plane. Let a(t) and B(t) be the positions of the front
and back wheels at time t, respectively.* Assume o is unit speed and that the distance between the
wheels is one unit. If a is known, how do we determine 37 (That’s what you’ll figure out here.)
(i) Since o/ (t) and N(t) are an orthonormal basis for each t, we can write
a— 3= (cosf)a’ + (sinf)N
for some function 0. ® Use this to express 3 as a linear combination of o/ and N. ©

(ii) Since the rear wheel always points in the direction o — 3, we also know ' = Ma — 3) for
some function \. Compute \. 7

(iii) Combine the previous two parts to write a differential equation® satisfied by 0 and k. °

Solution. (i) Let’s differentiate a — 3 to get an expression for 3:
(a—B)=d -8 = ((— sinf - 0")a’ + (cos 9)(1”) + (((:050 -#')N + (sin 9)N’)

by the product and chain rules, where 6(t) is a function of ¢. But «” := kN where k() is the
curvature of o, and N’ = —ka’ from lecture. Substituting these gives

o - B = ((—sinG -0")o + (K cos G)N) + ((cosﬁ -0")N + (—nsin@)a')

= ( —sinf - (0" + r@))o/ + ((:osﬁ (0 + KZ))N
= f = (1 + (0" + k) sin 0) o — ((9' + k) cos O)N
(ii) Since a(t) and N (t) form an orthonormal basis and o — 3 = (cos6)a’ + (sin#) N, we have
A=08"(a—8)= 1+ (0 +r)sinb)(cosb) — ((¢ + k) cos 0)(sin )
= cos 6 + sin 6 cos (& = (0 + k)
= cosf
(iii) Since 8’ = Ma — B) = cosb(a — ),
(1 + (0 + k) sin 9)0/ - ( — (0 + k) cosO)N = (cochosG)a' + (cos@sinO)N

Now, as we have an orthonormal basis, we can equate the components of each basis vector to
get a system of two equations.

1+ (0" + K)sin® = cos? @
(0" + k) cos @ = — cos O sin b

From the second equation we get §' + k = —sinf. Substituting this into the first equation
gives — sin® 6 = cos® —1 which is always true. Therefore 8’ + k = —sin 6

O

"More precisely, think of the position that each wheel touches the ground.

“Physically, 6(¢) is the angle that the front wheel is turned at time ¢.

5The coefficients will involve @ and the curvature  of a.

"Observe that A = 8’ - (a — 3).

8 “Differential equation” just means an equation satisfied by functions that also involves their derivatives.
9This diflerential equation can be used to simplify the equation for 8’ in part (i).

(3]



Problem 5. Below is the tire tracks of a bike.

Which. is the front/back wheel? Which direction was the bike traveling? '°

Solution. (i) We know that the back wheel must always be pointing in the direction of the front
wheel. The direction that the back wheel is traveling is denoted by the tangent of its tire track. If
it points towards the front wheel, the tangent should always intersect the path of the front wheel
in the same direction.

Consider the hypothesis that curve B is the back wheel and curve A is the front wheel, and the
two tangent lines of B at different points, B| and Bj. While B] intersects A on the right side, B},
intersects B on the left side. Then, if curve B denotes the back wheel, it does not always point
towards the front wheel in the same direction. Then, curve B cannot denote the back wheel; curve
A is the back wheel and curve B is the front wheel.

So now consider the tangents of curve A, the back wheel’s tire tracks. Since the back wheel and the
front wheel are at a constant distance apart (i.e., the bike frame), the segment length between any
point on curve B and the intersection between the point’s corresponding tangent line and curve A
should be constant in the direction of travel. Comparing the blue tangent lines at different points
on curve A, we observe that the segments §; and dy have very different lengths, while the segments
¢1 and ¢y have roughly the same length. Then, the direction of travel cannot be left /downwards,
in the direction of the ¢ segments; the direction of travel is right /upwards. O

10Hint: The tangent line through one of the curves always intersects the other curve...



