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1/28/2019 - Continuity, the real numbers, least upper bound
property



The least upper bound property

Here are two facts that are true for /' = R but false for F' = Q:

1. Existence of square roots: for a € F, a > 0, there exists some b € F such that b* = a

2. The intermediate value theorem: let f : [a, b)NF — R (where [a,b] = {z € R:a <z < b})
be a continuous function. Assume f(a) < 0 and f(b) > 0. Then there exists some
c € (a,b) N F so that f(c) =0.

Let’s first examine the existence of square roots. In 25a, we proved that there doesn’t exist a
rational b € Q such that b> = 2. We also stated the fundamental theorem of algebra,? which
says that the polynomial 22 — 2 has a root (so there does exist some number whose square is 2).
We discussed the Babylonian method for approximating /2 as well (see your notes from 25a for
details). There is a less direct approach of proving the existence of /2 using the IVT (intermediate
value theorem):

Proof. Consider the function
f:1,2] =R
T z?—2
Observe that f(1) = —1 < 0 and f(2) =2 > 0. So the IVT says that there exists ¢ € (1,2) with
f(¢) =0, which means ¢ — 2 = 0, so ¢ is the square root of 2. O

This proof also gives a counterexample that shows Q doesn’t satisfy the IVT, since there is no
rational ¢ with ¢? = 2.

Definition. A subset A C R is bounded above if there exists z € R such that a < z for all a € A.
We call z an upper bound for A. Furthermore, we say z is the least upper bound of A if z < 2/
for any other upper bound z'. In this case, we write z = sup A.

Examples

If A={1,2,3}, then sup A =3 = max A.

IfA={1- % :n € N}, then sup A = 1 (note that this set doesn’t have a maximum).

If A={z cQ:2%< 2}, then supA = V2.

e If B =N, then sup B does not exist (B has no upper bound).

If C' =0, then sup C' does not exist (every z € R is an upper bound).

Theorem. (least upper bound property) If A C R is nonempty and bounded above, then A has
a least upper bound (sup A ezxists).

Remark. R is the unique ordered field (F,+,-, <) with the least upper bound property.

2We’ll prove this in 25b!



Continuity and the IVT

Definition. Let f : R — R be a function. f is continuous at a if for every e > 0 there exists
some 6 > 0 so that |z —a| < § implies |f(z) — f(z)| <.

A

f(zo) + €2

f@o) frmmmmmmmmmnoeo- [

f(zo) — €2 —

Zo—02 To To+ 02

f is not continuous at a if there exists some € > 0 such that for every § > 0 there exists x with
|lx —al < d and |f(z) — f(a)] > €.

Definition. A function f is continuous if it is continuous at each point a in the domain.

Most common functions are continuous. For example, polynomials, trigonometric functions, expo-
nentials, absolute values, etc. are all continuous.

We will now prove the IVT, but we first need a lemma.

Lemma. Suppose f: R — R is continuous at a. If f(a) > 0, then f is positive near a. Precisely,
this means there exists § > 0 so that |x — a| < § implies f(z) > 0.

f(a)

Proof. To apply continuity, we want to choose a specific €. Choose € = ~5~. By the continuity of
f there exists 0 > 0 such that |z — a| < § implies |f(x) — f(a)| < RACOR oY particular, this means
2
f(a) (a)

/
—T<f($)—f(a)<

0< 3 (@) < f(x) < 5 1(a)
1

So |z — a| < ¢ implies f(x) > 5f(a) > 0, as desired. O

Proof. (of the IVT) We have a continuous f : [a,b] — R and we know that f(a) < 0 < f(b). We
want some ¢ € (a,b) with f(¢) = 0. The idea will be to find the ‘last’ point where f is negative.
Consider

A={x € [a,b]: f(x) <0}



A is nonempty, since f(a) < 0, and A is bounded above by b. Then the least upper bound property
implies that ¢ = sup A exists.

The claim is that f(c) = 0. Either f(c) = 0, f(¢) < 0, or f(c) > 0. We will rule out the lat-
ter two possibilities.

First suppose f(c) > 0. Then by the lemma, there exists ¢ < ¢ which is also an upper bound
for A (for example, we could choose ¢/ = ¢ — % where § is as in the statement of the lemma). This
contradicts the fact that c is the least upper bound for A.

Now suppose f(¢) < 0. Then again by the lemma, we know f is negative on some open inter-
val around ¢, which means that there exists some a > ¢ with f(a) < 0. This contradicts the fact
that ¢ is an upper bound for A. Therefore f(c) = 0. O

The IVT is a foundational part of calculus, and part of this course will be spent understanding in
what ways it can be generalized.

Dedekind cuts
Question: What is R?

We could try define R as the set of decimal expansions, but this has problems. There are multiple
ways of representing the same number, and it’s difficult to do arithmetic and understand elements
of R this way.

Idea: We understand Q well, so we will build R from @Q by ‘filling in the gaps’ missing in the
rational numbers (for example, the square roots).

Definition. A cut is a subset o C Q that is
e nonempty and proper
o leftward-closed, in that if a € a and b < a, then b € «

e « has no largest element, which means that for each a € o there exists some b € o with b > a

Examples
e a={reQ:z<3;}isacut

e {z € Q: 2% < 2} is not a cut, since it is not leftward-closed (as it contains 0 but no
rationals less than —+/2). We can make it a cut by instead defining

a={reQ:z<0orz?<2}

Next time we will define R as the set {cuts @ C Q} and make this set an ordered field, along with
showing that R has the least upper bound property.



1/30/2019 - Skeleton of calculus, continuity theorems, Dedekind
cuts

Continuity theorems

Recall that a function f : [a,b] — R is continuous if for every point ¢ € [a,b], f is continuous
at ¢. This means that for any € > 0, there exists some § > 0 such that |z — ¢| < § implies

[f(z) = flo)] <e

Examples

Take f(x) = 22. Let’s show that f is continuous at ¢ = 2. Fix € > 0. We want to find § > 0
such that |z —2| < § implies |22 —4| < e. In general, we want to ‘rewrite’ the second expression
to obtain the first. We can rewrite

|22 — 4| = |z — 2| - |z + 2|
If |x — 2| < 1, then |z + 2| < 5 (since x must be between 1 and 3). Therefore
|22 —4| =]z —2| |t +2| <5 |z —2|

So if |z — 2| < £, then 5|z — 2| < e. Then for 6 = min{1, £}, we have that |z — 2| < § implies
|z2 — 4] < .

Let’s now show that f is continuous at ¢ = 20. Fix ¢ > 0. We want to find § > 0 such
that |z — 20| < § implies |f(x) — 400| < e. We have

|2 — 400 = |z — 20| - |z + 20| < 41 - |z — 20|
If we take § = min{1, {7}, then |z — 20| < & implies |22 — 400| < e.

Note that the § we found for ¢ = 20 is smaller than for ¢ = 2, as the graph of f(z) is ‘becoming
steeper’ at x = 20 then at x = 2, so we must consider a smaller region in the domain.

Note that ¢ should not depend on z (although it can depend on c¢).
Theorem. Let f : [a,b] — R be a continuous function. Then we have the following three theorems:
1. (IVT) If f(a) < d < f(b), then there exists some c € (a,b) such that f(c) = d.

2. (Boundedness theorem) There exists constants m < M such that for all x € [a,b], we have
m < f(x) < M.

3. (Max/min value theorem) There exists points ci,c2 € [a,b] so that for every x € [a,b], we

have f(c1) < f(z) < f(ca).

In some sense, these are the three most important theorems of the course. What we do from now
on will build on them, and we will see to what extent they can be generalized.



Sample application of the IVT

Theorem. Let p(z) = 2" +a,_ 12" 1 +... +ag € Poly(R). Ifn is odd, then p has a real root,
namely there exists some ¢ € R such that p(c) = 0.

Proof. Factor p for

an—1 ao

p(z) =z"(1+ +...+x7)

When z is large, the terms in the parentheses will be very small. If |x| >> 0, then p(x) z™.
Hence there exists some a,b € R such that p(a) < 0 < p(b). By the IVT, there exists some

¢ € (a,b) with p(c) = 0. O

Continuity is essential for each of these theorems. For example, consider the function

NEES

This function doesn’t take intermediate values in (—1,0).

Note also that the boundedness theorem (and min/max value theorem) is false if we replace [a, b]
with (a,b). The same function f from above demonstrates this with the interval (0, 1).

The min/max value theorem is a stronger statement than the boundedness theorem (for exam-
ple, the function g(x) = 22 on (0, 1) satisfies the boundedness theorem, as 0 < g(x) < 1, but not
the min/max value theorem). We’ll now prove these, but we first need a lemma.

Lemma. Let f : [a,b] — R be a function. If f is a continuous at a point ¢ € [a,b], then [ is
bounded near c. Precisely, there exists 6 > 0 and a constant M such that |x — ¢| < § implies
[f(z)] < M.

Proof. Since f is continuous at ¢, for € = 1 there exists 6 > 0 such that |x — ¢| < ¢ implies
|f(xz) — f(c)| < 1. Rewriting this yields
1< f@) - flo) <1

fle) =1 < fz) < fle) +1
Take M = max{|f(c) — 1|,|f(c) + 1|}. Then whenever |x — ¢| < § we have |f(z)| < M. O

Recall the least upper bound property for R, which says that if A C R is nonempty and bounded
above then A has a least upper bound (sup A exists).

Proof. (of the boundedness theorem) We will show there is a constant M such that f(z) < M for
all z € [a,b]. To do this, we will try to find the ‘last’ point z where f is bounded on the interval
[a, z]. Consider the set

A ={x € [a,b] : fis bounded above on the interval [a, z]}



A is nonempty, since f is certainly bounded on the interval [a,a] (which is just a single point). A
is also bounded above by b Then by the least upper bound property, we can take z = sup A.

We want to show z = b. Suppose, for contradiction, that z < b. By the lemma, there exists
some § > 0 such that f is bounded on (z — ¢,z 4+ ). Let this bound be M;.

We also know that there exists some point y € AN (z — ¢, z] (if not, then z — 4 is an upper bound
for A that is strictly smaller than z, which contradicts the fact that z is the least upper bound of
A). So f is bounded on the interval [a, y], by definition of the fact that y € A. Let this bound be Ma.

We can just take the maximum of M; and Ms so that f is bounded on the entire interval [a, z + ),
which means there is a point in A strictly greater than z. This contradicts the fact that z is an
upper bound for A. Hence z = b, so b is the least upper bound of A.

Final part of the proof (not presented in class)

It is still necessary to demonstrate that b € A (namely that f is bounded on [a, b] inclusive). By
the lemma, f is bounded near b, which means there exists some § > 0 such that f is bounded
by a constant M; on (b— 4, ).

Since b is the least upper bound of A, there is some point y € AN (b — 4,b], which means
that f is bounded by a constant Ms on [a,y] by definition of A.

We can just take the maximum of M; and Ms so that f is bounded on the entire interval
[a, b], which completes the proof (and shows that b € A as desired).

O
The max/min value theorem is proved similarly. We know Y = {f(z) : = € [a, b]} is nonempty and
bounded above by the boundedness theorem. Take M = sup Y, and consider
A=A{x€a,b]: f(z') < M for all 2’ € [a,x]}

Then show that f(c) = M for ¢ = sup A. (This is a good exercise to try. Hint: use the continuity
of f at c.)



Least upper bound property

Lemma. N C R s not bounded above

You might wonder, why do we have to prove something like this? To motivate the discussion,
consider

p(z)
Rat(R) =< —= : p,q € Poly(R), ¢ 0}
® - {22 y(®).q #
This is a field (we can appropriately define addition and multiplication). For f,g € Rat(R),
we say f < g if there exists some 0 > 0 such that f(x) < g(z) for all z € (0, 9).

We have a copy of N contained in Rat(R) given by the nonnegative constant functions. How-

ever, N C Rat(R) is in fact bounded above by the rational function %, as we can always find a

small 6 > 0 for which % is greater than a natural number n on the interval (0, ¢).

Now we turn to proving the lemma.

Proof. Suppose, for contradiction, that N C R is bounded above. Then by the least upper bound
property, there is some z = supN. Son < z for all n € N. But then n+ 1 < z for all n € N, which
means n < z— 1 for all n € N. Hence z — 1 is an upper bound of N, which contradicts the fact that
z is the least upper bound of N. ]

To prove that R has the least upper bound property, we will give a construction of R. Last time
we defined a cut as a subset @ C Q that is

e nonempty and proper
o leftward-closed

e has no largest element

We will define
R = {cuts o C Q}

Note that Q C R, so for any r € Q thereisacut r*={z € Q:z < r}.

Theorem. Defined this way, R is an ordered field with the least upper bound property.

Recall that an ordered field is a quadruple (F,+,-,<). The addition and multiplication make F
into a field, and < must satisfy a few axioms:

e < is transitive, in that a < b and b < ¢ implies a < ¢
e < is a total order, in that either a < b, b<a,ora=1»

e < is compatible with the field operationss, in that a < b implies a + ¢ < b + ¢ and, when
c>0,wehavea-c<b-c

10



Next time, we will define the addition, multiplication, and order on this set, along with justifying
that these definitions satisfy the appropriate axioms. We will also prove the least upper bound

property.

11



2/4/2019 - Convergence, sequences, limits, continuity

Construction of R

Recall that we defined
R = {cuts o C Q}

where a cut is a proper, nonempty subset of Q that is leftward-closed and contains no largest
element. Note that there is a natural injection i : QQ < R given by associating r» € Q with the cut
i(r)=r"={zecQ:z<r}.

Theorem. R is an ordered field with the least upper bound property.

Proof. First we will define an order < on the set R. For two cuts «, 8 € R, we will say a < g if
a C B as subsets of Q. The order < should be transitive. This is clear.

< should also be a total order, which means that for any «,3 € R either a < 8, 8 < « or
a = (. To see that this holds, suppose for contradiction that there exists a;, 8 € R such that none
of these are true. Since a £ (3, there exists b € N a‘. Similarly, there exists a € a N B¢, a,b are
rational and Q is an ordered field, so either a < b, b < a, or a = b. We certainly can’t have equality
by choice of a and b. And a < b,b < a are impossible because cuts are leftward closed (for example,
if a < b, since b €  we would also have a € 3, which is a contradiction).

We can now prove the least upper bound property. Let A C R be nonempty and bounded above
(namely, there is some cut 8 € R such that o <  for all & € A). Consider

y=JacQ
aEA

First observe that v is indeed a cut. It is nonempty, proper because A is bounded by f, leftward-
closed because each « is leftward-closed, and has no maximum element since none of the cuts « do.

~ is the least upper bound for A. Since o C ~, we have a < v for all & € A. If 4/ is also an
upper bound for A, then o C +/ for all &« € A. This implies that (Ja C v/, so v C /. Hence v < +'.
Therefore v is the least upper bound of A.

Next we want to make R into a field. Define

a+pf={reQ:x<a+bfor someac a,becf}

If a, 8 > 0%, then define a- S ={x € Q: 2 < a-b for some a € a,b € § with a,b > 0}

If « < 0* and 8 > 0%, then define a- f = —((—«) - B).

Note that —« is the unique cut with the property o + (—«) = 0*. It is given by —a = {x €
Q: —x is less than all a € «, but z is not the largest such value}

These operations make R into an ordered field. Moreover, they restrict to the usual operations on
Q C R. This is easy to check and will be left as an exercise. O

12



Application of this construction to the existence of /2
We will show that v/2 does in fact exist. Consider
a={reQ:z? <2orz <0}
a is a cut, and we claim that a? = 2*. First observe that o? < 2*. This is because
o ={zecQ:z<ab:a,beaanda,b>0}

We want to show a? C 2*. Fix « € o®. Then = < ab for a,b € o« and a,b > 0. Without loss of
generality assume a < b. Then
r<ab<b® <2

so x € 2*, which shows that o < 2*.
Now suppose for a contradiction that a? < 2*. Then by the continuity of the map z — x? on

R, there exists some r € Q so that r* > a and o? < (7*)? < 2.% However, this means r € a by
definition of «, so r* < «, which is a contradiction.

9This follows because the continuous function x — 2 —2* is negative at a by assumption. Then it is negative
around «, so we can choose a point r* to the right of a for which the function is still negative.

Sequences and continuity

Sequences will give us an easier way to show that a function is not continuous.

Definition. A sequence in R™ is an ordered list (a1,as,...) with each a; € R™.

Examples

(1,2,4,8,16,...)

o (1,1.4,1.41,1.414,...)

(1,-1,1,-1,...)

e ap=(1,n) eR?

Definition. A sequence (a,) converges to p € R™ if for every e > 0, there exist some N such that
n > N implies |a, — p| < €. If (ay) converges to p, then we write a, — p.

Note that for points x,y € R™, the notion of the distance |z — y| in R™ is given by

z—yl=V(x1 —91)2+ ...+ (Tn — Yn)?

Definition. Given an increasing sequence 1 < n; < ng < ..., we define the subsequence

(Qny s Onyy Gng, - - ) Of (a1,a2,a3,...).

13



Examples

A subsequence of (1,2,4,8,...) is (1,4,16,64,...)

The sequence (1,2,4,8,...) does not converge.

The sequence (1,1.4,1.41,...) converges to V2.

The sequence (1,—1,1,—1,...) does not converge, but the subsequence (agy) does con-
verge.

If a,, converges to p, then a,, converges to p. However, it is possible that a,, converges to p even
though a,, does not converge to p.
Sequences give us a way to think about continuity:

Theorem. The following are equivalent:

1. f is continuous at p.

2. For every sequence (ai,as,...) in R™ that converges to p, the sequence (f(a1), f(az2),...)
converges to f(p).

So if we want to approximate the value of a continuous function at p, we can look at the values of
f on points near p.

Examples

f(x):{l z=0

e Consider the function

0 otherwise

f is not continuous at 0. To show this using the theorem, consider the sequence given by
an = *. (an) converges to 0, but (f(a,)) does not converge to f(0) = 1, since f(a,) =0
for all a,,.

e Consider the function

sin(1) x>0
x pr—
g9(z) {0 .
Note that
0 neven
2
9g(—)=<¢1 n=4k+1
nmw

-1 n=4k+3

(This should give a rough idea what the graph of g looks like.) g is not continuous at 0.

Consider the sequence given by a,, = % (an) converges to 0, but (f(ay)) is the sequence

(1,0,—1,0,1,0,...), and it does not converge (to 0).

Now we will prove the theorem.

14



Proof. Suppose f is continuous at p. Let (a,) be a sequence converging to p. Fix ¢ > 0. We want
to show that there exists N > 0 such that n > N implies |f(a,) — f(p)| < €. Since f is continuous
at p, there exists some 6 > 0 such that |z — p| < ¢ implies |f(z) — f(p)| < e. We know that the
sequence (ay) converges to p, so there exists some N > 0 such that n > N implies |a,, — p| < 9.
For n > N, we have |a, — p| < J, which implies |f(an) — f(p)| < e.

Now we will prove the other direction by contrapositive. Suppose that f is not continuous at
p. We will construct a sequence (a,) which converges to p, but whose image (f(a,)) does not
converge to f(p). Since f is not continuous at p, there exists € > 0 so that for all § > 0 there exists
z such that |z — p| < 6 and |f(z) — f(p)| > €. Then for § = 1, choose such a sequence of points
(an) so that |a, —p| < 2 and |f(as) — f(p)| > €. The sequence (a,) converges to p, but the images
(f(an)) do not converge to f(p) (since they are always at least € away). O

Let’s try the following;:

Theorem. If f : R — R is continuous at p and g : R — R is continuous at f(p), then
go f:R —= R is continuous at p.

Proof. Given a sequence (ay,) that converges to p, we want to show that ((go f)(a,)) converges
to (go f)(p). Since f is continuous at p, f(a,) converges to f(p). Since g is continuous at f(p),
g o f(an) converges to g o f(p), as desired. Ol

15



2/6/2019 - Topology, open/closed sets, compactness/Heine-Borel,
continuity

Real numbers and decimals

Fact. 0.9999 = 1.0000. What does this mean in our language? Define the cut

9 9 1 («

k>1 k>1

Lemma. z = 1*

Proof. We will show both inequalities. The direction z < 1* is easier, since every r € x is less
than 1 by definition.

It remains to show 1* < z, so for each r € Q with » < 1 there exists some k so that r < 1— 1%
(this is what 7 € 2 means). Write r = § in lowest terms, with a € Z,b € N. We know a < b,
since r < 1. Furthermore, we know b — a > 1 (since a and b are integers, their difference must
be at least 1).

So we want to find k such that

a 1
21— —
b 10k
L a_b-a
10k b b
Observe that it suffices to show
b—a 1 1
> >
b — b 100
~———

You can prove (x) easily by showing that n < 10" by induction. We can take k& = b+ 1, which
proves the lemma. O

WEe’ll turn to another lemma that came up recently.

Lemma. For every e > 0, there exists k € N such that 1.% < e.

Proof. Fix € > 0. We can rewrite this as 10F > % There exists a kK € N so that k£ > % This
is because N C R is not bounded above (we showed this previously). By the claim from above,
108 > k> 1. D

This lemma also shows that the sequence (1, %, %, ...) converges to zero.

Limits and continuity

Even if f is not continuous at a, we can still try to describe behavior near a.

16



Definition. We say f : R® — R™ approaches limit L near a if for all € > 0, there exists a
d > 0 such that 0 < |z — a|] < 0 implies |f(x) — L| < e. In such a case, we write
lim f(z) =L

r—a

This looks a lot like the definition of continuity. However, note that the value of f(a) is irrelevant
when taking the limit of f at a. This is because we demand 0 < |z — a|, so we are never evaluating
f at the point a.

Examples

f(a:):{l z=0

0 otherwise

e Comnsider the function

Then
lim f(z) =0

z—0

By definition, f is continuous at a if and only if lim,_,, f(z) = f(a).

Theorem. (Algebra of limits) Fiz f,g : R™ — R™. Assumelim,_,, f(x) = L andlim,_,, g(z) = K.
Then we have

1. limyy f(2)+g(x) =L+ K
2. limy o f(x)g(x) = LK when m =1

S. limx_mﬁ:% when m =1 and L #0

Sample application of the algebra of limits theorem

e The function x — z™ is continuous because z — x is continuous (this claim is easier), as
" is the product of x n times.

. 14_o.100 . . L. .. .
e The function = — % is continuous everywhere it is defined (this is much easier

than showing continuity with € and ).

Proof. We must use the € — § definition. The three steps of such a proof are (a) algebra, (b) esti-
mation, and (c) write-up.

We will first prove statement 1 of the theorem. Fix € > 0. Use algebra to rewrite

|[f(2) +g(z) = (L+ K)| = | f(z) = L+ g(2) — K]
< |f(z) = L] + |9(2) - K|

by the triangle inequality. Now estimate to conclude that we should make each of the two parts
less than §. By assumption, there exists d¢,dy > 0 such that 0 < |z —a| < &y implies |f(z) —L| < §
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and 0 < |z — a| < 04 implies |f(z) — K| < §.

Now to write up the solution, take § = min{dy,d,}. If 0 < |z — a| < §, then
|[f(@) +g(2) — (L + K)| < [f(2) = L] + |g() - K|
€ €
< 5 + 5 =€

as desired.

Now we will prove the second statement of the theorem. Write
|f(x)g(z) — LK| = | f(z)g(x) — Lg(x) + Lg(z) — LK|
< |f(z) = L] -|g(@)| + || -|g(2) - K]
() ()

We can make (x) small, but we will have to be a bit careful here, since |g(z)| is not actually constant
as x varies. The idea will be to find a bound for this value |g(x)|. There exists some J, > 0 such
that 0 < |z — a| < 04 implies |g(z) — K| < ﬁ Then for these values of x,

€ €
K——< <K+ —
oz <9 <K e
€
L]

€
K .
) +2\L|’}
M

There also exists 0y > 0 such that 0 < |z —a| < dy implies |f(z) — L| < 5%5;. Take 6 = min{dy, §g}.
The writeup follows similarly. It’s a good idea to try proving statement 3 of the theorem yourself.

O]

g(x) < max{‘K -

Generalized boundedness theorem

Recall that the boundedness theorem says that if f : [0,1] — R is a continuous function, then f is
bounded. Precisely, this means that there exists a constant M such that | f(x)| < M for all z € [0, 1].

Further recall that if we replace [0,1] with (0,1), the analagous statement is false (for example,
consider f(z) = 1).

Question. What is the difference between [0, 1] and (0, 1) that allows the theorem to fail?

Question. For which X C R™ does the boundedness theorem hold?

For which of the following does the boundedness theorem hold?
e X =10,1]"
e X ={zeR": |z| =1}

e X ={zeR":|z| <1}
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o X ={A¢€ M,(R): A’A = I} (the isometries/orthogonal matrices)

e The Hawaiian earring:

Y

e The Serpinski triangle:

The tool we used for the boundedness theorem was the least upper bound property. However, this
is not enough for higher-dimensional situations. We will need a new tool: compactness.

Topology definitions

Definition. Let A C R™. A pointp € R" is a limit point of A if there is a sequence (a,) C A\ {p}
so that (a,) converges to p.

Definition. Let A C R". If p € A is not a limit point of A, then p is an isolated point.
Definition. A subset A C R" is closed if it contains all of its limit points.

Definition. A subset A C R" is open if for all a € A, there exists some r > 0 such that the ball
By(a) ={z € R": |x —a| < r} is contained in A.

Examples

If A= {(z,y) : 22 +y*> < 1} U {(2,0)}, (0,0) is a limit point. Take the sequence
(3,0),(3,0),(5,0),. ... However, (2,0) is not a limit point. Any sequence in A\ {(2,0)}
cannot converge to (2,0). So (2,0) is an isolated point.

Defined as above, A is closed.

Note that if we replace < with < in the definition of A, A is no longer closed. However,
A is not open either (any ball around (2,0) contains points not in A).

e R™ and @ are both open and closed.

Note that these notions generalize closed and open intervals in R.
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Definition. A subset A C R™ is sequentially compact if every sequence (a,) C A has a subse-
quence (ank) that converges to some point p € A.

Examples

e Any finite set is compact. A sequence visits a finite number of points infinitely many
times, so there is some p € A which is visited by the sequence infinitely many times. We
can take the subsequence (p,p,p,...).

e (0,1) C R is not sequentially compact, as the sequence (a,) given by a, = % converges

to 0 & (0,1).

e R C R is not sequentially compact, since the sequence (a,,) given by a, = n does not
converge and has no convergent subsequence.

For the purposes of some intuition, we can view compactness as a generalization of what it means
to be finite. For example, functions from finite sets are bounded, as are functions from compact sets.

More generally, note that sequentially compact sets are closed, as we can take a sequence that
converges to every limit point of such a set, and by compactness the set must contain that point.

Also observe that sequentially compact sets are bounded. Precisely, this means there exists some
R > 0 such that A C Br(0) (A is contained in the ball of radius R around 0). If a set isn’t
bounded, then we can take some sequence of points that are farther and farther from the origin.
This sequence has no converging subsequence.

Next time, we will prove that [0,1] is compact and that the boundedness theorem generalizes
to continuous functions on compact sets.
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2/11/2019 - More topology, subset trichotomy, compactness and
coverings

Sequential compactness

Recall A subset A C R" is

e closed if whenever (a,) C A is a sequence that converges to p, p € A.

e bounded if A C B,(0) for some r > 0. Equivalently, A C [—t,¢]" for some ¢ > 0 (since we
can fit balls inside boxes and boxes inside balls).

e sequentially compact if every (a,) C A has a subsequence (a,,) C (a,) such that a,,
converges to p with p € A.

We also know that if A is sequentially compact, A is bounded and closed.

Examples

e R x [0,1] € R" is closed but not bounded. The sequence that goes off to infinitiy has no
convergent subsequence.

e (0,1)% is bounded but not closed. The sequence that becomes close to the boundary of
this set converges to a point outside of the set.

We can use our topological definitions to prove a generalization of the boundedness theorem.

Theorem. (Generalized boundedness theorem). Let A C R be sequentially compact and f : A —
R? be a continuous function. Then f(A) = {f(a) : a € A} is sequentially compact. In particular,
f(A) is bounded.

Proof. Fix a sequence (b,) C f(A). Write b, = f(a,) for some a, € A. Since A is sequentially
compact, there exists a converging subsequence (ay,) C (a,) that converges to a point p € A. Since
f is continuous, this implies that the subsequence (b, ) C (b,) converges to the point f(p) € f(A),
by our characterization of continuous functions last class. O

This is a very useful tool, but we will have to develop a way to recognize sequentially compact sets.

Theorem. A closed interval [a,b] C R is sequentially compact.

Proof. Fix a sequence (z,,) C [a,b]. For ¢ € [a,b], if for all ¢ > 0 there exists n such that
zn € (c—€,c+€) \ {c}, then there exists a subsequence converging to ¢ (choose xy, to be within 7
of c. Be sure to choose z,, so that the resulting sequence is indeed an ordered subsequence of (zy,)).
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So if there does not exist a subsequence that converges to ¢, then there exists some € > 0 such that
(c—€,c+€) contains no points of the sequence. We will now apply the least upper bound property.
Define the set

A={z € [a,b] : x, < x for only finitely many n}

Certainly a € A and A is bounded above by b, so by the least upper bound property ¢ = sup A exists.
Now suppose for contradiction that there is no convergent subsequence to ¢. Then there exists

€ > 0 such that no z, is within (¢ — ¢,¢ + €). Then any point in (¢,c + €) is also in A, so this
contradicts the fact that ¢ is an upper bound of A. Hence there is a subsequence that converges to c.

Note that we must also consider the case when ¢ = b. Then for any e there must be a point
in (¢ —¢€,0b) O

Theorem. [0,1]" C R" is sequentially compact. In general, closed intervals are compact.

Proof. The proof is left as an exercise. You can do this by projecting the sequence on to each of
the n intervals [0, 1] and using the sequential compactness of the closed interval, proceeding by
induction. O

Theorem. (Bolzano-Weierstrass theorem). Every bounded sequence in R™ has a convergent sub-
sequence.

Proof. Let (x,) be a bounded sequence. Then (x,) C [—t,t]" for some ¢ > 0. The product [—t,¢]"
is sequentially compact, so (x,) has a convergent subsequence. ]

Theorem. (Heine-Borel theorem). A is sequentially compact if and only if A is closed and bounded.

Proof. We proved the forward direction as a lemma last class, so it remains to show the reverse
implication.

Fix A C R" closed and bounded, and take a sequence (a,) C A. A is bounded, so A C [—t,t]"
for some ¢ > 0. Hence (ay) has a convergent subsequence (an,) that converges to p € [—t,t]".
However, we also need that p € A. This is true because A is closed. ]

Exercise

Let A= {1 :n €N} and B=AU{0}. Are A, B sequentially compact?

e A is not closed, and hence not sequentially compact. The sequence (ay,) given by a,, = %
does not converge to a point in A.

e B is sequentially compact. B is closed and bounded. You can also argue directly by
finding a convergent subsequence, but this requires some care.
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More topology

Recall that a set U C R" is open if for all uw € U, there is some r > 0 such that B,(u) C U. We
will now further explore the relationship between being open and closed.

Lemma. If U C R" is open, then U° is closed. If A C R™ is closed, then A€ is open.

Proof. Let U be open. Take (x,,) C U to be a sequence converging to p. We want to show p € U°.
Suppose for contradiction that p € U. U is open, so there exists r > 0 such that B,.(p) C U.
However, since (x,) converges to p, so there is some N such that n > N implies that z,, € B,.(p).
This contradicts the assumption that x, € U°.

Let A be closed. Suppose A€ is not open. Then there is some p € A€ such that for all » > 0,
there is some point @ € A N B,(p). Then there exists a sequence (a,) C A that converges to p
(by taking a, € A to be some point within % of p). This contradicts the assumption that A is
closed. O

Remember that subsets of R” can be open, closed, both open and closed, or neither open nor
closed. However, there is still a trichotomy.

Let Y C R™. Then for z € R", exactly one of the following holds:

e There exists r > 0 such that B,(xz) C Y. In this case we say x is an interior point of
Y.

e There exists 7 > 0 such that B,(z) C Y. In this case we say x is an exterior point of
Y.

e For every r > 0, the ball B,.(z) intersects both Y and Y¢. In this case we say = is a
boundary point of Y.

They we can decompose R™ into
R" = int(Y) U bd(Y) Uext(Y)

Note that Y is open if and only if Y = int(Y"), and Y is closed if and only if bd(Y') C Y.

Examples
Let Y = {(z,y) € R?: 22 + 42 < 1} U {(2,0)}.
e The interior of Y is {(x,y) € R? : 2% + y? < 1}.
e The boundary of Y is {(z,y) € R?: 22 +y2 = 1} U {(2,0)}.

e The exterior of Y consists of all the other points.

We can use open and closed sets to characterize continuity.
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Lemma. A function f : R™ — R™ is continuous if and only if U C R™ is open implies f~1(U) C R
1S open.

Covering compactness

Let % be a collection of open sets in R”. % could be finite, countable, or uncountable. Generally
we will write

%I{UB:BGB}

Definition. % is an open cover of X C R"™ if

xcl|Jus
BeB

If V', are both open covers of X with ¥ C %, then V is a subcover of % .

Definition. X C R" is covering compact if any open cover of X has a finite subcover.

Examples

e Let X = R. Then the cover
U ={(n,n+2):ne}

is an open cover of R with no finite subcover. Hence R is not convering compact. However,
note that R does have finite covers (for example % = {R}).

e If X is finite, then X is covering compact.

We will prove the following results.
Theorem. X C R” s sequentially compact if and only if X is covering compact.
Theorem. [0,1]" C R"™, and closed intervals in general, are covering compact.

Theorem. (Nested interval theorem). If Qr C R are nested rectangles such that Q1 C Q for
all k, then N Qr # 2.
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2/13/2019 - Differentiability, mean value theorem, Taylor
polynomials

Compactness

Recall that we have two notions of compactness:

e X C R"™ is sequentially compact if for all sequences (z,,) C X, there is a subsequence
(2n,) C (xy) that converges to some point p € X.

e X C R™is covering compact if every open cover of X has a finite subcover. In other
words, whenever

xc | us
BeB

there exists fy, ..., 8, € B such that

X CUg U...UU;g,

We will spend today working on the following theorem:

Theorem. [0,1]" C R"™ is covering compact.

Alternate proof of the boundedness theorem

Theorem. If f : [0,1] — R is continuous, then there exists a constant M > 0 such that
|f(z)] < M for all x € ]0,1].

Proof. By continuity, for each y € [0,1] there exists a J, such that |z —y| < ¢, implies
|f(x) — f(y)| < 1. Equivalently, this means

fly) =1 < f(z) < fly) +1

|f(@)| < max{|f(y) + 1|, |f(y) = 1[} = M,

The open sets {Bs,(y) : y € [0,1]} give a covering of [0, 1]. Since [0,1] is covering compact,
there exist finitely many y,...,y, such that the balls By, (y1),..., By, (yr) cover [0,1]. Then
for x € [0,1] we know that

’f($)| < maX{Mylv"'vMyr} =M

which completes the proof. ]

As in the above proof, compactness is used as a tool ‘to go from the infinite to the finite.” You will
prove the following corollary on homework.

Corollary. X is sequentially compact if and only if X is covering compact.
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We will now turn to prove the theorem, but we will need another fact first, which you will also
prove on the homework.

Theorem. (Nested interval theorem/Onion ring® theorem). Let Qi C R™ be closed rectangles such
that Qry1 C Qk. Then

Jor#9o
k

Now we will prove that [0,1]™ C R™ is covering compact.

Proof. Suppose, for contradiction, that there exists a covering % of [0, 1]" with no finite subcover.
Decompose [0, 1]™ into 2™ quadrants, based on whether or not a point is in the first or second half
of each interval [0, 1]. One of these quadrants must not have a finite subcover (or else there would
be a finite subcover for all of [0,1]"). Let @1 be this quadrant.

Inductively define Q11 C Qr with the properties

1. Qg+1 is not covered by finitely many elements of % .

2. The diameter of Qy, is 2—‘/5 (this is the diagonal of the quadrant).

The onion ring theorem implies that there is some z € (1), Q. Then by definition of the cover %,
there is some open U € % . Since U is open and the diameters of Qp go to zero, there is some N
such that n > N implies @, C U. This is a contradiction, since all of these @), are contained in the
single set U. However, we chose the ),, to have no finite subcover. Therefore % does not exist, so
[0,1]™ is covering compact. O

This concludes the first part of the course, in which we covered

e the continuity theorems (intermediate value theorem, boundedness theorem, min/max value
theorem)

e the least upper bound property and compactness

e the compactness theorems (Bolzano-Weierstrass theorem and Heine-Borel theorem)

We will use these foundational results in the next part of the course.
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Differentiability

Question: Given a function f : R — R, what is the linear map ¢(x) = mx + b that best approxi-
mates f near a € R?

Assume a = 0. Then we want ¢(0) = f(0), so we should take b = f(0). To find m, consider secant
lines.

Secant Line

/]

Tangent Line

For sufficiently nice f, we would expect that the slope

f(h) = £(0)
h

converges.

Definition. A function f: R — R is differentiable at a € R if

o St h) = (@
h—0 h

exists. Denote this limit by f'(a).

Definition. A function f: R — R is differentiable if it is differentiable at all a € R.

Basic facts about differentiable functions

Let f,g: R — R be differentiable functions.
e f is continuous.
o (f+9) =1f+d
o (fo) =Tf9+1d

(
(f/g) = f’g;fg’
(

g

 (fog)(a)=f'(g(a))g'(a)
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e If f(x) = c is constant, then f'(z) = 0.

These are all not too difficult to prove. We will show the first one now.

Proof. Write

o fah) = @) L f@) - f()

h—0 h T—a T —a

using the substitution z = a + h. Then we have

iy ()~ fla) = tim (L= ) o)

T—a r—a T — a
= lim (f(a:) _ f(a)> limz —a
r—a T — a T—a
= ’(a) 0=

The only tricky one is the chain rule, which we will return to in more generality later.

Corollary. We can differentiate polynomials and rational functions (quotients of polynomials).

Examples
e Consider the function
2 x>0
€T pry
/(=) {0 x <0

To compute f/(z) away from 0, we can just use the differentiation rules (as the derivative
depends on the local behavior of f). But to compute f/(0), we must use the limit
definition. By examining the left and right limits we have

2
lim f(h) = lim h =0

h—0+ h ho0 h
. f(h) .. 0
hl—1>%1— h _ilg%ﬁ =0

So the overall limit indeed exists, and we have f’(0) = 0.

Differentiation defines a function D : V' — W, where V is the set of differentiable functions and W
is the set of all functions. In fact, V and W are vector spaces. The rules for sums, products, and
constants imply that D is actually a linear map.

From this perspective, it’s natural to ask about the kernel and image of D. The kernel certainly
contains the constant functions, but is there anything else?
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Theorem (Mean value theorem). Let f : [a,b] — R be a continuous function such that the restric-
tion fl(ap) : (a,b) = R is differentiable. Then there exists c € (a,b) such that

Secant

Tangent at ¢

Proof. We will prove the result in two cases. First assume that f(a) = f(b). Then we want to find
¢ € (a,b) such that f'(¢) = 0. f is continuous on [a,b], so by the min/max value theorem there
exist ¢1,c2 € [a,b] such that f(c1) < f(x) < f(c2) for all x € [a,b].

Suppose ¢; and ¢y are both at the endpoints. Then f is constant, and so it has derivative f'(x) =0
everywhere.

Suppose at least one of c¢j,co in in (a,b). Without loss of generality say ¢ = co € (a,b) for
f(z) < f(c) for all z € [a,b]. The claim is that f’(c) = 0. Compute left and right limits for

e
i 1@ =IO

T—c+ r—cC

However, we know that this limit exists since f is differentiable by assumption, so both limits must
be 0. This implies f/(c¢) = 0. This completes the proof in the case where f(a) = f(b).

For the general case, consider the function

Then g satisfies the first case, so ¢’(¢) = 0 for some ¢ € (a,b). This proves that there exists ¢ € (a,b)
such that

(Check the details.) ]
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Now we claim that the kernel of D is precisely the constant functions. Suppose f/(z) = 0 for all
r € R. Apply the mean value theorem to f|( q[0,a] — R. There exists some c € (0,a) such that

This implies f(a) = f(0). Since a is arbitrary, this means that f is a constant function.

The image of D is a more difficult question that we will touch on later.
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2/20/2019 - Polynomial approximation, second derivative test

Derivative interpretations

Last time we defined the derivative of a function f: R — R by

h—0 h z—a r—a

which is the limit of the slope of the secant lines. The derivative captures the idea that, as we zoom
in on a differentiable function, the function itself begins to look like a line.

We can use different notations for the derivative of a function.

e The notation f’(a) was introduced by Langrange, around 1770.
e The notation D f(a) emphasizes the fact that the derivative is a differential operator on
the vector space of smooth functions.

e The notation %(a) was introduced by Leibniz, which he defined as the the value

fla+dz) — f(a)
dx

when dz is ‘infinitely small.’ (This was before the limit was invented!)

If f: (a,b) — R is differentiable, then we can view the derivative f’: (a,b) — R as a function as
well.

Definition. If f': (a,b) — R as a function itself is continuous, then the function f is continu-
ously differentiable and f is C*. More generally, if f', f", ..., f% all exist and are continuous,
then f is C*. Furthermore, if f%) exist for all k, then f is smooth.

Question: What does f’ tell us about f7

Corollary. If f'(z) =0 for all x, then f is a constant function.

Corollary. Let f be C'. Then if f'(c) > 0, f is increasing near ¢ (meaning v < y implies
f(x) < fy). Similarly, if f'(c) <0, f is decreasing near c.

We’ll use the mean value theorem, which says that if f : [a,b] — R is a continuous function that is
differentiable on (a, b), then there exists a point ¢ € (a,b) such that

f(0) — f(a)

7o) = 2=

Proof. Since f'(c) > 0 and f’ is continuous (as f is C'!), we know that f’ is positive near ¢, namely
that there exists 6 > 0 such that = € (¢ — 4§, c+ ) implies f/(x) > 0. Take points x and y such that

c—i0<zx<y<cH+9
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The mean value theorem for f on [z,y] implies that there exists ¢ € (z,y) such that

fly) = f(x) = f'(c) - (z,9) >0
— =~

>0 >0
So we have shown that x < y implies f(z) < f(y). O
Examples
e The function f(x) = \/z has derivative
1
f'(=)

T

We can show this formally by observing that if we define

then the product rule yields

This implies
1

Note that to apply the product rule as we just did, we need to know that the functions
involved are differentiable. So we really should compute the limit

lim M

r—a Tr—aQa

to determine the derivative of \/x.

Proof of the product rule

Proof. If we have two differentiable functions h, k : R — R, we have

(hk)(a) = lim "LBEE) = Ma)k(a)

_ i M) = Bak(z) | hla)k(z) ~ ek
= 1im MDD i o) ML ZH

= K (a)k(a) + h(a)k'(a)

where we are using the fact that both A and & are differentiable to simplify to the last line. [

If we replace f’(¢) > 0 with f’(¢) > 0, we cannot assume that f is constant near c¢. For example,
consider the functions f(x) = 22 and f(z) = 2, which both have derivative 0 at 0, but neither are
constant.
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Definition. If f'(c) =0, then c is a critical point of f.

We showed last time that if ¢ is a local minimum or maximum of a differentiable function f, then
c is a critical point of f. We examined the left and right limits of

F(e) — tim 2 = 10)

T—C T —c

However, if ¢ is a critical point of f, it is not necessarily true that f has a local minimum or

maximum at c. For example, take the function f(z) = 3.

Question: How can we use derivatives to describe the behavior of a function near a critical
point?

Noteworthy /cautionary examples

Examples
e Define the function
zsin(Z) x#0
€T fr—
ﬂ){o o

f is continuous. At x = 0, we can see this by examining

lim xsin(1/z)
z—0

Since |sin(1/x)| < 1, the claim

lim zsin(1/z) =0

z—0

follows from the squeeze theorem (squeeze this function between the functions x and —z).
However, f is not differentiable at 0, since

£1(0)  timg 1@ =FO

i P2 — i)

J \ | 041 || | Y

—-0-1

02
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f is continuous on [0, 1] and differentiable on (0,1) so we can apply the mean value the-
orem.

If we replace xsin(1/x) with 2™ sin(1/z), we get examples that are C" but not C"*!
(where 7 is related to m).

e Thomae’s function f : [0,1] — R is given by

a

(o) = {11) if z = % in lowest terms

0 =z is irrational

f is not continuous at each rational a/b € QQ (we can choose a sequence (z,,) that converges
to x with z,, irrational). However, the surprising result is that f is continuous at all
irrational numbers z € Q. Fix some € > 0. Then there are only finitely many rational
numbers a/b with 1/b > € (when b < 1/€). Choose 0 small enough to avoid these rational
numbers a/b.

Polynomial approximations

Definition. Let f : R — R be a C* function, and fix some a € R. Then the kth Taylor
polynomaial of f at a is

f®(a)
k!

f"(a)
2

(x—a)?+...+ k

(z —a)

Pp(x) = f(a) + f'(a)(z — a) +

In the case where k = 1, we have
P = f(a) + f'(a)(z - a)
This is the linear approximation of the function f. In general, Py(z) is designed so that we have
P,gl)(a) = f@(a) for i < k.
Theorem. (Approzimation theorem). Fix k, f : R — R, and let P = Py be the kth Taylor
polynomzial. Then
1. P approzimates f to order k at a. If we set R(h) = f(a+ h) — P(a+ h), then

. R(h)
Py =

=0
2. P is the unique polynomial of degree less than or equal to k that satisfies the above condition.
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3. If f is actually C**1, then for each h > 0 there exists ¢ € (a,a+ h) such that

k+1
R(h) = FE©) e
(k+1)!
Intuitively, the theorem is saying that the Taylor polynomials are very good approximations for f
near a. The function R(h) should be viewed as the error term, which is the difference between our
approximation and the function f.
fla+h)= P(a+h) +R(h)
N—_——

approximation

The fact that the error term R(h) has limit

R(h)
li =0
hoo hF
tells us that R(h) is going to zero faster than h* goes to zero, which means that R(h) goes to zero
extremely quickly. Polynomials are very easy to evaluate, graph, and understand, so it is important

that we can approximate functions well with polynomials.

Corollary. (Second derivative test). Let f : R — R be a C? function, and let ¢ be a critical point
of f. If f"(c) <0, then ¢ is a local maximum of f, and if f"(c) > 0, then ¢ is a local minimum of

f

This is another example of how we can use the derivatives of a function to gain insight about its
behavior.

Proof. Consider the 2nd Taylor polynomial

"
Pleth)= f(e)+ F(e) b+ 1 g2
We assumed that c is a critical point of f, so the second term vanishes for

P(c+h):f‘(c)ﬁufﬁz(c)-h2

This function is an upward or downward facing parabola. By the approximation theorem, we know
that the limit

fle+h) = Plc+h) fleth) = f(e) = (f"(c)/2)h?

li =i
e h? e h?2
_ "
o fedh) ) f(e)
h—0 h? 2

should equal 0. In other words, we should have
_fleth) = fle) _ f"(c)
e h?2 T2

Say f”(¢) > 0. So when h is sufficiently small (in some open interval of width d), we must have

flet+h) = fle)

- >0
which implies that f(c+h) — f(c) > 0, so f(c¢) < f(c+ h). This means that c is a local minimum,
as f(c) < f(c+ h) whenever h € (¢ — J,c+ 9). The case of a local maximum is similar. O
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2/25/2019 - Integrability, Riemann integral

Polynomial approximations

Recall that if we have a C* function f : R — R, the kth order Taylor polynomial at a is defined

Pi@) = fla) + Fa)e—a)+ TPy T

The approximation theorem tells us

1. These polynomials are good approximations for f at a, namely that

i 1@+ ) = Pila+h)

=0
h—0 hk

2. These polynomials are unique. If @ € Polyy(R) is another polynomial that satisfies

lim fla+h)—Q(a+h)

=0
h—0 hk

then Q = Py.

3. If f+1) exists, then for h # 0 there exist § € (0, h) so that

f(k+1)(0) hk+1

R(h) = f(a+h) — Py(a+h) = CES]

Application of Taylor polynomials

We will approximation sin1. It’s hard to imagine how we can get a grip on this one. Take
f(x) = sin(x). The kth derivatives of sin are

f(z) = sin(z) f(0)=0
f'(z) = cos(x) f(0) =1
f(x) = —sin(z)  f7(0) =0
f"(@) = —cos(x) f"(0) =1

So we can compute
5 x
Pi(2) =042 +0— - +0+ = +...
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The first few approximations of sin(1) with Taylor polynomials are

How far do we need to go to get sin(1) to 3 decimal places? The theorem implies

fk+1(9) 1k+1
(k+1)!

1
(k+1)!

<

R =|

If we take k = 7, then we are bounding the error by
Lo 0.000024
ﬂ ~ .

Evaluating the 7th order Taylor polynomial yields

11 1 4241
P(1)=1—=4 — — — = =222 _ ) .841468
7(1) 6 120 5040 _ 5040

sin(1) ~ 0.841471

We will now prove the approximation theorem.

Proof. Let k= 1. Then we have
fla+h)—Pi(a+h)

e h = fm h
h) — /
:(g%ﬂa+2 ﬂ@)_fw)
=0

since f is differentiable at a. Now let k = 2, which requires a different argument (the higher order
cases follow similarly). Note that

R(h) = f(a+ h) — Py(a+ h)

is C? (since f is C? and the polynomial P, is smooth) and R(0) = 0, R'(0) = 0, and R”(0) = 0 by
construction of P, (since P, has the same 1st and 2nd derivatives as f). Then we have

‘R(h) ‘ _ | R(h) — R(0) ’

h? h?




where the second line is using the mean value theorem on (0, k), and the final inequality follows
because t < h. This expression goes to 0 as ¢ goes to zero, since R”(0) = 0. This shows

lim E(h)

=0
h—0 h2

When k > 3, the proof works similarly. Iteratively apply the mean value theorem and repeat this
argument to bring the exponenent of the denominator down, and then use the fact that R is C*
and all of its derivatives are 0.

To prove the second part of the theorem, assume that P and ) both approximate f to order
k. Then

. Pla+h)—Qa+h) . Pla+h)—fla+h) fla+h)—Qa+h)
Jim, Bk = jim hE + hE
—040

So P and @ approximate each other to order k. Write
P(x) = ppa® + ...+ prz + po

Qz) = g™+ ...+ gz + qo

Then
0= Jim P(a+h)—Q(a+h)
h—0 hk
(o —ar)(a+h)* (P —q)(a+h) | po—qo
“%HR)( n et % T

This implies that p; — ¢; must be zero for all i.

Perhaps the terms in this sum indeed go to infinity, but simply cancel each other out?

This can be patched by inducting on the degree of the polynomials P and (). When k£ = 0,
the uniqueness of P is equivalent to the uniqueness of the derivative. For k > 0, consider the
truncated polynomials P’ and @' that consist of the first k& terms of P and @ (excluding the
2% term). P’ and Q' are (k — 1)th order approximations of f, so by the inductive hypothesis
they are equal. Applying the argument from above then yields py = gx, so P = Q as desired.
Email me if you have questions.

To prove the last part of the theorem, we’ll restrict our attention to k = 1. Say h > 0. We want to
find 6 € (0, h) such that
f"(0)

~——~h*=R(h
2 = R(n)
2R(h)
7o) =5
The idea will be to apply Rolle’s theorem? to the cleverly chosen function
R(h
o(t) = r(1) - " 2

4 A special case of the mean value theorem. If g(a) = g(b), there exists some ¢ € (a, b) such that g’(c) = 0.
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We know ¢(0) = 0 = g(h), so by Rolle’s theorem there exists s € (0, k) such that

0=24'(s)

h2

-8
Also ¢'(0) =0 = ¢'(s), so by Rolle’s theorem (again!) there exists s’ € (0, s) such that
0=yg"(s)

_ R//(S/) B 2R(h)

h2

We have
R(h) = f(a+h) = f(a) = f'(a)h
R"(h) = f'(a+h)
Hence taking 0 = s’ yields

/
as desired. O
Integration

The three big parts of calculus are differentiation, integration, and the fundamental theorem of
calculus. We will now shift gears to integration.

Archimedes - ‘Measurement of Circle’

Archimedes demonstrated two theorems

Theorem. A circle C' of radius v and circumference c has area 5 .

If we define m by ¢ = 27r, then the area is given by the familiar formula 772

Theorem. We have
223 22

<7< =

B 7

Proof. The proof of the first theorem is given by the ‘method of exhaustion.” The idea is to
approximate C' by inscribed polygons.

f / R '/'/
P F ¥ 74 N
I '|r,-"l
I ¥ h (RO
\ J '\.\ } A
# ) p
.t N i
6l - 7 \\ e 7
% N
- e = N o
octagon 16-gon
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If P, is the regular n-sided inscribed polygon in C, let g be the perimeter of P, and h be the
length of the segment from the middle of a side of P,, and the center of the circle.

Note that the area of P, is given %, and that visually we have 5 > %. The claim (which will
be proved below) is that the area of C' is the supremum of the areas of P,. From this it follows
that the area of C' is less than or equal to 5.

The reverse inequality is proved by similarly considering circumscribed polygons.

To prove the claim, we know that the area of C is greater than or equal to the supremum
of the areas of F,,. To show equality we’ll make

E, = Area(C) — Area(P,)

arbitrarily small. In fact,

1
E2n S §En

To justify this, you should draw a picture that shows why doubling the number of sides more
the halves the error of the approximation. O

To approximate 7 in the second theorem, we just have to compute the perimeters of P,. For
example, the perimeter of Py is 6, so this tells us 7 > 3. There is a recursive formula for g9, in
terms of q,. If

dn = 1+ Sp

where s, is the side length of P,, then we have

82, =2—+/4—s2

(Prove this with the Pythagorean theorem.) So we can easily compute

56:1

s12=2—3
Sou=2—1/2+3

sig=2—1/2+V2+/3
596:2—\/2+ 2+v2+3

Archimedes approximated sgs to get a lower bound = > 222, This is method of extreme

7 ©
exhaustion.

\

We will define the integral with a similar idea. Define the volume of a rectangle in R™ by

n

VOl([CLl,bl] X ... X [an,bn]) = H(bz —a;)

7
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We will then compute volumes of more complicated shapes by exhaustion.

Six)

To make this precise, we will need a few definitions.

Definition. A partition P of [a,b] is a finite subset P C |a,b] that contains the endpoints. More
generally, a partition of Q = [a1,b1] X ... X [an,by] is a tuple P(Py,...,P,), where P; is a partition
Of [ai, bz] .

A partition P of a rectangle ) decomposes () into subrectangles.

Definition. Given a function f : Q — R that is bounded, a partition P of Q, and a subrectangle
R C Q, define
mp = inf{f(x) : x € R}

Mp = sup{f(z): z € R}

The lower/upper sums of P are

L(f,P) =) _mpg - vol(R)
R

U(f,P)=)_ Mg vol(R)
R
Definition. The lower/upper integral of a bounded function f is defined

/ f=sup{L(f,P): P a partition}
Lq

/ f=mf{U(f, P): P a partition}
Q

Definition. A bounded function f is integrable if
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2/27/2019 - Integrability criteria, fundamental theorem of
calculus, measure

The integral

Last time we defined the integral of a bounded function f : @ — R defined on a closed rectangle
Q C R™ We said f is integrable if

=1

J4Q Q

where the lower /upper integrals are defined as

/ f =sup{L(f, P) : P a partition}
Lq

/ f=inf{U(f,P) : P a partition}
Q
where the lower/upper sums of a partition P are

L(f,P) = > mpg - vol(R)

R a subrectangle
U(f,P)= Y. Mg-vol(R)
R a subrectangle

and
mpg = inf{f(x) : x € R}

Mp =sup{f(z): z € R}

Examples
e Define f:[0,1] — R by
)1 zeQ

For any P, we have

U(f,P)=)_ Mg vol(R)
R
=1

Since the rationals are dense in [0, 1], there will always be some rational in R, which

forces M = 1. Similarly
L(f,P)=0

for all partitions P, which means that f is not integrable.
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e Define f:[0,1] — R on [0,1]. We claim

1
f=3
/[0,11 2

This matches our intuition, as the integral should measure the area of the triangle under
the graph of f from 0 to 1.

To prove this, define the partition

Then we have

The lower sum is similarly

Then we have

5 =sup{L(f, Po)}

< sup{L(f, P)}
< inf{U(f, P)}

< inf{U(f, P)} = %

/;f=/;f=;

1 z=
0 z#

which proves that

e Define f:[0,1] — R on [0,1] by

DO — DO
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f is indeed integrable. To prove this, define the partition

1 11 1

P, = - — -+ -1

" {0’2 n’2+n’}
Then 5 ,
n o n

By taking n, the upper and lower sums both converge to 0, so f is integrable with integral
0.

In general, the third example from above should convince you that if f is not continuous at only
finitely many points, then f is integrable. We will explore the question of precisely when a function
is integrable later.

Question: In the definition of the integral, where did we use the fact that f is bounded?

Answer: To define mr and Mg, we need to know that f is bounded (for the supremum
and infinum to exist).

Question: Why are i o f and TQ f always defined?

Answer: All the lower sums are bounded by any upper sum, and vice versa. See the lemma
below.

Lemma. For any partitions P and P’
L(f,P) <U(f,P')
In particular, {L(f, P)} are bounded above by any U(f,P’).
Definition. Let P = (Py,...,P,) and P= (Pl, e ,Pn) be partitions of Q. P is a refinement of
P if P, C P; for alli.

P is a refinement because the subrectangles are smaller: each subrectangle of P is contained in a
subrectangle of P.

Proof. There are two important facts about partitions we will use.

1. If P is a refinement of P, then

L(f,P) < L(f, P) (1)
U(f,P)>U(f,P) (2)
Inequality (1) follows because if R C R, then m # = MR, as we are looking at the infinum

of f on a set that contains fewer points. Inequality (2) follows from a similar reason. So
refinements make the lower sums increase and the upper sums decrease.

44



2. Any two partitions P and P’ have a common refinement given by

P'=PUP,...,P,UP)

Given P and P’, let P” be their common refinement. Then we have

L(f.P) < L(f,P")
<U(f.P")
<U(f.P)
which is the inequality we were aiming for. O

There are two components of the theory of integration. The first part seeks to answer which func-
tions are integrable. The second part develops techniques to compute integrals without resorting
to the definitions (namely with the fundamental theorem of calculus).

Integrability criteria
Theorem. If f : Q — R is continuous, then f is integrable.

Any important observation will help us here. If for every ey > 0 there exists a partition P such
that U(f, P) — L(f,P) < ¢, then f is integrable. It’s easy to see the contrapositive: if f is not
integrable, then the infininum of {U(f, P)} and the supremum of {L(f, P)} differ. Take € to be
the distance between them. Then there is no partition such that U(f, P) — L(f, P) < ¢, since this
would contradict the infinum/supremum on the upper/lower sums.

Recall that if f is continuous on @ (a closed rectangle), then f is uniformly continuous. So for all
€ > 0, there exists some § > 0 such that |z — y| < § implies |f(z) — f(y)| <e.

Proof. Fix € > 0. By the above remark, we want to find P such that U(f, P) — L(f,P) < e. In
other words, we want to make the quantity

U(f,P)—L(f,P)=> (Mg —mpg)-vol(R)
R

By the uniform continuity of f, we can choose § > 0 such that |x — y| < § implies

€

[f(x) = fy)l <

vol(Q)
Then choose a partition P fine enough so that all the subrectangles have diameter smaller than §.
Then .
Z(MR - mR) ) VOI(Q) < Z VOI(Q) ’ VOI(Q) =€
R R
Then f is integrable, as desired. O
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Examples

e Define the set
B ={(z,y) eR?: 22+ 4% < 1}

Define the function xp : @ — R by

1 z€B

xB(z,y) = {o v B

The integral |, o XB give us the area of the circle (as the graph of xyp in three dimensions
is a cyclinder of length 1).

xB is discontinuous at all points in the boundary of B, which consists of the circle
of radius 1. We would like to be able to compute integrals like this.

Theorem. If B C R" is a subset, then xp is the characteristic function of B and is defined

B 1 z€B
=30 2¢B

xB s integrable if and only if the boundary of B has measure 0.

We will come back to this theorem and define the different parts of the statement.

The fundamental theorem of calculus

/[a’b}fz/abfz/abf(fv) d

dx is just a symbol write now. As a convention, we take

[i==]

Theorem. (Fundamental theorem of calculus). Let f : [a,b] — R be a continuous function. Then
1. The function F defined

If a < b, we sometimes write

F = [ sy o

is differentiable on (a,b), and its derivative F' is given by f.

2. If g : [a,b] = R is continuous and differentiable on (a,b) with ¢' = f, then
b
| =90~ gta)

The second part of the theorem tells us we can compute the integral of any function for which we
know an antiderivative. The first part of the statement says that any function has an antiderivative
(if we just take g = F).
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Examples

e We have

for g(z) = 323 — 32,

We should believe that the function F' defined above is differentiable, since the difference quotient

F(t+h) ~F(t) _hf(t) _
)= e 2

since f is continuous (draw a picture to make this argument clear).

We will use the integral to define the area of a subset of R™ by successively performing better
approximations of the subset with rectangles. This idea agrees with our intuition of the area of
simple shapes, and it will turn out to be the correct definition to take.

Measure

Definition. A subset B C R™ has measure 0 if for all € > 0, there exist countably many rectangles
Q1,Q2, ... (or balls) that cover B so that

BCGQZ‘

i=1

Z vol(Q;) < €

00
i=1

Examples

o If B C R” is finite, B has measure 0. Cover each point x € B with a ball of total volume
less than €/|B|.

e Q C R has measure 0. Since Q is countable, write Q = {q1, ¢2, . ..}. Take

Qi = (Qi_;a%“i‘;)

The {Q; : i € N} rectangles cover Q, and

;VOI(QZ‘) = ;; =€

using the formula for the sum of a geometric series.

47



3/4/2019 - Integrability and measure, Cavalieri and Fubini

Integrability and measure

Recall that a subset B C R™ has measure 0 if for all € > 0, there exist open rectangles Q1,Qo, ...
that cover B such that
Zvol(qi) <e€

We saw that finite sets, countable sets, and countable unions of measure 0 sets are all measure 0.
The idea with the second two is to cover the set with open rectangles whose area is shrinking like
the terms of a geometric series, and hence converges to a value less than e.

The Cantor set

Let Cp = [0,1], C1 =[0,1/3] U [2/3, 3], and continue to inductively define C), by removing the
middle third of each subinterval. Then the Cantor set is given by

C' has measure 0. Observe that Cy has volume 1, C has volume 2/3, C5 has volume 4/9, and
so on. So Cy, has volume 2"/3". Since

: 2\"
S (3) -

we can always consider n large enough so that it is possible to cover C' with open sets of arbi-
trary volume.

Note that although C' has measure 0, it is uncountable. We can represent C' as the ternary
decimal expansions 0.aias ... that don’t end in repeating the value 2 and that don’t contain
any 1.

We can use measure to characterize integrable functions.

Theorem (Riemann-Lebesgue Theorem). Let f : Q@ — R be a bounded function, with Q@ C R™ a
closed rectangle. Define
By ={x € Q: f is not continuous at x}

Then f is integrable if and only if By has measure 0.
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The theorem from last time is a particular instance of this more general result (see the below
example). We won’t prove this now, but some aspects of it are on the homework.

Examples

e If f is continuous, then By = &, so fQ f exists. We proved last time this was integrable
using uniform continuity, but it now follows directly from the theorem.

o Let C C R" be bounded at C C @ with @ a closed rectangle. The characteristic function

of C'is
(2) 1 ze€C
w pry
AL 0 otherwise

Then B, = bd(C), so xc is integrable if and only if bd(C') has measure 0.

e Define

0 otherwise

1 2€Q

0 otherwise

1
f<x>={1 7= 2

9(T) = Xcnp,1) = {

By = {1/2} and has measure 0, so f is integrable. But B, = bd(Q N [0,1]) = [0,1] (as
every neighborhood of any « € [0, 1] contains both rational and irrational points), so g is
not integrable.

e Let C = B1(0) C R3. Then the boundary of By is the hollow sphere of radius 1, and has
measure 0 (by the homework). Then

vol(C) = / XcC
[7171]

exists, and we will return to the question of evaluating it later.
e Recall that Thomae’s function is defined
z=1L

1
) =141 q
/() {0 otherwise

We know By = QN[0, 1], which are countable. Then By has measure 0, so f is integrable.
Note the difference between this example and g defined above. Thomae’s function is
integrable because it is in fact continuous at all irrational numbers.

We can also evaluate some of the integrals using the below result, which is left as an exercise.
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Let f: @ — R be a function, and suppose the set

{reQ: f(z) #0}

has measure 0. If ] is integrable, then
/(;2

This claim is not too hard to prove, and it is a worthwhile exercise. This result implies that
the integral of Thomae’s function is 0.

The fundamental theorem of calculus

Theorem (Fundamental Theorem of Calculus). Let f : [a,b] — R be continuous. Then

(i) F(x)= [T f is differentiable, and F'(z) = f(z).

(it) If gla,b] — R is a differentiable such that ¢'(x) = f(x) for all z, then

b
/ f = o(b) - g(a)

This theorem implies all of the familiar integration rules, such as substitution of variables and
integration by parts.

Corollary (Substitution of variables). Let f : [a,b] — R, and suppose u : [c,d] — [a,b] is bijective
and differentiable with u(c) = a and u(d) =b. Then

/a " o) de = / ) ) dy

Proof. If F'(z) = f(z), then

(Fou)(y) = F'(u(y)v'(y)
= flu(y)v'(y)

by the chain rule and the fundamental theorem of calculus. Then this yields

d
/ () (y) dy = (F o u)(d) — (F o u)(c)
F(a)

= F(b) -
b
:/ f(x) dz
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Corollary (Integration by parts). If f,g : [a,b] — R are differentiable, then we have
, b b
o= [ oy = [ o+ 1o

b b
/ Il = F(b)g(b) — f(a)g(a) - / 1o

Examples

e We can compute

/2 /2
/ cos?(#) df = / cos @ cosf df
o9
/2
= [sin&cos 0] sin f(—sin 6) df
0
/2
sin® 6 df

I
S— S— S—

/2
1dO — cos® 6 db

/2 w/2
1do — / cos’ 0 do
0

using integration by parts. Hence
w/2
/ cos2fdf =
0 4
e We can compute the area of the circle by integration
1
A:2-/ V1-—z2dx
—il
Subsituting x = sin § and dx = cos 0 df yields
/2
A:2-/ V1 —sin?6 cos @ db
—7/2

w/2
2. / cos? 0 do
—7/2

w/2
2. <2/ cos20d¢9>
0

=T

as cosine is even and therefore symmetric about the y-axis.

Proof of the fundamental theorem of calculus. Let f : [a,b] — R be a continuous function and
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define F(z) = f; f as in the theorem. To prove the first part of the theorem, observe that we have

F(c) = }ng% F(e+ h})L — F(c)

And

Fle+h)=F(e) _ 7" f—[5f J&f

h h h

Say h > 0 (the other case is identical). Let m, M be the minimum and maximum of f on the closed
interval [c, ¢ + h]. Then

ct+h
m-hg/ f<M-h

1 c+h
mﬁh/ fSM

You will prove this intuitive fact rigorously on the homework. As h goes to 0, m and M converge
to f(c), since f is continuous by assumption.

To prove the second part of the theorem, let g be an antiderivative of f. Then both ¢ = f
and F' = f. This implies (g — F)' = 0, so ¢ — F = ¢ for some constant ¢. We can compute this
constant

c=g(a) = F(a) = g(a) = 0
Then

as desired. O

Examples

2
e Define H(z) = [, f(t) dt. Then we can view H as the composition z — z* — [2f.
By substitution of variables, we have

H(:g):/0z2 f(t) dt:/ozf(xQ)-Q:pdx

Then the fundamental theorem of calculus implies H'(z) = 2z f(x).

Fubini’s Formula

We will introduce one more theorem that’s extremely useful for evaluating integrals. We would
like to be able to use the fundamental theorem of calculus, which tells us how to integrate over
an interval in R, to compute integrals in higher-dimensional settings. It works by cutting up the
domain into ‘slices’ that are one-dimensional integrals and then performing a successive integrals.
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Theorem (Fubini’s Formula). Let Q = [a,b] X [¢,d] and f: Q — R be continuous. Then

/sz/::a (/yicf(x,y)dy> ai

Examples

e We can use Fubini’s theorem to compute the volume of B;(0) C R3. Define the function
f:Q@=10,1 x[0,1] = R by

17$27y2 $2+y2§1
fz,y) = .
0 otherwise

Then

vol(B) —8-/Qf

1 1
=8'/ </ f(fv,y)dy> dx
=0 y=0
Loz
:8-/ —(1— 2% dx
x:04
371
:27r[x—$]
3o
_dn
3

Theorem (Fubini’s Theorem). Let Q = A x B C RF x R™ and f : Q — R be continuous. Then

/Qf_/A</Bf(33,y)dy> da

The continuity assumption is important here. For example, Fubini’s theorem fails for the function

1 z=3y€Q
0 otherwise

f(w,y)Z{

defined from [0,1]?, as
1
1
/ IG5y dy
y=0

does not exist. It is possible to remedy this problem and further strengthen the theorem.

Application

Theorem (Cavalieri’s Principle). Shapes with cross sections of equal area have equal volume.
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3/6/2019 - Function spaces, ODEs

Fubini’s theorem

Recall Fubini’s theorem, which says if f : [a,b] X [¢,d] — R is continuous, then we can compute

/sz/:a/ydcﬂx,y) dy dx

There is a version of the theorem for when f is discontinuous but still integrable. See Pugh for the
details. We will prove the continuous case now.

Proof. Define I(z f f(z,y) dy. We want to show

fr= 1

Fix a partition P = (P;, P3) of . The main claim of the proof will be that

Since f is integrable, this implies that I is integrable and fQ f= f; I
Let’s show L(f, P) < L(I, Py). If S is a subinterval of P; and T is a subinterval of P, we have
L P) = . inf{f(wy) : (2,) € 8 x T} - vol(S x T)

SxT

> (me{f £0) s (0,0) € 8 T} - vol(T) ) ()

(+)
and
L(I,Py) =) inf{I(z) : x € S} vol(S)
S
)

Then it’s evident that if we want to show L(f, P) < L(I, P;), we should prove that (x) is less than
or equal to (#x*). Fix some x € S, then

/fxy dy

L(f(x,), P2)
:me{f z,y):y €T} vol(T)
T

> S inf{f(z,9) : (,y) € S x T} vol(T) = (+)
T
since if we take the infinum over the larger set .S x T', the result is smaller than the infinum over the
slice {z} x T'. So for each fixed x € S, I(x) is greater than or equal to (). Then inf{I(X) : z € S},

which is (xx), is greater than or equal to ().

The inequality U (I, Py) < U(f, P) follows similarly, so this completes the proof. O
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This completes our discussion of calculus. We will develop many of these tools in the multivariable
context, but first we will explore differential equations.

Differential equations

Definition. Given a function f(t,x), define a differential equation

' = f(t, )

A differential equation involves both a function and its derivatives. A solution to this equation is
a function x(t) so that

a'(t) = f(t, (1))
for all t.

Examples
e Consider the function given by
fltw) ==
g
Then 2’ = —t/z. The function

z(t) = Va? — 2

is a solution to this differential equation, as

=2 —t —t

B 2va? — 2 B Vaz—2  z(t)

o' (t)

Differential equations often model physical phenomena. We can think of z(t) as the position of a
particle at time ¢t. Geometrically, we can view a differential equation by constructing a plot in the
following way. At a point (¢,7) € R?, draw a line segment with slope f(t, ).

Then the graph of a solution z(t) is tangent everywhere to the line field (which is the collection of
points in R? with their associated lines). This follows from what it means to be a solution and how
we constructed this line field.
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Examples

e Let 2/ =1+t —x. To plot the line field, for each ¢ € R draw the curve f(¢,z) = c¢. Then

draw the line segments of slope ¢ along this curve.

Without being able to explicitly solve for z(t), we can get a sense of their form by

examining the graph of this differential equation.

Then follow the line

Plot a solution by choosing an initial condition x(ty) = zo.

t is

7o) € R? to find as solution. In this example, x(t)

field, beginning at the point (%o,

a solution.

v.y\

A N N N

/
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/
/
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There are some questions we can ask about these solutions. For example, it seems like all

of the solutions converge to the line x(t)

t in some sense. What exactly is happening?

cross’ this line?

Is it possible for a solution to °

L Then we have the following graph and solutions.
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General Questions: Consider a differential equation f(¢,x) and intitial condition z(tg) = xo.

1. Is there a solution to

2. Is the solution unique (for a given initial condition)? In general the answer is no.

Examples

e For example, the equation 2’ = mt;l from above has no solutions when the initial condition
is (0) = xg # 1. Uniqueness fails for the initial condition z(0) = 1.

To answer these questions, we will develop the theory of function spaces.

Space of bounded functions

Definition. The space of bounded functions is the vector space
Cy = Cp([a,b],R) = {f : [a,b] = R bounded}
Cy comes with a natural norm, called the sup norm, given by
|1+ Cp — [0,00)
f= |lf Il = sap{[f(z)| : = € [a, 0]}

The sup norm satisfies the three essential properties of a norm:

1. Nondegeneracy, which means ||f|| = 0 if and only if f = 0.
2. Compatibility with multiplication, which means for scalars ¢ € R we have |[cf| = |c| - || f]l-
3. Triangle inequality, which means || f + g|| < || ]l + l|gll-

We can interpret ||f — g|| as the ‘distance’ between two functions, where the distance between f
and g is the largest distance between the graphs of the two functions.

The sup norm makes Cp into a metric space, which is just a set that has a distance function
that is symmetric, nondegenerate, and satifies the triangle inequality. The important idea is that
this allows us to employ topological concepts when talking about the function space Cjp.

Definition. A sequence of functions (f,) with f, € C, converges uniformly to f € Cy if
lim [|f, — f| =0
n—oo

Definition. A sequence of functions (f,) with f, € C, converges pointwise to f € Cy, if
Jim f,(z) = f(2)

for all x.
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Note that uniform convergence implies pointwise convergence, but the converse does not nec-
essarily hold. A nice counterexample comes from taking

fn = X[n,n+1]

The f, functions converge pointwise to 0, but they do not converge uniformly to anything.

Examples

e Define f,(z) = £ on the interval [0, 1]. Then (f,) converges uniformly to 0.

e Define f,(z) = 2™ on [0,1]. For z < 1,

lim f,(x)=0

n—o0

For z =1, f,(x) =1 for all n. Then (f,) converges pointwise to the function

f(x):{1 z=1

0 otherwise

However, (f,) do not converge uniformly. Since each f,, is continuous, for a small € the
function cannot jump from an e neighborhood around 0 to an e neighborhood around
1 without passing through the intermediary points. This is a special case of the below
theorem.

Note that if a sequence converges pointwise to some function, then if they converge uniformly they
must converge uniformly to that function. In general, uniform convergence preserves nice properties
of functions like continuity and integrability.

Theorem. Suppose the sequence (fy,) converges uniformly to a function f, where each f, is con-
tinuous. Then f is continuous.

Proof. To prove that f is continuous at p € [a,b], fix € > 0. Then the triangle inequality applied
twice yields

[f (@) = ()] < [f(2) = ful@)| + | fu(2) = fu(p)| + | fu(p) = f(D)]

The left and right terms are small by uniform continuity, and the middle term is small by the
continuity of f,,. To make this prcise, choose n large enough so that

€
Fala) — F(@)| < &

for all x by uniform convergence. Choose § > 0 such that |z — p| < § implies
€
|fn(x) - fn(p)| < g

Then |x — p < § implies |f(x) — f(p) < €, as desired. O

Corollary. C° C Cy, is a closed subspace. In words, the space of continuous functions is closed in
the bounded functions.
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Proof. This follows immediately from the previous theorem, since any converging sequence of func-
tions in C° converges to a function in C°. O

Theorem. Cj is a complete metric space. In other words, if (f,) is a Cauchy sequence in Cy,
then f, converges to some f € Cy.

We will prove this next time.

Corollary. The continuous functions C° C Cy is also complete.

Proof. Let (f,) be a Cauchy sequence of continuous functions. Cj is complete, so (f,) converges
to some f € C%. Uniform convergence of continuous functions to f implies that f is continuous, as

desired. O
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3/11/2019 - Function convergence, equicontinuity, Arzela-Ascoli
theorem

ODE (ordinary differential equation) existence

Theorem (Peano’s Theorem). If f(t,z) is continuous near (to,zo), then the initial value problem
x' = f(t> l‘)
SL‘(tQ) = X0

has a solution near tg. Namely, there exists € > 0 and a function ¢ : (tg — €,tg + €) = R such that
(b(t()) =xg and gf),(t) = f(t, (b(t)) for allt € (to —€,to + 6).

Examples

e We saw last time that the solutions of ' = —t/x are of the form ¢(t) = Va? — 22 (semicir-
cles). This solution is only defined on [—a, a], which is why the theorem only guarantees

the existence of a local solution. It doesn’t imply that there is always a solution defined
on all of R.

The theorem also doesn’t say anything about the case when x(ty) = 0, since f(t,z) =
—t/z is not continuous at (to,0).

e Uniqueness of solutions is also not guaranteed. Consider the function

f(t?'r):{\/5 v=0

0 otherwise

Consider the solutions that begin at (0,0). Then we can follow the slope field to find
solutions. The obvious solution ¢;(¢) = 0, which is a horizontal line. But there’s also

another solution given by
t2
F t>0
$a(t) = { !

0 t<0

There is a stronger theorem called Picard’s theorem that guarantees the existence and unique-
ness of a solution to a differential equation, assuming that the function f is Lipschitz. We
won’t speak about this, but you can see Pugh for details.

Uniform convergence

Recall that C, = Cy([a, b]) is the vector space of bounded functions with a norm defined by
IfIl = sup{[f(z)| : = € [a,0]}

This makes C} into a metric space. We can talk about uniform convergence, which says that a
sequence (f,,) converges to a function f if lim, o |[fn — f]| = 0.
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We proved last time that if a sequence of functions (f,,) that are continuous at p converges to
f, then f is continuous at p as well. So uniform convergence preserves continuity. We can show
that uniform convergence preserves other ‘nice’ properties of functions as well.

Theorem. If a sequence of functions (f,) converges uniformly to f and each f, is integrable, then
f is integrable and
/ £ = lim / fu

In such a situation, we might say that ‘limits and integrals commute,’ since this equation is equiv-
alent to
b b
/ lim f, = lim fn
a n—oo n—oo a

Proof. To prove that f is integrable, note that by the Riemann-Lebesgue theorem, it suffices to
show that
By ={x € [a,b] : f discontinuous at x}

has measure 0. We know that f, is integrable, so By, has measure 0. Then each f;, is continuous
on [a,b] \ By,. All of the f, functions are continuous on

[a,b] \ U By,
k

By the above theorem, this implies that f is continuous on [a,b] \ |J By,. |J By, has measure 0,
since it is the countable union of measure 0 sets. Therefore f is integrable.

To show that f; f=lim, 0 ff fn, observe that we have

‘/:f—/:fn =‘/bf—fn
/|f ()] de

<|f=fall- (b—a)

by Homework 4. As n goes to infinity, the quantity ||f — fy|| goes to 0, as desired. O

We also have the theorem from last time asserting the completeness of the function space Cj.

Theorem. If (f,) is a Cauchy sequence in Cy, then there exists f € Cy such that f, converge
uniformly to f.

Proof. Since (fn) is a Cauchy sequence, for all € > 0 there exists N > 0 such that n,m > N implies
|fn(z) — fm(x)] < € for all 2. Then for each particular « € [a,b], then sequence (f,(x)) in R is
Cauchy. R is complete, so each of these sequences converges. Then we can define

(@) = Jim_fu(@)
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So we know that the f,, functions converge pointwise to f, but we must show that they also converge
uniformly. Fix € > 0. Then

[f (@) = fu(@)| < |f(2) = fn(@)] + [fm(2) = fo(2)]

We know the second term is small for all « because (f,) is a Cauchy sequence, and we know the
first term is small for each x when m is sufficiently large. Choose N such that n,m > N implies
|| fr — fmll < €/2. For each z, choose m, > N so that |f(z) — fi(z)| < €/2.

If n > N, then for each z € [a,b] we have
[f (@) = fu(2)] < |f(2) = fin, ()] + | fina (2) = f(2)]
€ €
< 5 + By
=€

We must still show f € Cp. Since ||f, — f|| < 1, this implies || f|| < [|fn]| + 1 by the triangle
inequality. So f is bounded, which completes the proof. O

Arzela-Ascoli theorem

We will now turn to the Bolzano-Weierstrass theorem for Cj,. Recall that the Bolzano-Weierstrass
theorem stated that if (x,) is a bounded sequence in R, then there exists € R and a subsequence
(xn,,) of (z,) such that z,, converge to .

Question: What condition on a sequence (f,) in C, guarantees a uniformly convergent subse-
quence?

The naive approach would be to similarly demand that (f,) are bounded in norm (meaning
Ifnll < M for some M > 0), but this is not enough. For example, the sequence of functions
defined by fn(x) = 2™ on [0,1] is bounded in norm by 1, but there is no convergent subsequence.
This is easy to see, since f,, converge pointwise to the discontinuous function

1 =1
-5 12,

even though each of them are continuous (continuous functions converge uniformly to another
continuous function). In fact, ||f, — f|| = 1 for all n. So the situation in C} is more subtle.

Theorem. Let (f,) be a bounded sequence of continuous functions in C°. If (f,) is equicontin-
uous, then there exists a subsequence (fp,) and f € C° such that (fn,) converges uniformly to

f.

We haven’t defined equicontinuity yet, so the theorem doesn’t say much. We will work up to the
definition.

Lemma. Suppose the sequence (fy,) in Cy is bounded as a sequence. Then there exists a subsequence
(gk) such that (gx) converges pointwise on Q N [a,b].
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Examples

e Suppose (f,) is the sequence defined by

n mod k 1 k—1
fn(3) =2 e 0,2, T

and let f(x) = 0 for other . Then, for example, we have

fn(1) =(0,0,0,...)
fn(%) = (%707%’07 )
fa(5) = (5:5:0,5:5,0,)

The first functions converge to 0. We can take subsequences of these functions, examining
each point individually to select a subsequence that converges on that point. See the
below proof for details.

Proof. Let Q = {q1,q2, ...} be an enumeration of Q N [a,b]. We will build a nested family of sub-
sequences of (fy). Note that f,(¢q1) is a bounded sequence in R, so by Bolzano-Weierstrass there
exists a subsequence (fy, ) such that (fy,(¢1)) converges to y;.

Look at this sequence (fn,). fn, (g2) is a bounded sequence in R, so there is a subsequence (fn,, (¢2))
that converges to yo. '

We can similarly continue in this way, defining the kth subsequence (f¥) of (f%=!). Then these
sequences have the property that f*(g;) converges to y; whenever i < k. So the kth subsequence
converges on the first k£ points.

Define g, = f,’: (the kth term of the kth subsequence). Then by construction, (gi) is a subse-
quence of (fy,) such that (gx(g;)) converges to y; for all i. O

Suppose (f,) is a sequence of continuous functions. The subsequence (gi) from above also consists
of continuous functions. We would like to show that (gx) converges uniformly. However, since C°
is complete, it’s enough to show that (gi) is a Cauchy sequence.

So we want to show |gx(x) — ge(z)| is small for all z. We have

9k(2) — ge(®)] < |gk(x) — gr(@i)| + gx(ai) — qe(@i)| + |ae(qi) — ge(z)]

using the triangle inequality twice. The first and last terms are small by the continuity of g and
gr, SO by chooseing ¢; sufficiently close to x we can bound these. The middle term is small because
(9x(q;)) converges to y;. The problem is that we don’t know how these terms interact with each
other.

Definition. A sequence of functions (f,) is equicontinuous if for all € > 0, there exists 6 > 0
such that |x — y| < § implies | fn(x) — fu(y)| < € for all n.
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Examples

e Define f,(x) = 2™ on [0, 1]. The sequence (f,,) is not equicontinuous. Each f,, is contin-
uous at x = 1. If |1 — y| < ¢/n = J,, then |1 — y"| < e. However, §,, converges to 0 as n
goes to infinity, so we cannot choose some ¢ such that works for all of the f, functions.

Next time we will see some more examples of equicontinuity and then prove the Arzela-Ascoli
theorem.
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3/13/2019 - Arzela-Ascoli theorem, ODE existence theorem

Equicontinuity and Arzela-Ascoli

Recall that C, = Cy([a, b, R) is the space of bounded functions on [a,b]. A sequence of functions
(fn) is bounded if there exists M > 0 such that || f,|| < M for all n (each f,, as a function is
bounded by definition, but this is saying that the norms of these functions are also bounded by
some M).

Recall that (fy,) is equicontinuous if for all € > 0 there exists 6 > 0 such that |z —y| < J im-
plies |fn(x) — fn(y)| < € for all n. When we restrict our attention to one particular n, this means
that each f, is uniformly continuous. The added power of equicontinuity says that § doesn’t actu-
ally depend on the particular function f, we are considering.

Examples

e Suppose each f, is differentiable and || f}|| < M for all n. Then (f,) is equicontinuous.

Proof. We have
(@) = fa()l = 1f ()@ —y)l <M - |z —y]

by the mean value theorem. The right hand side does not depend on n, so take § <
e/M. O
e Suppose (g,) is a bounded sequence with ||g,|| < M for all n. Define
xr
On () :/ gn(t) dt
a

Then (¢, ) is equicontinuous.

Proof. We have

6n(e) — 6u)] = ]/:gn—/aygn

=]/;fn

< lignll - |z — v
<M -z —yl

The right hand side does not depend on n, so take § < €/M.

The sequence (fy,) defined by f,,(x) = 2™ on [0, 1] is not equicontinuous. This is reflected
in the fact that f/ (1) = n, so the norms of the derivatives f;, are unbounded. O

Theorem (Arzela-Ascoli Theorem). Suppose (fy,) is a sequence of bounded functions that is itself
bounded and equicontinuous. Then there exists a subsequence (gi) of (fn) and a function g € C°
such that g converge to g.
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Proof. Take Q = QN [a,b], and enumerate these by Q@ = {q1, ¢, ...}. Last time we showed there
there exists a subsequence (gi) such that the sequence (gi(q)) in R converges to ¢ for all ¢ € Q.

The main claim is that this sequence is Cauchy, namely that for all ¢ > 0 there exists N > 0
such that k, ¢ > N implies |g(x) — ge()| < € for all x. Given the claim, there exists such a g € C°
because the metric space C? is complete.

Now to show the claim, fix € > 0. (g) is equicontinuous, as it’s a subsequence of a sequence of
equicontinuous functions. Then there exists 6 > 0 such that |x —y| < J implies |gr(x) —gx(y)| < €/3
for all k. Choose m > 0 such that every x € [a,b] is within ¢ of at least one of ¢1,q2,...,qn. We
can do this because @ C [a,b] is dense, so going far enough along in this sequence guarantees that
we are within ¢ of at least one of these.

Next, choose N > 0 such that k,¢ > N implies |gr(qi) — ge(gi)| < €/3 for all 1 < i < m. We
can do this because each sequence (gi(g;)) in R converges (and is Cauchy), so let N be the maxi-
mum of the IV; obtained from each of these sequence.

Then if k,£ > N, for each x choose g; such that |z — ¢;| < §. This yields

l9k() — ge(@)| < lgk(®) — gr(@i)| + |9k(ai) — ge(qi)| + |9e(gi) — ge()]
<gHgtg=c

which proves the claim, completing the proof. O

Exercise

Consider the sequences of functions (f,,) and (g,) defined by
fn(x) = sin(27nx)
. TX
gn(z) =N+ sm(?)
One of these is bounded/equicontinuous, and the other is not.
(gn) is equicontinuous. Taking the derivative yields

T™r
9@ = I cos(C)| <

So the derivatives are bounded. By the example above, this implies (g,,) is equicontinuous.

(fn) is not equicontinuous. The functions oscillate more rapidly, and their derivatives are
increasing without bound.
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Then by the theorem, (g,) has a subsequence (g, ) that converges to some g. To determine g,

note that sin(7wx/n) has Taylor polynomial
T  T\3Z T\5T

Pla)="2_ (T T
() n (n) 3! (n) 5!

Multiplying P(x) by n allows us to guess that g, converge to g, where g(x) = mz. This is in
fact true.

Peano’s existence for solutions to ODEs

Theorem (Peano’s Theorem (1886)). Consider an intial value problem
= f(t,x)
x(to) = X0

If the function f is continuous near (ty,xq), then this problem has a solution near ty. Namely,
there exists ¢ : (to — a, to + a) = R such that ¢(tg) = xo and ¢'(t) = f(t, (t)).

Euler’s approximation method

Choose a step size h > 0.

Start at (tg, zp). Then move along the line of slope f(¢,z¢) for time h.

Set (tl,xl) = (to + h,xo + f(to, ho)h).

Follow the line of slope f(t1,21) for time h, and continue to repeat this process.

This method yields a numerical approximation for a solution as h becomes small.

To find an actual solution, the idea will be to take a sequence ¢;, of approximations with step size
hi, which goes to 0. Then we will show ¢, has a convergent subsequence using Arzela-Ascoli and
show that the limit is indeed a solution. We will sketch a proof with four steps.

Proof. Step 1. Translate the problem into something more tractable using the fundamental theorem
of calculus. If we have a solution ¢ such that ¢'(t) = f(¢,¢(t)) for all ¢ is some interval, then
integrating yields

t t
¢'(s)ds= [ [(s,(s))ds

to to

By the fundamental theorem of calculus this is
t
o(t) =wo+ [ f(s,9(s))ds (1)
to

Conversely, given this equality, differentiation yields

¢'(t) = f(t, 6(t))
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So it suffices to find a function that satisfies (1).

Step 2. Use Euler approximations ¢ with step size h(k) that goes to 0. Some care should be
taken when choosing these step sizes, but we won’t go into this now.

Each ¢ is piecewise linear, so we can write

t
or(t) = zo + t o (s) ds

This follows from the fundamental theorem of calculus. The only issue is that ¢y, is not differentiable
at the transition points, but this is not a problem, as we can just break up the integral for

Or(t) = 0 + (dr(t1) — dr(to)) + (P (t) — Pr(t1))

t1 t
=x0+ [ p(s)ds+ [ ¢i(s)ds
t1

to

again using the fundamental theorem of calculus.

Step 3. The sequence (¢y) is bounded and equicontinuous. Define

Ag(t) = {qb;c(t) — f(t, dr(t)) t#t; for some i

0 otherwise

The function A measures the difference betwen the slope of our piecewise linear approximation
and the actual slope of the lines given by the differential equation at a point.

This yields
t
Su(t) =zo+ | P(s)ds
to
t
=zo + ) f(s,0k(s)) + Ag(s) ds

We want to show that the integrand is bounded independent of k. This implies that the derivatives
¢} are bounded, which means (¢;) is bounded and equicontinuous. f is continuous near (to,zo),
so it is bounded near (tg, xg). We also know

ARt = | f(ts2) — F(t, (1))

We can ensure Ay is small by taking a small step size, which ensures that these two terms are
not too far apart (as f is uniformly continuous, since it is continuous near (tg,xo)). In fact, (Ag)
will converge uniformly to 0 near (o, xo). Since both of the summands in the integrand above are
bounded, (¢y) is bounded and continuous.

Step 4. Apply Arzela-Ascoli to obtain a subsequence of (¢y) that converges to ¢ uniformly. Replace
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¢ with this subsequence. We must show that the limit ¢ satisfies equation (1). We have

6(6) = Jim (z0+ 6x(1)
=20+ lim t f(s,dr(s)) + Ag(s) ds

k—o00 to

k—o0

- / i (5, 01(5) + Bu(s) ) s

t
=z + f(S, 90(5) ds

to

as the Ay converge to 0.
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3/25/2019 - Multivariable derivative, chain rule

Today we will start developing calculus in higher dimensions, starting with the derivative.

Multivariable derivatives

Definition. A function f : R® — R™ is differentiable at a € R™ if there exists a linear map

T:R"™ — R™ such that
L fath) ~ f(@) = T(h)

=0
h—0 ‘h|

Note that h is a vector in R”, so we must take the norm in the denominator for this limit to make
sense, as we cannot divide by a vector. The numerator is a vector in R™, so the limit is taken as a
vector (namely the limit of this expression is the zero vector in R™).

Examples

e In the one-dimensional case, the multivariable derivative and the usual derivative coin-
cide. If f : R — R is differentiable in the usual sense at a € R, we can take our linear
map to be T'(h) = f’(a) - h. Then

fla+h) — fla) = T(h) [f(a+h) = fla) = f'(a) - h|

i |h] = |h]
EWLCEROES (NS
So f is also differentiable in the multivariable sense.
Proposition. If f is differentiable at a € R™, the linear map T is unique.
Proof. The proof is left as an exercise. O

Remark. If f is differentiable at a with associated linear map T, denote D f(a) =T.

Examples

o If f(z) = c for any x € R" and ¢ € R™, you can check that Df(a) =0 for all a € R™.

o If T:R" — R™ is a linear map, then DT (a) =T for all a € R™.

The derivative at a point is a linear map between the domain and codomain of the function f.
It is the unique linear map that best approximates the function at this point. In this context,
the single-variable derivative f’(a) should be understood as a linear map from R to R given
by multiplication by f’(a). You can view this linear map abstractly, or alternatively choose a
basis to represent it as a matrix. We’ll discuss this idea further later.
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Examples

e If f: R — R? is a differentiable curve in the plane, we can view f as the trajectory of a
particle in R2. Then the derivative Df(a) is a matrix in My 1(R) which is the velocity
vector.

e If f: R? — R is differentiable, then Df(a) € Mjx2(R). The gradiant f(a) is defined as
Df(a)t € Max1(R). This vector points in the direction here f is increasing fastest at a.
For example, if we take f(z,y) = 2 + y2, you can check

Df(z,y)=(2z 2y )

Then f(a) = Df(a)® points radially, in the direction in which f is increasing fastest.

These examples should give a geometric meaning about the derivative.

Definition. If f : R — R is differentiable at a € R", then for any v € R", the directional
derivative at a is given by
fla+tv) — f(a)

t

Duf(a) = i

This limit exists, and it is equal to D f(a)(v).

The directional derivative captures the rate of change of f as we move in the direction given by v.
The claim is that total differentiability of f implies that the directional derivatives exist and are
equal to D f(a)(v).

Proof. Since f is differentiable at a, we can define

R(h) = f(a+h) = f(a) = Df(a)(h)
R is the numerator of the limit in the definition of the derivative, so by assumption

R(h)

S |
h—0 |h|

We can then compute the quantity

fla+tv) — f(a) _ Df(a)(tv) + R(tv)
t t

_ tDf(a)(v) + R(tv)
t

— Df(a)(w) +

by the linearity of Df(a). We can rewrite the second term as

R(tv) |tv]
|tv] t
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By assumption, the first term goes to zero as t goes to zero. The second term is also £|v|, so the
entire expression goes to zero as t goes to zero. This implies that the limit exists and

fla+tv) — f(a) R(tv) |[tv]|

e ¢ = Jim Df(a)(v) + ito] ¢
= Df(a)(v)
as desired. O

Remark. Let f : R® — R be differentiable at a € R™. When v = ¢; is a standard basis vector,
Df(a)(e;) is the ith partial derivative of f, denoted D;f(a). By the above proof, the matriz for
D f(a) with respect to the standard basis is then given by

Df(a) = ( Dif(a) Daf(a) ... Dnf(a))

Remark. If f is differentiable at a, then all of the directional derivatives D, f(a) exist for all
v € R™. Howewver, the converse is false. Even if the directional derivatives exist for all v, it is not
guaranteed that f is differentiable.

Examples

e Consider the function f : R? — R defined by

ﬂ%w_{éﬁz(%wfg

However, it is possible to remedy this issue. We'll prove the following result next time.

Theorem (Continuous Partials theorem). Let A C R™ be open and f : A — R be a function. If
D, f(x) exists for all i and each D;f(x) is continuous as a function from A to R (given by taking
x € AtoD;f(x)), then f is differentiable at all points in A.

Note that we take A C R™ to be open. We can only make sense of differentiation for functions
defined on open subsets of R™. This is because to take the limit as h approaches 0, we are evaluating
f on some open ball around a. To do this, we need to know that the domain of f is open.

Lemma. If f : R™ — R™ is differentiable, then f is continuous.

Proof. To show that f is continuous, we want that
lim |f(a+ h) — f(a)] =0
h—0
Using the definition of differentiability and the function R as defined above, we have that
[f(a+h) = fla)] = [Df(a)(h) + R(h)]
< [Df(a)(h)| +[R(h)|

As h goes to zero, the first term will go to zero because D f(a) is a linear map (and hence continuous).
By assumption, we know that R(h)/|h| goes to zero, so R(h) individually certainly must go to zero.
This proves that |f(a + h) — f(a)| goes to zero, so f is continuous. O

(
(
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Proposition. If f : R" — R™ and g : R™ — RP are differentiable and ¢ € R is a constant, then

1. D(f +cg) = D(f) + ¢D(g). Namely, the action of taking the derivative itself is linear (this
is distinct from the idea that Df(a) is a linear map).

2. D(go f)=Dgo Df. This is the chain rule.
3. D(fg) = (Df)-g+ f-(Dg). This is the Leibniz product rule.

Proving linearity is easy, and the product rule is on the homework. We’ll prove the chain rule.

Proof. We have the diagram

We want to show that g o f is differentiable and Dg(b) o Df(a) = D(g o f)(a). Let b = f(a),
A= Df(a),c=g(b), and B = Dg(b). Then

fla+h)=b+ A(h)+ R¢(h)
g(b+ k) =c+ B(k) + Ry(k)

Consider the expression

Ryof(h) = g(f(a+h)) = g(f(a)) = B(A(h))

If we can show that

lim Rgof (h)

=0
h—0 |h|

this would imply that the map g o f is differentiable and the map BA is indeed the derivative of
go f. Plug in our above expression for f(a + h) to yield

Ryor(h) = g(b+ A(h) + Ry(h) — g(f(a) — BA(R)
— g(b+ k(b)) — g(f(a) — BA(R)
=c+ B(A(h) + Rf(h)) + Ry(k(h)) —c— BA(h)
— BR;(h) + Ry(k(h)

where we are defining k(h) = A(h) + Ry(h). We also used the linearity of B to cancel terms in the
third line. If we can show that

[BRy(h)| _

pim = =0 (1)
[Ry(k(R))| _

LT ®

then we will have proven the claim. Since B is a linear map, we can bound it for
|BR¢(h)| < Mp|Rg(h)|

We know that Ry(h)/|h| goes to zero as h goes to zero, since f is differentiable. This implies that
Ry (h) itself goes to zero, so the product |[BR¢(h)| goes to zero, which shows the first desired limit
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statement (1).

For the second limit statement, there are two cases. If k(h) = 0, then Ry(k(h)) = 0. Other-
wise, we have
Ry(k(h)) _ Ry(k(h)) |k(h)]
Id LA

Recall k(h) = A(h) + Ry¢(h), so as h goes to zero k also goes to zero (these are all continuous
functions). So we can apply the differentiability of g to conclude that the first term in the product
goes to zero. We can bound the second term in the product by

k)| _ AR 1Ry ()
S

We can bound |A(h)| < Mya|hl, so |A(h)|/|h| goes to zero, while |R¢(h)|/|h| goes to zero because
f is differentiable. Hence the second term from above is bounded, so we have proven the second
limit statement (2). This completes the proof. O

Examples

e Let A, B C R" be open sets and f: A — B and g : B — A be differentiable functions. If
go f =idya, then we can compute the derivative for x € A by

I'= D(ida)(z) = D(g o f)(x) = Dg(f(x)) o Df(z)

Hence we have

Dy(f(z))"! = Df()
e Let f:R? — R be defined by
fl@,y) =2 — Ty + 3zy?

Then compute the partial derivatives, taking one variable to be constant and differenti-
ating with respect to the other.

le(l’,y) =1+ 3y2

Then by the continuous partials theorem we have
(1+3y? —7+6wy )

If we want to know how f changes in the direction (1, 2) at the point (—2,—1), we should
compute

Df(~2,-1)-(1,2) = (4,5) - (1,2) = 14

The dot product notation is the same as multiplying the matrix for Df(—2, —1) given
by (4,5) with the column vector (4, 5).
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3/27/2019 - Continuous partials theorem, multivariable MV,
higher derivatives

Recall that say a function f : R™ — R™ is differentiable at a € R™ if there exists a linear map (the
derivative) Df(a) : R™ — R™ such that

1o F@+h) = f(a) = Df(@)(h)

h—0 |h|
If f:R™ — R is differentiable at a € R", then we have

Df(a)=( Dif(a) Daf(a) ... Dnf(a))

=0

where
Duf(a) = i HH 100 = S

is the 7th partial derivative.

Geometrically, we should understand the derivative as the best linear approximation to f at a
point. For example, in the one-dimensional case, the function

Py(z) = f(a) + f'(a)(z — a)
is the tangent line best approximating f at a. In the higher dimensional case, the hyperplane
Pi(z) = f(a) + Df(a)(z — a)

is the tangent plane best approximating f at a.

Continuous partials theorem

Today we will prove the following result.

Theorem (Continuous Partials theorem). Let A C R™ be open. Let f: A — R be a function, and
suppose D, f(a) exists for all a € A and all i. Further suppose that the functions

a— D;f(a)

are continuous for all i. Then f is differentiable on all of A.

Examples

e Consider the function f : R? — R defined by
f(a,y) =z — Ty + 3y
The partial derivatives

Dy f(xz,y) =1+ 3y
Dyf(z,y) = =7+ 6zy
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exist and are continuous. By the continuous partials theorem, f is differentiable and
Df(a) = ( Dif(a) Daf(a))

e To see why the continuity of the partial derivatives is an essential assumption, consider
the function g : R? — R defined by

2

22 (g, 0
g(z,y) = { T+ (z,4) #
0 (x,y) =0
To compute the directional derivative at (0,0) in direction (v, v2), observe that we have
tv) — g(0
D,g(0,0) = lim 400 =900
t—0 t
t3v%v2
— lim tvf —t2v3
t—0 t
= lim _vivs
50 120 + 3

. g UQ#O
0 wvw=0

However, ¢ is not differentiable at (0,0). For if g were differentiable at (0,0), then we

would have
Dg(0,0) = ( D1g(0,0) D2g(0,0) )=(0 0)

This implies
Dyg(0,0) = Dg(0,0)(v) =0

which contradicts the above computation of the directional derivatives.

The upshot is that if f: R? — R is differentiable at (a,b), then

Df(a,b):R* = R
v Df(a,b)(v)

should be a linear map. In the first example, we have
Df(a,b) : (v1,v9) = (1 +3b*)vy + (=7 + 6ab)vs

which is linear. But in the second example, we have

v7
Dg(a,b) : (v1,vg) —  v2 vy #0
0 wv=0

which is not linear.

Multivariable mean value theorem

To prove the continuous partials theorem, we will need a multivariable generalizationo of the mean
value theorem.
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Theorem (Multivariable Mean Value theorem). Let f : R™ — R be differentiable and let a,a+h €
R™. Then there exists a point ¢ = a + sh, with s € (0,1), such that

fla+h)— f(a) = Df(c)(h)
The idea of the proof will be to reduce to the one-dimensional case.

Proof. Consider the function
g(t) =a+th

Then define H = fog:[0,1] — R. Since f and g are differentiable and H is a function from R to
R, we can apply the one-dimensional mean value theorem to H. So there exists s € (0, 1) such that

H(1) — H(0) = H'(s) - 1

The left side is
f(g(1)) = f(9(0)) = fla+h) = f(a)

By the chain rule, the right side is
(fog)(s) = Df(g(s)) o Dy(s)
Take ¢ = g(s) = a + sh. Dg(s) is just h, so this yields

fla+h) = f(a) = Df(c)(h)

Remark
e The multivariable mean value theorem does not hold if we switch the domain and
codomain. For example, consider the function f : R — R? defined by

f(t) = (cost,sint)

f traces out a circle in the plane. On the interval [0, 7], we are looking for ¢ € (0, 7) such
that

(=2,0) = f(7r) — f£(0) = f'(¢)(w — 0) = w(—sinc, cosc)

But this is impossible, as the norm of the left side is 2 while the norm of the right side
is always .

Continuous partials theorem

We can now prove the continuous partials theorem.

Proof. Fix a € A. Then examine the matrix
T=(Dif(a) ... Dyf(a))
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To show f is differentiable, we want to prove

i L@+ ) = fla) =T(h) _
t—0 ’h‘

For concreteness, we will work when n = 3, but the generalized proof is identitical. Define
R(h) = f(a+h) — f(a) = T(h)

Write?
h = hiey + haea + hses

bPo=a
p1=po + hiey
p2 = p1 + haea
p3 = p2 + hses
Then we have 5
fla+h) = fa) = f(ps) = f(po) = D f(pi) — f(pi-1)
=1
Hence
R(h) = f(a+h) — f(a) = T(h)
hy
_ (Z For) - f(pi_l)) —( Dif(a) Dof(a) Dsfla)) | o
i=1 hs

3
=> (f(pz') — f(pi-1) — Dz‘f(a)hz'>
i=1
Since p; = p;—1 + h;e;, by the single variable mean value theorem applied to f composed with the
map t — p;_1 + t;e; there exists t; € (0, h;) such that

f(pi) = f(pi-1) = Df(pi—1 + tiei)(hiei)

5We have the following diagram, where v is used in place of h and p in place of a.

p3=ptv=q
°

O3

P=Po

P2=ptvie +vie,

P1=p+ve
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hie; is the vector with h; in the ith coordinate, so multiplication picks out the ith coordinate of
D f(pi—1 + tie;) for

f(0i) = f(pi—1) = Dif(pi—1 + tie;)h;
Let the quantity p;—1 + t;e; be labelled g;. Replacing this equality in the above expression for R(h)
yields

3

R0 =3 (Di(a) = Disa) )

i=1

=1

R S~ (posioy— et i
i —Z(sz(qz) Duf( >) o

continuity <1

But as h goes to zero, the continuity of the partials implies that the first term goes to zero, while
we know that the second term is always bounded by 1. This shows that

R(h)

TR
So f is differentiable at a. O

Definition. A function f with continuous partials is called continuously differentiable or C'.

We have shown the inclusions
{C" functions} C {differentiable functions} C {functions with partial derivatives}

The strictness of the first inclusion is on the homework, while the strictness of the second inclusion
was demonstrated earlier today with the function g.

Higher derivatives

Te function f : R? — R defined by
f(z,y) = zsiny + ™
has partial derivatives

Dy f(z,y) = siny + ye*?
Dy f(x,y) = xcosy + xe™

However, the partial derivatives themselves are again differentiable, with partial derivatives

DiD1 f(z,y) = y*e™

DyD f(z,y) = cosy + €™ + zye™

D1Dsf(x,y) = cosy + €™ + xye™?
(z,y)

= —zsiny + z2e™

The derivatives of the partials of f are again differentiable. In such a case, f is a C? function.
Observe that D1 Dy f and DoD; f are the same. This holds in general.
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Theorem (Clairaut’s theorem). If f : R"® — R is C?, then D;D;f(p) = D;D;f(p) for all p € R"
and for all i,j.

You will prove this on the homework later with Fubini’s and Stokes’ theorem. We can restate this
by introducing the notion of a Hessian.

Definition. For a C? function f : R® — R, the Hessian matriz for f is the n X n matriz
H(f) = (D;Dif).

Theorem (Clairaut’s theorem). If f : R® — R is C2, then H(f) is symmetric.

Just like a single-variable functions, a function f : R?> — R has Taylor polynomials defined at
(a,b) € R2. For p = (0,0), the 2nd order approximation for f at p is

Pyl ) = J(0) + (D1f(0)2 + Do f(0)y) + 3 (D3 (02 + 2D1 D[ (0)y + D3F(0)7)

There is similarly an analogue for the 2nd derivative test. If Df(0) = 0, then use the fact that
H(f) is symmetric. Since H(f) is symmetric, it is diagonalizable. Then up to a change of basis,
the 2nd order Taylor polynomial can be written

Py(u,v) = £(0) + Au® + Bv?

where A and B are constants that depend on the second order partials of f (as the non-diagonal
terms will disappear with the appropriate basis change).

If A and B are both positive, then locally f is an upwards facing surface, in which case (0,0)
is a local minimum. If A and B are both negative, then locally f is a downwards facing surface, in
which case (0,0) is a local maximum. If the signs of A and B differ, then (0,0) is a saddle point.
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L
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4/1/2019 - Implicit function theorem

Today we will discuss three applications of the multivariable derivative. Before that, let’s review
some important concepts.

Let f : R® — R be a C! function. Then the derivative of f at p is a linear map Df(p) : R® — R.
We can interpret

D f(p)(v) = Duvf(p)
as the directional derivative of f in the direction v. It measures how the function f changes along
the line v in the domain.

4

We can also write

U1
Df(p)(v)=( Dif(p) ... Duf(p) )| ---
D1 f(p) U1
D7) ) \ v
—_—————
f(p)

where V f(p) is the gradient of f and - is the dot product.

Question: For which v with |v| =1 is D, f(p) the largest? The smallest?

Answer: By examining the above expression for D, f(p) = Df(p)(v), we can see that the
dot product is maximized when v is parallel to V f(p). It is minimized when v is perpendicular

to V£(p).

So V f(p) is the vector that represents the direction in which f is changing the fastest.

The above remark should illustrate that the gradient is orthogonal to the level sets of f. We can
see this with an example.
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Examples

e Consider the function f : R? — R defined by f(z,y) = xy. If we consider the level set
given by f(z,y) = 1, then we have the graph

The gradient vector at each point is perpendicular to the graph, as D f(z,y) = ( Yy x )

Implicit function theorem

The implicit function theorem is about solving nonlinear equations.

Examples
e If we have the equation
22 —5zy+9° =8

we would like to separate values, namely by writing y in terms of z or = in terms of
y. However, nonlinearity makes this difficult. We can find some solutions explicitly (for
example if 2 = 0 then 3> = 8, so (0,2) is a solution).

We can then ask if there is a solution near a point we know to be a solution. The approach will be
to view the set of solutions as the level set of some function.

Definition. Given a function f :R? — R and c € R, the level set of f is
Xe ={(z,y) : fz,y) = c}

The level set consists of solutions to the equation f(xz,y) = c.

Suppose x. is the graph of a function, namely that there exists a function g : R — R such that
Xe = graph(g) = {(z,g(x)) : z € R}

Then we can find all of the solutions. For each x, we know f(z,g(z)) = ¢, and furthermore all
solutions have this form.

If we can write the level set as the graph of a function, then we know how to understand the
solutions. However, in general this is too much to ask for.
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Examples

e The 8—level set of the function 2% — 5zy + y° is

This is not given as the graph of any function.

However, the key idea is that at certain points the level set may look like the graph of a function
locally (for example, when z is negative in the above example). The problem occurs when the
gradient vector is parallel to the z-axis, namely when Dy f(p) = 0.

Theorem (Implicit Function theorem). Let f : R™ — R be a C' function. Letp € R™ and c = f(p).

If D, f(p) # 0, then there exists a neighborhood U x V.C R"™ 1 x R of p and a unique function
g:U —V so that

Xe N (U x V) = graph(g)

Moreover, g is C*.

Examples

e The function f(z,y) = 22 + y? has level sets given by circles.

Its derivative is
Df(z,y)=( 2z 2y)
Then Dy f(z,y) # 0 if and only if y # 0. Indeed, for any point (z,y) on the circle with
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y # 0, the circle is given locally as the graph of the function

g9(x) = Ve—a?

(or the negative square root).

e Consider the function f(x,y) = zy. The level set at 0 is

xo = {(z,y) : zy = 0}

is given as the union of the z and y axes. For what points is xo locally the graph of a
function? Every point (x,y) with either x # 0 or y # 0 is locally the graph of a function,
as the derivative of f is

Df(z,y)=(y =)

Note that the implicit function theorem guarantees the existence of such a function g even when
we cannot find the function explicitly.

We can also consider when a level set is locally the graph of a function of y. In general, the implicit
function theorem tells you when the level set is the graph of a function of the first (n — 1) variables.
We can choose any particular variable and write the level set as a function of the remaining ones.

Inverse function theorem

When does a C! function f : R” — R™ have a C! inverse? When does such a function have an
inverse at least locally?

Theorem (Inverse Function theorem). Let f : (a,b) — R be a C! function. If f'(x) # 0 for all
x € (a,b), then f is injective and the inverse of f : (a,b) — f((a,b)) is also C*.

You will prove this one-dimensional version of the theorem on the homework. The main obstruction
to invertibility is injectivity, but if f/(x) # 0 we know that f is injective.

Examples

e Consider the function f : (—m,7) — R defined by f(x) = 2z + sinz. Then f'(z) =
2 + cos x, which is always strictly greater than 0. Then the inverse of f is a C! function

g:(—2m,2m) = (—m,m)
However, there is no easy formula for g.

e f(z) = 22 has no global inverse, but it has local inverses given by /= and —/.

If f has an inverse g that is differentiable, then if f is C' we know ¢ is C' as well. This follows
from the chain rule. We know y = f(g(y)), and differentiating this yields

1= f"(9(y)d ()
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, B 1
90 = Faw)

We know f’ is continuous by assumption, so we have expressed ¢’ as the composition of continuous
functions.

We have an analogous result in the higher dimensional setting.

Theorem (Inverse Function theorem). Let f : R® — R be a C' function. If Df(p) is invertible,
then there exists a neighborhood U of p such that f|y : U — f(U) is bijective with a C inverse.

Examples

e Consider the function f : R? — R? defined by f(x,y) = (zy,y* — 2?). The inverse
function theorem says that if we want to know if f has a local inverse we can examine

the derivative
_ U
Df(zx,y) is invertible when

det(Df(z,y)) = 2y% + 22
is nonzero. This is true whenever (z,y) # (0,0).

Hence f is locally invertible around any point (z,y) # (0,0). However, note that
f(1,1) = f(—1,—1), so the neighborhood U of (1, 1) cannot contain the point (—1,—1).
We only have inverses locally.

In fact, since f(x,y) = f(—x,—y) we know that f is not invertible around the origin,
since any neighborhood of (0,0) will contain a pair of these antipodal points. Although
the inverse function theorem is not a biconditional result (an ‘if and only if’), this shows
that f does not have an inverse around (0, 0).

e The function f(z) = 23 is a bijection of R with inverse g(z) = ¢/z. f is C*, but g is not.
In fact, ¢’(0) does not even exist.

This doesn’t contradict the above remark because g is not differentiable at 0. It doesn’t
contradict the theorem, because f’(0) = 0. The existence of a derivative does not imply
that the derivative is differentiable.
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Lagrange multipliers

We would like to find the maximum or minimum of a function® ¢ : R® — R subject to the constraint
f(x) = ¢, where f: R" — R.

Examples

e What is the point on the parabola y = (x — 2)? + 2 closest to the origin? We are
looking to minimize the function ¢(z,y) = \/2? + y? with the constraint that f(z,y) =
(z—2)2+2—-y=0.

Note that without the constraint, we know what to do. Find the critical points of the function that
satisfy D f(p) = 0, and then use the second derivative test to determine whether the point p is a
minimum or maximum.

Theorem. Let ¢, f : R™ — R be C! functions, and let ¢ € R be our constraint. Then if p € R™ is
a mazimum or a minimum of the restriction ¢|s—., then

Vo(p) = AV f(p)
A is called the Lagrange multiplier.
Instead of looking for maxima and minima of ¢, the theorem says that we can look for solutions

to the above equation. Practically, the theorem will result in finitely many points, at which point
you can manually check if they are minima or maxima.

Examples

e Consider the above example. In practice, its usually easier to work with the distance
function squared. Local extrema of the distance function squared are also local extrema
of the distance function. We have

Dé(z,y) = ( 2¢ 2y ) Df(z,y) =(2-2) -1)
So solving the system
20z = 2(x — 2)
2y = —1

y=(x—2)?2+2

yields our candidates for minima and maxima.

SWe discussed the linear version of this problem last semester. Given a subspace W C R™ and p € R"™, which
point of W is closest to p? We saw that the orthogonal projection of p onto W is the closest such point. Lagrange
multipliers are a nonlinear version of this problem.
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4/3/2019 - Implicit and inverse function theorems

Implicit function theorem

We will work in a slightly more general situation than last time today. Let f : R x R¥ — R* be a
C' function, and let p € R™ x R* with ¢ = f(p). We have the level set

Xc:{(xvy) eR” XRk:f(xvy):C}

We would like to express Y. near p as the graph of a function ¢ : R® — R¥. The implicit function
theorem will provide the conditions necessary to guarantee that this is possible.

Let %(p) € Mjxn(R) be the matrix with entries %(p)ij = gg{; (p). Similarly let g—i(p) € Myxr(R)

x
be the matrix with entries %(p)ij = gg; (p). Then altogether we have

D)= ( #w 5w )

We can now state a more general version of the implicit function theorem.

Theorem (Implicit Functi(on theorem). Let f and %, % be defined as above, and let p € R™ x RF,
Then if the square matriz %(p) is invertible, there exists an open neighborhood U x V C R™ x RF

of p and a unique C function g : U — V such that

Xe N (U x V) = graph(g)

Last time we stated the implicit theorem in the case where k = 1. Then the condition that g—i(p)

is invertible just means that the single partial derivative g—g(p) is nonzero.

Examples

o Let f:R3 — R? be the function defined by

flz,y1,92) = (@2 (y1 + y2), y1 cos(z — 1) — yo)

Then for the point p = (1,1,1) and ¢ = f(p) = (2,0), we have

2x(y1 + y2) 2 z2
Df(z,y1,y0) = | ~yisin(z—1) cos(z —1) -1
s

Then
of (1 1
ao=(1 4)

This matrix is invertible, so this implicit function theorem implies that we can solve the
system

22(y1 + y2) = 2
yicos(z —1) —y2 =0
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to express y1, Y2 as functions of . In this case, we can explicit solve for

2 cos(z—1)

{yl = Z‘Q(COS(Zx—l)—f—l
Y2 = x2(cos(z—1)+1)

We have the function

B ) 2cos(z — 1)
g9(z) = (xz(cos(x —1)+ 1" 22(cos(x — 1) + 1))

Near the point p, the level set x. is given as the graph of g.

e Let f: R? — R be the function defined by f(x,y) = 22 —y3. Then for the point p = (0, 0)
and ¢ = f(p) = 0, we have
Df(p)=(0 0)

The implicit function theorem does not apply, but the equation 2> — y3 = 0 means
y = 22/3. So the level set of f is expressible as the graph of the function g(z) = z2/3,
but g is not differentiable.

e Let f: R? = R be the function defined by y? — 2*. Then for the point p = (0,0) and
¢ = f(p) =0, we have
Df(p)=(0 0)

The implicit function theorem does not apply, but the equation y?> — 2* = 0 means
y = £2%. For the function g(z) = 22, we indeed have f(z,g(x)) = 0 for all z, but
Xo 7 graph(g) around (0,0) (we are missing half of the solutions).

4

Inverse function theorem

We can use the implicit function theorem to prove the inverse function theorem.
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Theorem (Inverse function theorem). Let f : R® — R™ be a C! function, and let p € R". If
Df(p) is invertible, then there exists an open neighborhood U C R™ of p such that fly : U — f(U)
is injective and the inverse g : f(U) — U is C1.

Before proving this, we will introduce some additional terminology.

Definition. A function f : U — V between open subsets of R™ is a diffeomorphism if f is
bijective, C', and its inverse is C.

A diffeomorphism is the analogue of an isomorphism, but for open subsets of R™. We’ll now prove
the inverse function theorem assuming the implicit function theorem, which we will prove next
time.

Proof. Let ¢ = f(p), and consider the function
F:R"xR" - R"
(z,y) = f(z) -y
F is 0 precisely when f(z) = y. In particular, note that F'(p,q) = 0. We have
DF(z,y) = ( Df(x) —I)

DF(p,q) = ( Df(p) —1I)

where —1 is the n x n identity matrix times —1. By assumption, D f(p) is invertible, so the implicit
function theorem implies that there is an open neighborhood UxV C R"xR" andamapg:V — U
so that F' is the graph of g. In other words, we have

0=F(g(v),y) = flgly) —vy

for all y. This shows f o g is the identity on V. However, g still may not be a bijection, as it may
not map to all of U. But we can fix this by taking U; = f~(V)NU.

Then g : V — Uj is inverse to f. The image of ¢ is indeed contained in Uy, as for y € V we
have f(g(y)) = v, which implies g(y) € f~%(V)NU = U;. We know that g is a right-inverse to
f, but we must also show g o f is the identity on U;. Let z € U;. By definition of g, we know
F(g(f(x)), f(x)) = 0. However, F(x, f(z)) = 0 as well. ¢ is the unique by the implicit function
theorem, which means that g(f(z)) is the unique point such that F'(g(f(x)), f(x)) = 0. This yields

9(f(x)) = . B

The main idea of the proof is to use the implicit function theorem to come up with a function g
and then verify that ¢ is indeed a local inverse to f.

Application of the inverse function theorem

Recall that if T : R*™™ — R” is a surjective linear map, then there exists an invertible linear
S R™T™ — R™™™ guch that T o S : R™ x R™ — R™ is the projection given by sending (x,y)
to y. The rank theorem is a nonlinear version of this result.
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Theorem (Rank theorem). If f : R"t™ — R" is a C* function, and at the point p € R"t™
Df(p) is surjective, then there exists a diffeomorphism

G:R"™ >V 5U>sp

such that f o G : R™ x R™ — R™ is the projection given by sending (x,y) to y.

In other words, if the derivative of a map f at a point is surjective, then up to a change of
coordinates the map looks like a projection onto R™.

Proof. Viewing R™ x R", we have

Df(p) = ( Lo o )

Since surjectivity means that the columns of the matrix span R™, by reordering the columns

we can assume g—i(p) is surjective and hence invertible. Now consider

F:R™xR" - R™xR"
(z,y) = (z, f(z,y))

Then the derivative of F' is

Then DF(p) is invertible, since g—g(p) is an invertible (n x n)-submatrix.

The inverse function theorem implies that there is a neighborhood U C R™ x R™ of p such
that F': U — F(U) has inverse G : F(U) — U. Since F(z,y) = (x, f(x,y)) is the identity in
the first coordinate, this implies that G is also the identity in the first coordinate, namely that
G(z,y) = (z,g9(x,y)) for some function g : R™ x R™ — R"™. We know that F oG is the identity,
so this yields

(,y) = FoG(z,y)
= F(z,9(z,y))
= (z, f(z, 9(z,y))
Hence y = f(x, g(z,v)), so
foG(z,y)=f(z,9(y) =y

So G is the desired diffeomorphism that makes f look like the projection onto the second
coordinate. 0
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4/8/2019 - Manifolds and Lagrange multipliers

Implicit and inverse function theorems

Recall the inverse function theorem, which says that if F : R® — R" is a C' function such that
DF(p) is invertible, then F is invertible near p with a C! inverse.

Also recall the implicit function theorem, which says that given a C! function f : R” x RF — RF
and a point p € R™ x R¥ with ¢ = f(p), if when we write

Df(p) = ( Lo o )

the submatrix g—i(p) is invertible, then there exists an open neighborhood U x V' C R” x R”
and a C! map g : U — V such that f(z,g(z)) = c for all z € U.

We had the rank theorem as well, which states that given a C' function f : R® x R¥ — R
with Df(p) surjective, there exists a diffeomorphism H : V' — U, where U,V C R¥ are open
sets with p € U, such that

v 2, U » RE
(z,y) Y

We proved the second two of the above theorems using the implicit function theorem. We’ll now
return to prove the implicit function theorem.

Proof. Consider the function
F:R" x R¥ — R" x R
(z,y) = (=, f(z))

F' has derivative

R~ I 0
)= Lo Sw
Oy

By assumption, 8—y(p) is invertible, so DF(p) is also invertible.

Then the inverse function theorem implies there exists an open neighborhood U C R™ x R* of p such
that F|y : U — F(U) is invertible with a C! inverse H : F(U) — U. Since F(z,y) = (=, f(z,v)),
necessarily H(x,y) = (x, h(z,y)) for some function h : F(U) — U N ({0} x R¥) (as if F leaves the
first coordinate unchanged, its inverse H also leaves the first coordinate unchanged).

Write p = (a,b) € R x R¥. Then F(p) = (a,c). Since F o H is the identity, we have

(x,c) = FoH(x,c)
= F(z,h(x,c))
— (xjf(m,h(l’ac)))

Hence this implies f(z, h(x,c)) = ¢ for all x near a, which completes the proof. O
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Note that we used the implicit function theorem to prove the inverse function theorem. So we
have shown that these two theorems imply each other. In fact, the same argument proves the rank
theorem as well, where H from the above proof is the diffeomorphism we are looking for. This is
because for all d near ¢, we have

foH(z,d) = f(z,h(z,d) =d
which means H is the diffeomorphism that makes f into a projection.

Note that the rank theorem gives a complete picture of f near p. The idea is that if Df(p) is
surjective, then the level sets of f near p look like a stack of planes orthogonal to the gradient
vector.

Lagrange multipliers

These theorems have a very useful application.

Theorem (Lagrange multipliers theorem). Let ¢, f : R® — R be C' functions. Fiz ¢ € R, and
let X = f~Y(c). Assume Df(x) # 0 for all x € X. If p is a local maximum or minimum of the
restriction ¢|x, then

Vo(p) = AV f(p)
for some A € R.

Examples

o We can use Lagrange multipliers to find the maximum or minimum distance to the origin
on the curve X = f~1(9), where

f(z,y) =z + 352y% 4 225y + 202%5 + 1022y + y'2

In this case, ¢ is the function given by taking the distance to the origin. We are looking
for a local minimum or maximum of ¢ restricted to the level set X.

The above example suggests why the converse of the Lagrange multipliers theorem is false.

Just consider the function ¢ : R? — R defined by ¢(z,y) = y restricted to the 0-level set of the

function f(z,y) = z3.

We will first need an important lemma.

Lemma. Let f : R® — R be C'. Fiz c € R, and define X = f~'(c). Take a C' function
v:(=1,1) = X. Then if p = ~(0), the vectors V f(p) and +'(0) are orthogonal.

In other words, the lemma is saying that the level set of a function is orthogonal to the gradient.
The function  is just a curve on the level set.
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Examples

o Let f(x,y,2) = 22+ y? + 22. Then the level set X = f~!(1) is the unit sphere. The
derivative of any curve 7 that lies on the surface of the sphere will always be orthogonal
to the gradient of f, which points radially outwards.

Proof. The proof follows immediately from the chain rule. Since the image of 7 is always in the
level set, we know ¢ = fo~(t) for all t € (—1,1). Then differentiation yields

0= D(f ov)(t)
=Df(y(t)-~'(t)
0=Df(p)-~(0)

taking ¢ = p. Where - is the dot product on R™, as the matrices are just row/column vectors (so
matrix multiplication/composition is just given by taking the dot product). O

We can now prove the Lagrange multipliers theorem.

Proof. Suppose p € X is a local minimum or maximum. If D¢(p) = 0, then take A = 0, and we
are done.

Assume D¢(p) # 0. We also know Df(p) # 0 by assumption. Suppose for contradiction that
Vé(p) and V f(p) are not proportional. The rank theorem says that the level sets of ¢ look like a
stack of planes orthogonal to V f(p). The idea is that if these two vectors are not parallel, then by
moving along X around p we can find a larger or smaller value. So p is not a local extrema, which
is a contradiction.” O

8

On the next homework you will prove the spectral theorem® using Lagrange multipliers.

Manifolds

Definition. Informally, a k-dimensional manifold in R™ is a subset M C R™ that is locally the
graph of a function from RF to R"F.

Examples

e The circle M = {(z,y) : #* + y* = 1} C R? is a 1-dimensional manifold. Any point on
M lies on the graph of one of the functions

y==+v1-—z2

T =3+/1—1y>2

"This proof relies heavily on relevant diagrams and illustrations. Email me if you are confused and including some
illustrations would help.

8If A € M, (R) is a symmetric matrix, then there exists an orthonormal basis u1,...,u, € R"™ of eigenvectors such
that Aui = )\Zuz
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We can give a more formal definition in the case of 1-dimensional manifolds.

Definition. A 1-dimensional manifold in R? is a subset M C R? such that for all p € M,

there exists an open rectangle Q = (a,b) x (c,d) around p and a C' function h : (a,b) — R or
h:(c,d) — R such that
M N Q = graph(h)

In general, we can ask when the level set of a function f : R — R®* is a manifold. We can answer
this question using some of the theorems we have been discussing.

Theorem (Manifold Recognition theorem). Let f : R* — R** be a C function, and fix c € R"7*,
If Df(p) is surjective for all p € f~1(c), then the level set f~1(c) is a k-dimensional manifold in
Rn

The proof of this theorem is just the implicit function theorem.

Examples

e The configuration space of a collection of linked rods is a manifold. We can describe the
collection of possible positions of each rod. Let r; and ro be the lengths of the two rods.
We are fixing one end of the first rod to the origin, and fixing one end of the second rod
to the other end of the first rod.

Let (z1,y1) be the end of the first rod/beginning of the second rod and let (x2,y2)
be the end of the second rod. (z1,y1) always lies on the circle of radius 71 centered at
the origin, so we have

filp) =ai + i =}

(x2,y2) always lies a distance of 7y from (z1,y1), so we have
fo(p) = (w2 = 21)* + (g2 — 1) = 13
If we define the function
f:R* = R?
p = (f1(p), f2(p))

Then the preimage f~1(r?,73) consists of all the possible configurations of the linked

rods. It’s not too hard to see that D f(p) is surjective at each p € M, which means that
the configuration space is a 2-dimensional manifold in R*.

Given some thought, one can see M ~ S1 x S! (which is the torus!).
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4/10/2019 - Stokes theorem, Linear and differential forms

Forms on vector spaces

Today we will start a new topic. The goal is to cover Stokes’ theorem, which is a vast generalization
of the fundamental theorem of calculus with many applications. The theorem is encapsulated in

the equation
/ dw = / w
c dc

It will take us some time to understand all the parts of this equation. w is a differential k-form, dw
is the exterior derivative of w, c is a k-cube in R™, and Oc is the boundary of c.

In the case when k = 1, this equation becomes
| £=r- 50
[0,1]

We will speak about differential forms today. Recall that the determinant
det : R¥ x ... xRF > R
is the unique, multilinear,’ alternating'® function on (]Rk)”C such that
det(eq,...,ex) =1

We can view the determinant as a function det : M, (R) — R of the rows of a matrix. In this con-
text, the determinant should be understood as a measure of the signed area of the parallelogram
spanned by the rows of a matrix.

k-forms on R™ will give us a notion of k-dimensional volume in R"”, for & < n.

Definition. A k-form on R"™ is a multilinear, alternating function

p:R"x...xR" =R
—— ——
k times

Denote the set of all k-forms on R™ by
A*¥(R™) = {k-forms on R"}

Then A*(R™) is a real vector space in the obvious way.'!

9Multilinear means that if we fix k£ — 1 of the entries, the resulting function from R* to R is linear.
10 Alternating means that the determinant changes signs if you swap two entries, namely that

det(er,...,€i,...,€j5,...,ex) = —det(e1,...,€5,...,€i,...,€k)

" Meaning with pointwise addition and scalar multiplication, given by
(¢+¢)(U1>4 . 7Uk) = ¢(U1>- .. 7U’€) +1/)(U17' .. 7Uk)
(ap)(v1,...,vk) = ad(v1,...,vK)
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Examples

e A 1-form on R" is a linear map ¢ : R” — R. Hence

AY(R") = L(R", R)

Elementary k-forms

Fix indices 1 < 11,...,ix < n. Define a k-form on R™ with the following procedure.
Given vectors v1, ..., v, € R™, form the matrix

Vi1 ... Ukl

Vin .- Ukn

This is an n X k matrix. Use the above indices to choose the following submatrix
Ulil 000 Uk7i1

Vg, --- Ukvik

Then the map
P(v1,. .., vk) = det(M (v, . .., vk))

is alternating and multilinear because the determinant is. Denote this k-form by

dxil VAN /\dl‘ik

Examples

e On the vector space R?*, the 1-form dz; acts by

U1
V2

d$i = V;
U3

Vg

e On the vector space R?*, the 2-form dx; A dxs acts by

1 5
—det<3 7)——8

dri N dxs

U W N =
© 0 3 O Ot
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e On the vector space R?*, the 3-form dxs A dxy A dxy acts by

1 5 9

2 6 10 3 7 11
dxs A dxq A\ dxy 3 7 11 = det 1 5 9

4 8 12 4 8 12

5 9 13

e On the vector space R*, the 4-form dx; A dxg A dxs A dxy is simply the determinant.

k-forms give a measure of k-dimensional volumes in R™. For example, the form dz A dy € A%(R3)
acts by

v w1 v w
de ANdy | va wo —det< ! ! )
V2 W2

V3 W3
The two vectors (v, vs,v3) and (wy,ws,ws) span a parallelogram in R3. The form dx A dy is the
signed area of the projection of this parallelogram onto the zy-plane in R3.

For 3-dimensional volume on R3, the determinant is the only multilinear, alternating map (up
to normalization). But for measuring 2-dimensional volume, there are many different elements
of A%(R?). For example dy A dz is also a 2-form. A%(R3) is a vector space, so we have the sum
dx A\ dy + dy N dz as well.

The algebra of k-forms
Since det is alternating, we have relations introduced between forms in A*(R™). For example,
dx1 N dxs = —dxz N\ dxq

dri Ndxo ANdry =0
dxo N dxg A\ dxry = dxq A dxo A dxs

The second equation holds because the determinant vanishes if two rows are identical.

Definition. If 1 < i1 < ... <1 < n is a sequence of strictly increasing indices, then
dl‘il VAN dl‘lk

is an elementary k-form.

Theorem. The elementary k-forms are a basis of AF(R™).

Examples

e A!(R3) is spanned by the elementary forms dz, dy, and dz.

e A%(R3) is spanned by the elementary forms dx A dy, dy A dz, and dz A dz.
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Corollary. The dimension of the vector space A¥(R™) is

(1) = m

Proof. The size of the basis is the number of ways to pick a strictly increasing sequence of indices
between 1 and n, which is the number of ways to pick k£ distinct numbers between 1 and n, where
the order doesn’t matter. O

Definition. The wedge product is an operation
A AF(R™) x AY(R™) — NEFE(R™)

It is defined by extending the obvious multiplication on elementary forms, forcing distributivity and
associativity.

Examples

e We have

(8 dxy N dxg — 2 dxy N dl’g)(4 dri + 3 d$2) = 24 dxq A dxo A dxs

It follows from the theorem that A¥(R™) = {0} if & > n, since it is impossible to pick a strictly
increasing sequence of n + 1 indices between 1 and n.

Note that the wedge product is not commutative (we saw this already with elementary forms).
The wedge product is called graded-commutative, since

pAY = (1) Ae

where ¢ and 1 are k- and /-forms, respectively.'?

Some properties

e For every ¢ € A'(R3), ¢ A ¢ = 0. To see this, write
¢p=adr+bdy+cdz

Then
(adx+bdy+cdz)(adr+bdy+cdz) =0

since the terms cancel in pairs.
e For every ¢ € A%2(R3), ¢ A ¢ = 0. This follows from a similar example as above, but one

can also argue more directly. ¢ A ¢ is a 4-form on R3, but since A*(R3) = {0} by the
above remark, we have ¢ A ¢ = 0.

12The exponent of k¢ comes from the fact that to rearrange ¢ A1) to 1 A ¢, we have to move k terms past £ terms,
which requires k¢ swaps.
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However, it is not always true that ¢ A ¢ = 0. For the form ¢ = dz1 A dza + dx3 A dzy in A2(R?),
we have ¢ A ¢ = 2dxy Adxo Adxs A dxy.

Differential forms

Definition. Let U C R" be open. A differential k-form on U is a smooth function
w:U — A*(R™)
Denote the set of all differential k-forms on U by

QF(U) = {differential k-forms on U}

Examples

e By convention, A°(R") = R. So
Q°%(R™) = {smooth functions U — R}

e Since AF(R") is spanned by the elementary forms, we can write any w € Q%(R?) as

w(p) = f(p) dz ANdy + g(p) dz A dz + h(p) dy A dz

where f,g,h:R3 — R are smooth and unique.

Note that a k-form takes k vectors in R™ and yields a real number. A differential k-form takes a
point p € R”, k vectors in R”, and yields a real number

w(p)(v,...,vk)

as w(p) is a k-form.

Examples
e Take w = dx and n = zdy in Q!(R?). For the points p = (0,0) and ¢ = (2,2) and vectors
u=(0,1) and v = (2,3), we have
0
i =2dy( ) -
0
n(p)(w) =0dy( ) ) =0

w(q)(v):dx< ; ) —9

w(p)(v):da:< ?,) ) _9
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Viewing the derivative as a 1-form

Given a smooth function f : R" — R, for p € R” the linear map D f(p) : R" — R is an element
of A'(R™). Then we can define the 1-form

df : R™ — AY(R")
p~ Df(p)

If we look at df with explicit coordinates, then

df(p) =>_ Dif (p) da;
i=1

1-forms and vector fields
Any w € Q'(R™) can be written
n
w(p) =Y _ Fi(p) dw;
i=1
where F; : R™ — R is a smooth function. If we define

F:R" 5 R"
p— (F1(p),-- -, Fu(p))

then
n V1
w(p)(v) = <ZF7; dml> ..
i=1 Dy
=) _Fi(p) du;
=F(p)-v
where - is the dot product.
Examples
e Consider the 1-form
w = xg_—i-ny dx + m dy

in Q(R?\ {0}) (as this form is not defined at the origin). Here

—y T
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This is the vector field

e e R N N N
A G S i D S S S N
e e S L M I S S
—1— AR T S
Yy Vv v y ——
R R e B G By '
YA NSt
YN Ns e
S N A S S S

o S 77 7

Given c: [0,1] — R?\ {0}, we can compute
1
/ Fle(t)) - ¢(t) dt
0

For example, if ¢(t) = (1 +¢,0) we have ¢/(t) = (1,0) and F(c(t)) = (0,1/(1 +¢)). Then
F(c(t)) - ¢(t) = 0 always so the integral over c is 0.

In contrast, if ¢(t) = (cos(27t),sin(27t)), then the integral of w over ¢ is 2.

Hence we can see that this form has a nice geometric interpretation. It is the wind-
ing number, and it measures how many times a curve in R?\ {0} wraps around the

origin.
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4/15/2019 - Integration of differential forms

Linear forms on R"

We are working towards Stokes’ theorem, which says that if w is a differential k-form and c :

[0, 1]+ — R" is a cube, then
/ w = /dw
Jdc c

Last time we defined differential forms, and today we will define what it means to integrate over a
differential form.

Recall that a linear k-form on R" is a multilinear, alternating function

p:R"x...xR" =R
N————

k times

We will denote R” x ... x R™ by (R")**. We defined the elementary k-form
dszcll'jl /\.../\dxjk

given a collection of strictly increasing indices J = (j1,...,Jk) with 1 < j; < jo < ... < jg < n.
This a function on (R™)**. It takes a k vectors (vy,...,v), each expressed in terms of a basis

Vi = Vj1€1 + ...+ Vin

and yields
v17j1 tee vk7j1
dry(vi,...,vp) = det
Ulgr -+ Ukjg

We packaged all of the linear k-forms on R™ into the vector space A*¥(R™). We are particularly
interested in the elementary k-forms because they form a basis for the vector space A*(R™).

Examples

e Given any 1-form ¢ € AY(R") = L(R",R), we have
5(0) = ¢<§;>
_ iv@(ei)
- zn;qs(ei) dz;(v)

where dx; is the 1-form on R” that simply picks out the i¢th row of the vector v. This
demonstrates that every 1-form is in the span of the elementary 1-forms. Furthermore,
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writing

o(e1)
¢(en)
shows that the form ¢ is given by the standard inner product

o(v) = v-w

Theorem. The elementary k-forms are a basis for AF(R™).

Proof. For concreteness, we’ll consider the case when & = 2 and n = 3. The general case differs
only in the notation. We want to show that A?(R?) has basis

dx19 = dx1 A dzs
drig = dx1 N dxs
drog = dxo N dxs

We'll show that these vectors span and are linearly independent. Let ¢ € A%(R3) be an arbitrary
2-form on R3. We have

3 3
P(v,w) = ¢(Zw6e, ijej)
i=1 j=1
= Y viwdlee))

1<i,5<3

using the multilinearity of ¢. Some of these terms will be zero and ¢(e;, e;) = —¢(e;, €;), so we can
adjust indices for

dv,w) = > (viwj — vjwi)(es, e5)

1<i<j<3
= Z o(ei, ej) dxij(v,w)
1<i<j<3
= ¢(e1, e2) dr1a + P(e1, e3) dr13 + (€2, e3) dwag
The second line is justified by definition'? of the elementary form dxj.
To show these elementary 2-forms are linearly independent, suppose

adxis +bdxiz + cdrey =0

Evaluating this form on (e, e2) yields a = 0. Similarly, b = ¢ = 0, so the elementary 2-forms are
linearly independent. O

vt w1 v w
dxas V2 w2 = det ( 2 2 ) = Vows3 — V3W2
V3 w3
U3 ws

13For example,



Integration of differential k-forms

Let U C R™ be an open set. Recall that a differential k-form is a smooth function
w:U — AFR")

We denote the collection of differential k-forms by QF(U). For each p € U, we have that w(p) €
AF(R™). Since the vector space A*(R") is spanned by the elementary k-forms, we can write

wp)= > frlp)dx;
J=(J15e53k)

where each f;: U — R is a smooth function. We can motivate integration by examining the case
of 1-forms.

Integration of 1-forms

Let w € Q' (R™). We can write
Package the f; : R™ — R functions together for a smooth vector field
F:R" - R"
p= (fl(p>7 cee 7fn(p>)

Then we have

n V1
w(p)(v) = filp) da;
i=1 Un,
=>_ filp)vs
=1
= F(p)-v

Definition. Given a smooth function c: [0,1] — R"™, the line integral of w over c is defined

Jo= ole(t)) (¢ 1)) di

Examples

e Consider the case when n = 2, and write dx, dy instead of dri,dzs. Let w = dx =
1 dx + 0 dy, the constant differential form. Then

F(z,y) = ( (1))
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Given a smooth function c : [0,1] — R?, we have

Then

— C1 (0)

So integrating dx along c yields the net z-variation of c.

More generally, integrating an arbitrary 1-form over c¢ looks like

/fd:v+gdy

This measures the net ‘weighted x- and y-variation’ along a curve.

Last time, we saw that the form

1
:$2+y2(—ydx+xdy)

measures the net winding of ¢ around 0. At a general point, the vector field for w points
along the circles centered at the origin:

—y T

For example, the curve
c:[0,1] — R?\ {0}
t — (cos(27t), sin(27t))

Concretely, we can compute

o [/ () (e
_ /0 om(sin?(2mt) + cos?(2nt)) dt

=27
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The fundamental theorem of line integrals

Given a smooth function f : R™ — R, we have the differential 1-from
df :ledl'l —i—...—l—and.%'n

The vector field of df is
Dy f
. =Vf
D, f
Note that
df (p)(v) = Df(p)(v)

Integration of df over some curve c: [0,1] — R” is

1
/df:/o Vf(e(t))d (t) dt
1
:/0 Df(c(t))c (t) dt
1
0
= f(c(1)) = f(c(0))

by the chain rule and the fundamental theorem of calculus, since f o ¢ is a function from R to
R. This is in fact a special case of Stokes’ theorem.

_ / (Foo)(t)dt

Theorem (Fundamental theorem of line integrals). If w € Q' (R") is given by w = df for some
smooth f : R™ — R, then

/ w = f(c(1)) = £(c(0))

c

for any smooth curve c: [0,1] — R™.

In other words, the integral of a differential 1-form that arises as the derivative of a smooth
function depends only on the endpoints of the curve.

Examples

e Let w € Q'(R?) be defined w = y dr. Consider the curves

@)
—~
o~
S~—
Il

(cos(mt), sin(mt))
(cos(mt), — sin(7t))
e(t) = (1—2t,0)

/cw _ /OlF(c(t)) L (t) dt
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where F' is the vector field corresponding to w. This vector field is given by F(z,y) =
(4,0).

The integrals over the above curves are given by the dot product of the vector field with
the derivative of the curve at each point. Then we have

/w</w</w
G e d
~N N~ =~
<0 =0 >0

Note that even though the the endpoints of these curves are equal, their integrals differ.
This is because w # df for all f.

We can define the integral over a differential k-form more generally.
Definition. Let w € QF(R") and ¢ : I¥ — R™ be a smooth map of the k-cube I¥ = [0,1]F. Write
w= Z Jrdxy
J=(g15-7k)

The integral of w over c is defined

w=Y [ (froc)dxs(De)
[+=%],

Examples
e Consider the case when k = 2 and n = 3, and take a differential form
w = fi2 dz12 + f13 dz13 + fa3 dwas
Given a map

c: I? 5 R3
(s,t) = (c1(s,t),ca(s,t),c3(s,t))
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We have

dc1  Oci
0s ot
Dc = % %Cf
Ocz  Odcg
0s ot
Denote
aCi %
acij s ot
= Oc; Oc;
J(s,t) 5L o
Then 5
-
dzi;(Dc) = det (8(3?@))
Then
[o=3 [, stcts.0)det (522
c e 12 “ ’ 8(Sat)

If w = dxy Adxs, then fc w measures the net area of the projection of ¢ to the xxo-plane.
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4/17/2019 - Exterior derivatives and pullbacks

Exterior derivatives

The next ingredient we need for Stokes’ theorem is the exterior derivative. Recall that a differential
k-form w € QF(R™) is a smooth map

w: R™ — AF(R™)
We can write w as the linear combination of elementary k-forms for

wZZdeCCJ
7

where J = (41, ..., jr) ranges over strictly increases sequences of indices 1 < j; < ... < jr < n. We
can also understand a differential form w as a map from k-cubes to R for

w: {k-cubes ¢: I* > R"} - R

(c:[k—>R”>l—>/w

The integral is given by

With this perspective, the differential form w is a functional. Hence we have two ways of viewing
a differential form w € QF(U) as a function of sorts. The first is that w is a smooth function from
U to A*(R™). The second is that w is a map from the set of k-cubes to R.

Examples

e The integral fcw recovers our previous notion of the integral fQ f of a function f over a
closed rectangle Q). Given f : QQ — R where Q C R" is a closed rectangle, let the n-cube
¢ : @ — R™ be the inclusion map. Also let w = f dxy A ... Adzx,. Then

o= /@w(t)(f)

= f@)dxi A ... ANdxy(er, ... en)
Q

€
_ / f

Q
since the derivative of the inclusion map c is always the identity matrix I.

e Let w € O%(R3) be given by

w = fiadz12 + fi3 dz13 + fo3 dzo3
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Then we have a vector field F': R — R3 defined by F = (fa3, — f13, f12). Observe that

w(p)(u,v) = F(p) - (uxv)

where - is the dot product and x is the cross product. Then for a 2-cube ¢ : I? — R3,

we have
/ w= /I )(Die(t), Dac(t))

= /. F(e(t)) - (D1c(t) x Dac(t))
This is sometimes called the fluz integral, as the cross product Dic(t) x Dac(t) yields a
vector normal to the surface that is the image of c. Then the integral is a measure of the
extent to which the vector field is ‘flowing through’ the surface defined by c.

Today we will discuss differentiating differential k-forms.

Definition. Let U C R"™ be an open subset. The exterior derivative is a map

d: QFU) — Q)

If w € QF(U), write

wZZdewJ
7

Then d is given by

dw:Zi:Dide{Ei/\de

J =1

When k = 0, note that we have the following familiar properties.

1. d acts on f € Q°(U) by

df =Difdxi+ ...+ D,f dxy,

2. d is linear, namely

d(f+9) =Y Di(f +g) du; = df +dg
=1

3. d satisfies the product rule, namely

d(fg) = (df)g + f(dg)

Examples

e We have

d(yzdz) = zdy Ndx +ydz N dx

e We have

d(z dx) =dx ANdex =0
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o We have
d(z dz Adz + 22 do A dy) = 2z dz Adz A dy

e We have
d(f(z,y,z)de ANdy Ndz) =0

Proposition. d satisfies the following properties.'*

1. d:QFU) = QFYU) is linear.
2. d satisfies the product rule, namely
dlwAn) =dwAn+(—1)% Adn
where w is a differential a-form.

3. The composition dod : Q¥(U) — QFF2(U) is identically zero.

Proof. The first property is easy and left for you to check. To see the second, write

wZZdel“J
7

n=> gsdr;
7

Then

wAn= (ZJ:deJCJ> A (ZJ:ngxJ)

= frgrdzy Ny,
L

Now take the exterior derivative for

n

dwAn) =YY Di(frgr) dwi Aday Adzy,
JL i=1

= Z Z[(DifJ)gL + f7(Digr)] dzi AN dxy N dzr
1,] i=1

_ <ZZDidexi/\de> A <§L:ngxL>

J =1
+ (_I)G(ZfJ de) A <ZZDigL dx; N de>
J L =1

The negative signs are introduced since moving dx; A dzy A dxy to dxy A dx; A dxp takes precisely
a swaps, since we must move the dz; term passed a terms in dzx .

14d is in fact uniquely characterized by these properties, along with our definition of df for a smooth function

feQU).
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To show the third property, observe that we have

d(dw) = d<Z§:D,~fJ dz; /\da;J>

J =1

n
= Z Z Dj_Dif] d:L‘j ANdzx; Ndxy
7 ij=1

= Z Z (.DjDif] - DiDjf]> d:L“j ANdx; \dzy

J 1<i<j<n
=0

The negative sign is introduced by swapping dx; A dz; to dx; A dw;, and the second order partials
are equal by Clauraut’s theorem (on the midterm!). O

Definition. A differential form w € QF(U) is closed if dw = 0.

Definition. A differential form w € QF(U) is exact if w = dn for some n € QF~1(U).

Examples

e Consider the case of differential 1-forms on R?. Let w € Q(R?), and write
w=fdr+gdy
Then we have
dw = Dof dy Ndx + Digdx Ndy = (D1g — Daof) dez A dy
Hence w is closed precisely when f and g satisfy the relationship D1g = Dsf.

Suppose w is exact. Then there exists some smooth h : R> — R such that

fdz + gdy = dh = Dih dz + Doh dy

w is exact precisely when f = Dih and g = Doh for some smooth h : R? — R.

One way to understand Stokes’ theorem is that there is another way to compute the integral of an

C c dc

We saw this for 1-forms last time. If w = dh is a 1-form and c¢: I — R" is a 1-cube, then

/ w = h(e(1)) — h(c(0))

C

Note that if w € QF(U) is exact, then it is also closed, since

dw=d(dn) =0
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On the homework, you will show that every closed 1-form w € Q!(R?) is exact. This is a special
case of Poincaré’s lemma, which says that in general closed forms on R™ are exact. This is a fact
special to R™, however.

Examples

e The 1-form w € Q(R?\ {0}) given by

-y
d
z? + y? x+x2+y2

w(z,y) = dy

is closed, but not exact.

e The 1-form dz € Q(R?) is exact. It is the exterior derivative of the function f(z,y) = z.

Differential forms detect nontrivial topology of subsets of R”. For example, the subset R? \ {0} is
not the ‘same’ topologically as R? (meaning they are not homeomorphic or diffeomorphic). You can
see this because a loop that travels around the hole in R? \ {0} cannot be deformed continuously
to R2. These ideas are made precise with de Rham cohomology.'®

Pullbacks

Definition. Given open subsets V. C R™ and U C R™, a differential form w € Q¥(U), and a smooth
map g:V — U. The pullback of w along g is the k-form denoted g*w € Q¥(V). It is defined

(g%w)(q)(u1, ..., up) = w(g(q)) (Dg(q)(u1), ..., Dg(q)(ux))

The pullback is a way to take forms on the codomain and transfer them to forms on the domain.
Note that when k& = 0, there are no vectors involved, so the pullback is just given by precomposition.
Namely if f € QY(U) is a O-form then g*f = fog.

Proposition. The pullback satisfies the following properties.
1. g*: QF(U) = QF(V) is linear

2. If n=m, then
g (dxy A ... ANdxy) =det Dgdxy A ... ANdzy,

3. g respects wedge products, namely
g'wAn) =gwhgn
4. g commutes with the exterior derivative, namely

9" (dw) = d(g"w)

15Come speak to me or take Math 132 if you're interested!
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Examples
e Let w € Q2(R?) be given by
w=dx N\dy

Define the function

f:(0,00) x (0,27) — R?
(r,0) — (rcosf,rsinf)

Using the above properties, we have

ffw = f*(dz A dy)
= f*(dz) A f*(dy)
=d(f"z) Ad(f"y)
=d(zo f)Nd(yof)
= d(rcosf) A d(rsinf)
= (cosf dr +r(—sinf) df) A (sin dr + rcos df)
=rdrAdf

//f(x,y)da?/\dy://f(rcose,rsine)rdrde

When we perform a change of coordinates, we are actually taking a pullback, and the
pullback of dx A dy is r dr A d6.

This explains
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4/22/2019 - Chains and boundaries

Integration and pullbacks

We defined the pullback last class. Usually, this construction is used in the following setting: Let
c: I¥ — R" be a k-cube and w € QF(R™). The pullback c*w € QF(I*) is given by

(CFw)(t)(u1, ..., uk) = wlc(t))(De(t)(u), . .., De(t)(ug))
Note that c*w is a map
cw: IF — AFRF) = span(dty A ... Adt) ~R

Hence we can write ¢*w = fdt; A ... Adt;, for some smooth f : I¥ — R. To determine this function
f, we can evaluate c*w = f dt1 A ... A dt; on the standard basis eq,...,e; for

f@&)=(fdty N...Ndtg)(E)(er A... Aeg)
— (w)(B)en - ex)

w(e(t)) (Dc(t)(el), el Dc(t)(ek))

= w(c(t))(De(t))

since De(t)(e;) is just the ith column of the matrix Dc(t). This should look familiar, as we defined

o= [ wlenoe)

If we write c*w = f dt; A...dtg, then
/w - f
c Ik

Examples

e This fact is useful for computation. Let’s revisit a previous calculation from this new
perspective. Let w be the winding number form

_ Y o
w_x2+y2 dﬂc+x2+y2 dy

and let c(t) = (cost,sint) be the curve that winds around the origin once, defined on
[0, 27]. By the properties of the pullback from last time, we have

—sint cost

Yw = d(cost d(sint
cw (cost)? + (sint)? &o’s_)/ +(cos t)? + (sint)? &F_)/
(—sint) dt cost dt

=dt

Hence

27
/w—/ 1dt =2n
c 0

From a geometric perspective, the vector field associated with w is always ‘parallel’ to
the curve and therefore yields dot product 1.
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o Let

c:[0,1] x [0,27] — R?
(r,0) — (rcos@,rsinf)

We computed the pullback of dz A dy last time to be r dr A df, so we have
1 2
/dx/\dx—/ / r dr df
c r=0J6=0
=7

which is the area of the unit circle parameterized by the 2-cube c.

Chains and boundaries

Definition. A (singular) k-cube in R" is a smooth map c: I¥ — R™,

Examples

A point is a 0-cube.

e A curve, a circle, and a knot are all 1-cubes.

A disc, a square, a sphere, and a torus are all 2-cubes.

The standard k-cube in R" is given by the inclusion
i:IF =[0,1]F — R"

e There is no condition that these maps be injective, so the constant map c(t) = p is a
k-cube.

The map ¢ : I? — R? that parameterizes the sphere is a k-cube. It is defined

c(0,¢) = (sin(rrcb) cos(2mh), sin(mw¢) sin(276), cos(m]ﬁ))

using spherical coordinates.

The map

c:[0,1] — R?
t (2t —1)3, (2t — 1)?)
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is a 1-cube called the cuspidal cubic.

c is smooth, as its coordinates are given by polynomials. This illustrates that the image
of a k-cube need not be a (smooth) manifold. This explains the term singular.

e c(t) = (t,t) and c(t?,t?) defined on [0, 1] are two distinct 1-cubes in R?, even though they
have the same image.

Two k-cubes are considered equal when they are equal as maps, not just if they have the same image.

Given a k-cube ¢ : I¥ — R™ we can restrict to a face of the cube I* to yield a (k — 1)-cube.
The boundary map records these restrictions.

Definition. Let ¢ : I* — R™ be a a k-cube in R™. Fori=1,...,k, define
C(i,O)(tb e 7tk—1) == (tl, NN ,ti,l,O,ti, e atk—l)
C(i,l)(th N ’tk—l) = C(tl, ‘e 7ti—17 1,ti, ceny tk—l)

These are (k — 1)-cubes.

To obtain c(; ), insert a in the ith position of c. A given k-cube has 2F possible faces to which we
can restrict. These are combined in an object called the boundary of c.

Definition. Let ¢ : I* — R" be a k-cube. The boundary of ¢ is given by

k
Oc = Z Z (—1)”“%’&)

i=1 a=0,1

We regard Oc as a formal linear combination of (k—1)-cubes. This just means that we aren’t adding
these maps c(; ) pointwise (we are not viewing Oc as a map). We can make this more precise with
the following definition.

Definition. Let Ci(R™) be the infinite-dimensional vector space with a basis given by all of the
k-cubes on R™. A wvector in Cy(R™) is a formal, finite sum of k-cubes with coefficients in R. A
k-chain is an element of Ci(R™).
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With this language, the boundary
0: Cr(R") = Cr—1(R™)

is a linear map from the k-chains to the (k — 1)-chains. To justify this, note that we have defined
0 on the basis for C%(R"), so we can just extend 0 linearly to the entire vector space C(R").

Examples

e For our parameterization of the sphere from above, we have

() = (si
0(1’1)(15) = (sin(wt), 0, cos(mt)
¢2,0)(t) = (0,0,1)
ce,n)(t) = (0,0,—1)

Then
Oc = [(07 0, 1)] - [(0’ 0, _1)]

where [(0,0,a)] is the constant cube.

The signs on the formal linear combination in the definition of the boundary are designed to ensure
the following result.

Proposition. For any k-cube c, we have

8(c)) = 0

Proof. The proof follows directly from the definitions. The main idea is that

k
DIDMCIE (=17 (i) .0)

by the linearity of 0. The key observation is that each of these terms appears twice, with opposite
signs. The (k — 2)-cubes in the sum have form

(C(i,a))(j,/j) : (tl, coylp_o) — C(tl, v ticr, o0ty ﬂ,tj, . ,tk,g)

This map appears twice is the resulting sum, as (c(; o)) (j,8) and (c(j+1,3))(i,)- Then the signs of
these two terms will be (—1)™7+9+8 and (—1)i*7+e+8+1 " respectively. Intuitively, this happens
because there are two possible orders in which we can restrict to an edge of I*¥ (as there are two
faces adjacent to every edge of a cube). O

Stokes’ theorem

We can now finally make sense of Stokes’ theorem.
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Theorem (Stokes’ theorem). Let n € QF(R™) and ¢ : I* — R™ be a k-cube. If n = dw for some

/ /
C oc

Note that dc is some linear combination of k-cubes:

¢
80 == Z aidi
=1

Then we are just extending the integral linearly and defining

V4
/w:/ wzz/w
dc Z¢ 1 a;d; i—1 7di

1=

Examples

e Consider the case when k = n = 1. Let n € Q'(R), and let ¢ : I — R be the standard
1-cube. You'll show on the homework that there exists some smooth function g € Q°(R)
such that n = dg. Then Stokes’ theorem says

JARIK

We know 7 = f dx for some f, and dg = ¢’ dx, so f = g’. Then we have
1

fr=1
@ 0
1

/ /

g
0
9
Oc
9(1) —g(0)

which is just the fundamental theorem of calculus.

e Let 1 = dx dy be the area form on R?, and let ¢ : I? — R? be the standard 2-cube. Note
that 1 = dw for w = x dy. Stokes’ theorem yields

/dacdy:/wdy
c dc
/dwdy:/ 1=1
c I2

The left-hand side is
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The right-hand side is

/ w:/ w—/ w+/ w—/ w
dc c(,1) €(1,0) €(2,0) (2,1)
0

Each of these terms is a line integral over the vector field given by F(z,y) = (0,z). The
last three terms vanish. The middle two trace out paths perpendicular to the vector field
F, and F' is zero the along the first path.

More generally, this demonstrates how we can use Stokes’ theorem to compute areas
in R? as line integrals along the boundaries. This is Green’s theorem.

Let
x y
=———d —— d
M= 2y x+$2+y2 Yy
—y -
=—-d —— d
=22 x+x2+y2 Y

be 1-forms defined on R?\ {0}. You’'ll show on the homework that there exists a smooth
function g € Q°(R? \ {0}) such that 7; = dg. Then Stokes’ implies

/ m = g(c(1)) — g(c(0))

However, there is not such a function g for 72, so Stokes’ theorem says nothing about
this case.
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4/24/2019 - Stokes’ theorem proof

Chains and boundaries

Recall that we defined the vector space of k-chains to be

Cr(R™) —{Zalcl a; €R, ¢ : I’“—>R”}

=1

By definition, C%(R™) is spanned linearly independently by k-cubes.

Examples

e Consider the 1-cubes defined by
ck(t) = (kcos(2t), ksin(2nt))
for k = 1,2,3. These are concentric circles with radius k. The linear combination
Tc1 — 2¢c9 + \f303

is a 1-chain on R2. Note that c3(t) — ca(t) = c1(t) for all ¢ € [0, 1]. However, c3 — ca # c1
in the vector space C1(R?), because this would result in a nontrivial linear relation
c1 +c3—c3 = 0. A sum of k cubes is not a function itself, but rather just a formal
expression.

e You will show on homework that there exists a 2-cube ¢ : I? — R? such that ¢ = ¢ —¢y.
The intuition is that the boundary map encodes information about deformations. If we
imagine the images of ¢; and ¢y as being stretchy, we can deform c; to cs by expanding
the circle. There exists a family of 1-cubes that interpolate between c¢; and cy. This
family is given by the 2-cube c.

e You will show on the homework that there is no 2-cube ¢ : I? — R?\ {(1.5,0)} such that
Oc = cy — c1. Again, the intuition is that ¢; cannot be deformed into cp in R?\ {(1.5,0)}.

Lemma. Fiz a 1-cube ¢ : I — R? with c¢(0) = ¢(1). Then there exists a 2-cube d : I? — R3 such
that 0d = ¢ — [0], where [0](t) = 0. Intuitively, every loop in R can be deformed to a point.

Proof. Define the 2-cube d : I? — R? by d(s,t) = sc(t). Then

(0,
(1,
(s
(

&

Il
a & O
—~~

t
t

&&

t)
0)
c(1)

~— — ~—— —

ISH
HuO

S,

Since ¢(0) = ¢(1) we have dd = ¢ — [0]. Intuitively, we are interpolating between a point and our
loop c. O
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The lemma does not hold for any open set of R3, however. For example, if we replace R? with
R3 \ {z-axis}, then the loop that wraps once around the z-axis cannot be deformed into a point.
In short, we can use cubes and boundaries to probe the topology of a space.'®

Stokes’ theorem

So far, for an open set U C R™ we have defined

e a differential form

w—ijdeGQk(U)

J

the exterior derivative

k
dw =YY Difsdx; Ndzy € QF(U)
J =1

a k-cube ¢ : I* — U, and a k-chain ¥ a;c;

the boundary

k
Z z—|—oz Clira)

a=0,1

Jo=] () (Delt) d
fp o= f

Theorem (Stokes’ theorem). Let w € Q¥=1(U) and z € C(U). Then

/dw:/w
z 0z

Proof. To prove the theorem, it suffices to consider the case when w = fydzy and z = ¢ : IF — U.

Since the derivative, the boundary, and the integral are all linear we can reduce the general case to
17

the integral over a cube

and over a chain

this form.

16This is the idea behind homology, which measures the extent to which there are chains with no boundary that
do not arise as the boundary of some other chain.

17Since we have
/Z | _d(ZdexJ) :ZaiZ/ a(fs dz)
/(EM (Zdexjfsz/ frdzy
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For concreteness, we will consider the case when U = R3 and & = 2. The general case just
involves more notation, but the idea is the same. Further suppose w = f dz; Adzs and ¢ : I — R?
is the standard 3-cube.

We’ll compute the two sides of the above equation. Note that
dw = Dsf dx1 A dzs A dxs
" (dw) = dw

since the pullback along the standard cube is the same form. Then

/chJ:/IgD:aff

1 1
= / / D3 f(x1, 22, x3) dxz dxs dry
xr1=0 Jx2=0 Jx3=0
1 1
:/ f(x1,22,1) — f(21,72,0) drg day
x1=0 Jx2=0

To evaluate the second half of the equation, note we have

i=1 a=0,1
where
c1,0)(T1,72) = (@, 71, T2)
c2,0)(71,72) = (21, @, 72)
c3,0)(71,72) = (21,72, )
Then

z+a
/dc Z Z /C(i,a) ¢

i=1 a=0,1
So we want to evaluate these integrals. Since w = f dxy A dxa, we have

C?l,a)w = f ©C1,a) daANdxry =0

/ w=20
¢(1,a)

as da = 0, since « is constant. We similarly have
/ w=20
€(2,a)

0?3,04)” = foc@a dr Adrg

dc €(3,1) €(3,0)

= [ flz1,29,1 / f(z1,22,0

12
which proves that the two sides of the equation are equal. O

However, on the other hand

So therefore
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The proof is not particularly challenging, but this is because we were careful to define the different
constructions properly. It also has many applications.

Vector calculus on R3

On R3, we have the correspondence

0-forms

f

d v

functions f : R® — R

1-forms

f1dxy + fodxs + f3dxs ¢ vector fields F = (f1, f2, f3) : R® — R3

d curl (infinitesimal rotation)

2-forms

L , _ . TR3 3
f1 dzo N dxg + f2 dzs N dx1 + f3 dzy1 N dxo vetion flelds = (fh f27 fg) B = I

J’d div (infinitesimal expansion)

3-forms
fdxy Adxs N dxs

functions f : R? — R

There is a version of Stokes’ theorem for each of these cases: the fundamental theorem of line
integrals, Green’s theorem, and the divergence theorem. Stokes’ theorem is an abstraction of
all of these cases to one theorem.

Applications of Stokes’ theorem

We will first examine a fixed point theorem. Let
D? ={z eR?: |z| <1}

denote the closed unit disk and
S'={zxecR?: |z| =1}

be the circle.

Theorem (Brouwer’s fixed point theorem). Any continuous map f : D?> — D? has a fized point,
namely there exists x € D? such that f(z) = z.

The proof follows from the following theorem.

Theorem. There is no continuous function g : D*> — S such that g(z) = x for all x € S*.

We’ll now prove the fixed point theorem using this result.
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Proof. Suppose for a contradiction that there exists a map f : D?> — D? that doesn’t fix any point.
Define the function g : D? — S! by examining the ray that begins at f(x) and travels through .

(g is labeled F' in the above diagram.) g¢ is continuous, since f is continuous. Since f has no
fixed point, this function g is always well-defined. This is a contradiction, so f must have a fixed
point. O

We’ll now prove the second theorem in the special case in which ¢ is C*.

Proof. Suppose for contradiction there exists a C! function g : D* — S such that g(x) = z for all
x € S'. Consider

i:[0,27] — R?
0 — (cos@,sin @)
c¢:[0,1] x [0,27] — R?
(r,0) — (rcosf,rsinf)

Note that dc = [0] — i, where [0] is the constant 1-cube that maps everything to 0. Consider the
form w = —y dxr + x dy. On the one hand,
/w =27
i

which is the length of S'. On the other hand, since g restricted to S! is the identity we know

g*w =w on S'. Then
o fyrenfr= L
i [0] i e
~ [dtg) = [5°(a)

9" (dw) = 2det(Dg) dx A dy

We know dw = 2 dz A dy, so
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But det(Dg) = 0 always.'® Then

_/iw:/cg*(dw):/deet(Dg)zo

which is a contradiction. O

8 This is because Dg(a) : R* — R? is a linear map to a 1-dimensional subspace given by the line tangent to the
circle at g(a). Then it cannot be surjective. Email me for more details.
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4/29/2019 - Stokes applications: Greens theorem, FTA

Winding numbers

Definition. A closed curve is a 1-cube ¢ : I — R™ such that c(0) = ¢(1).

Denote

A =R\ {0}

B = R?\ {nonnegative z-axis}

1 1

We know that

e w is closed, namely dw = 0.

e w is exact on B, with w = df where 0(z,y) is the angle defined by
(z,y) = (rcosf(z,y),rsin(0(z,y)))

e w is not exact on A, so there does not exist® a function f : A — R such that df = w.

%As the integral ‘around the circle’ is nonzero, even though the endpoints are equal.

Definition. For a closed curve ¢ : I — A, the winding number of c is
) 1
wind(c) = — /w
2m J.

If we view w as dfl, the winding number measures the net angular change of a closed curve around

the origin.
O Cb

lnd?{:”) =] Indj,(:-_u} =] I"dy{'_'-u} =0

® (S

Ind,(z;) = +1 Indy(zy) = +2
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Examples

e For the closed curve ¢, (t) = (rcos(2mnt), rsin(2wnt)), we have wind(¢,,,) = n. This is
because ¢, is just the curve that winds around the origin n times.

Lemma. For a closed curve ¢, wind(c) is an integer.

Proof. The proof rests on two key observations:

1. If ¢1,¢o are two closed curves and there exists a 2-cube b : I? — A such that 9b = ¢y — ¢1,
then wind(c;) = wind(cz).

Recall that the boundary map encodes information about deformations, so the condition
0b = c9 — ¢1 means that it is possible to deform ¢; into ¢y without passing through the origin.
This follows from Stokes’s theorem, as we have

Cc2 (6] Cc2—C]
/ w
ob

dw
b

0

since w is closed.

2. For any closed curve c, there exists n € Z and a 2-cube b such that 9b = ¢ — ¢1,. In other
words, every closed curve in A is deformation equivalent to some standard curve that wraps
around the origin n times. You’ll prove this on the homework.

By these two observations, given any ¢ we can find a 2-cube b and integer n such that 9b = c—cy .
This implies wind(c) = wind(c;,,) = n, which is an integer. O

Remark. If c is a closed form in B, then wind(c) = 0.

This is reasonable, since if we remove the nonnegative x-axis it is impossible for any curve to wind
around the origin completely. We can prove this again with Stokes’s theorem, as

/w = /d9
_ / 0
dc
_ / 9
¢(1)—¢(0)

= 0(c(1)) — 6(c(0))

since w = df is exact on B. We previously called this version of Stokes’s theorem the fundamental
theorem of line integrals.
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We see that the fact that w is closed but not exact is crucial to our definition of the winding
number. We can use winding numbers to prove some important results.

The fundamental theorem of algebra

We have the following important theorem.

Theorem. Let p = 2" + a, 12" ' + ... + ap € Poly(C) be a nonconstant polynomial with
complex coefficients. Then p has a root, namely there exists z € C such that p(z) = 0.

We used this last semester to prove the existence of eigenvectors for linear operators 7' : C"* —
C™. In this proof

Proof. We’ll present a sketch of the proof today. Suppose for contradiction that p has no roots,
namely that p(z) # 0 for all z € C.

On the one hand, if we choose r > 0 to be very small, then p o ¢, is a closed curve with
image near p(0). This is because the image of the curve ¢, is very close to 0, so the continu-
ity of p implies that the loop ¢, will be sent to a loop closely wrapping around p(0). Then
wind(p o ¢,1) = 0, since this loop doesn’t wind around the origin.

On the other hand, if we choose R > 1 to be very large, the map p behaves like the high-
est order term z". More precisely, if |z| > R, then p(z) ~ 2". Then pocr1 = cgnp, as the
image® of cgr,1 under 2" is crn . pocpr;1 won't be exactly a circle, but it will wrap around the
origin n times.® Then wind(p o cr1) = n.

However, if d is a 2-cube such that 9d = cgr1 — ¢,,1, then d(pod) = pocr1 —poc,; simply by
definition of the boundary. Note that we need p o d to be a 2-cube in A, so we are using the
assumption that p has no roots. By the lemma

n = wind(pocg;) = wind(poc,1) =0

which is a contradiction. So p has a root. OJ

“We know p(0) is some nonzero point, so take € to be small enough so that the ball of radius e around p(0)
doesn’t contain 0. Then if we take r to be smaller than the associated J§, we can use the fact that the image of
pocp1 is in B to conclude that this closed curve has winding number 0.

"We are viewing C as the plane R? under the identification of a + bi with the point (a,b). We see that

c1,1(t)" = (cos(2mt), sin(2mt))"™ = (cos(2mt) + isin(2mt))" = (e*)"

= e®™" = (cos(2mnt), sin(2nt)) = c1.n(t)

“This is the part of the argument that requires some more work.
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Green’s theorem and areas

Previously, given a set B C Q C R", where @ is a closed rectangle, we defined
vol(B) = / XB
Q

We can also use differential forms to describe volumes in R™.

Proposition. Fiz B C R", and suppose ¢ : Q — R"™ is an n-cube such that ¢(Q) = B and the
restriction C\mt(Q) s a diffeomorphism onto its image. Then

vol(B)z:l:/dxl/\.../\d:L‘n

C
Note that the proposition says volume can be computed using any parameterization. This follows
from the change of variables theorem.

Theorem (Change of variables theorem). Fiz an open set U C R™, and suppose ¢ : Q — U is an n-
cube such that the restriction c|iny ) is a diffeomorphism onto its image. Then for any f : U — R,

we have
/ f:/(foc)-\detDc|
c(Q) Q

The proposition follows quickly from the theorem:

Proof. We’ll apply the theorem to the constant function f = 1. The left hand side in the above
theorem in this case is

1= «(0) = vol(c = vol(B
[ 1= @ = volte@) = v)

The right hand side in the above theorem in this case is

/|detDc\:/d:v1/\.../\dxn
Q c

c*(dxy A ... Ndxy) = det(De) dey A ... Adxy,

because®

Examples

e We can now revisit volumes of revolution. Fix functions f,g : [a,b] — R such that
0 < f < g. Then we can consider the set

S={(z,2): f(z) <z < g(z) for z € [a,b]}

Let B be the three-dimension figure obtained by revolving S about the z-axis. We can

“Note that the real function |det Dc| : @ — R is given by the composition

Q Dc Mn (R) det R
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parameterize B as

c: [a,b] x [0,27] x [0,1] — R3
(r,0,t) — (7‘ cosf,rsind, f(r)+ t(g(r) — f(r)))

Compute
cosf —rsint 0
Dc = sinf@ rcosf 0

g(r) — f(r)
det Dc = r(g(r) — f(r))

where we are leaving the entries of Dc which are irrelevant when computing the deter-
minant blank for convenience. Then

wi= [ [ o) 10
= [ 2ertytr) - 700

as expected.

We have the following classical result:

Theorem. Let ¢ be a 2-cube, and let f,g: R? — R be functions. Then

fdotgdy= [ (Dig— Daf) du Ady
Jdc c

It should be clear that this is simply an application of Stokes’s theorem. We’ll focus on the case
when

(Dlg—Dgf) dx Ndy = dx N\ dy

In this case we are computing the area of some 2-cube c in the plane, as remarked above. Then
Green’s theorem says that it suffices to take the line integral along the boundary of ¢ of some
appropriate form f dx + g dy. It remains to find f and g that satisfy the above conditions on their
partial derivatives. One useful such pair of functions is f(z,y) = —y and g(z,y) = x.

Examples

e Consider the area bounded by the curves c¢1(0) = (6 cosf,0sinf) and co(t) = (1 —¢,0).
We have

1
Vol(B):/ ~(—ydz+ zdy)
c1+ca 2

Compute
* 1 %
cw = —0-df
2
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Then we have

vol(B)

133



5/1/2019 - Stokes applications: FTA, planimeters, coconuts

Green’s theorem and planimeters

Recall we have the following corollary to Stokes’s theorem:

Theorem (Green’s theorem). Let B C R? be open such that (C) is a closed curve c. Then

area(B) = /x dy
Cc

This follows from Stokes’s, since
area(B) = / dx A dy
B

Also note that we can replace x dy with any 1-form n that satisfies dn = dz Ady. There is a physical
tool that implements Green’s theorem called a planimeter.2’

We’ll first consider a different example. Consider a rod moving through the plane. When the
rod is moving in a direction orthogonal to its length, it traces out the most area. When it is mov-
ing parallel to its length, it doesn’t trace out any area. We can use Green’s theorem to compute
the area traced out by such rod moving through the plane.

Fix a point p on the rod, and let ¢ : [0,1] — R? be the path traced out by this point. Define
n:[0,1] — R? to be the normal vector to the rod at time ¢. Infinitesimally, the area swept out by
the rod at time ¢ is given by n(t) - ¢(t). Then the total area swept out by the rod is

1
A= / n(t) - (t) dt
0
Lemma. If the endpoints of the rod trace closed curves cy,cy bound regions By and Bs, then

A = area(B1) — area(B3)

Proof. This is evident after drawing the paths ¢; and ¢y as well as the areas they bound. O

Corollary. Given a region B bounded by a closed curve c, if we move the rod such that one end
traces out ¢ and the other endpoint traces out a curve that encloses no area, then we can compute

(B).

For example, if one endpoint is fixed and the other endpoint traces out the boundary of B, we have
satisfied the conditions of the corollary.

We can now turn to the planimeter.The idea is that we can fix one end of the rod to the cir-
cle of a given radius and allow the other end to move freely. Then the endpoint fixed to the circle
doesn’t trace out any area, so by measuring how much the wheel turns as the other endpoint traces

20Gee the Wikipedia article for how this tool works. The basic idea is that by measuring a turning wheel, we can
capture the integral of the form x dy along the boundary of some area in the plane.
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out an area we can compute the area of a given region.

This idea is closely related to Green’s theorem. Define a vector field n : R?> — R? given by
the unit normal direction to the tracer arm at a given position. Write n = (nq,n2) : R> = R x R,
and define the 1-form

w=mnydr+ nydy

The claim is that dw = K dx A dy for some constant K. Then given a region B bounded by a closed
curve ¢, we have

area(B) = / dx A dy
B

_ Il(/w
:/Oln(c(t))-c'(t) dt

which is the total turning of the wheel. The key fact is that the 1-form w, which is associated to
the physical setup of our system, actually satisfies dw = K dx A dy.

Fundamental theorem of algebra
We gave a sketch of the proof of the fundamental theorem of algebra, but we’ll return to in more
detail now.

Theorem (Fundamental theorem of algebra). Let p = 2" + a;2" ' + ... + a, € Poly(C) be a
complex polynomial with degree greater than or equal to 1. Then there exists z € C with p(z) = 0.

We define
A=R2\ {0}

For a closed curve c: [0,1] — A, we have

. 1 1
wind(c) = o /CM(—y dx + x dy)

Lemma. We have the following key ideas.
1. If z=r(cosf +isinf), then 2™ = r™(cos(nf) + isin(nh)).
2. For q € Poly,(C), there exists R > 0 such that if |z| > R, then |q(z)| > 100.

3. For closed cubes c1,co in A, if there exists a 2-cube b in A such that 0b = ¢1 — co, then
wind(c1) = wind(cg).

Proof. The first fact follows from basic trigonometric identities (see the footnote from last class).
The second fact says that we can get far enough from the origin so that ¢ is at least some constant
away from the origin, and it was on the first midterm. The third fact was proved last time, and it
follows from Stokes’s theorem and the fact that the winding number form is closed. O

We can now prove the theorem.
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Proof. The idea is to show that, assuming p has no root, wind(p o ¢) is both n and z. We will
proceed in several steps.

1. There exists » > 0 and a 2-cube b : I?> — A such that 9b = Crnp — D © Cr1, Where
Crn(t) = (rcos(2mnt), rsin(27nt)). This implies wind(p o ¢, 1) = n.

To show this, consider the straight-line interpolation
b:I? 5 A
b(s,t) = scpnn(t) + (1 = s)(pocra)(t)

We have the boundary terms

b(0,t) = (pocr1)(t)

b(1,t) = crnpn(t)

b(s,0) = s(r",0) + (1 — s)p(r,0)
b(s,1) = s(r",0) + (1 — s)p(r,0)

So
ob = PocCri1 —Cmnp

However, there is a problem. b should be a 2-cube in A, and right now we don’t know that
the image of b is contained in A. If the two points p o ¢, 1(t) and ¢,n ,,(t) are antipodal, then
the interpolation will pass through the origin.

To fix this, we should take r to be large. Write z; = ¢, 1(t), which is the loop of radius
r that wraps around once. Then z;" = ¢,» ,(t). Then we can write
b(s,t) = sz’ + (1 = s)p(z)
=sz+(1—s) (2 + a1z + ... +ap)
=20+ (1 —s) (a2l 4 ... +an)
We want to show that b(s,t) is never zero. But this is easy, since b(s,t) is a polynomial

evaluated at z;. Then by the lemma, we can ensure that this is true by taking |z;| to be large
enough. We have |z;| = r, so choose r large enough so that |b(s,t)| # 0.

Then wind(p o ¢,1) = wind(cyn ) = n.

2. Suppose that p has no root, and fix r as in the above step. We’ll show wind(p o ¢, 1) = 0.
Consider the 2-cube p o d, where

d:I* - R?
(r,t) = (rcos(2mt),rsin(27t))

is the 2-cube that parameterizes the disk. Note that p o d is actually a 2-cube in A because
we are assuming that p doesn’t have any roots. Then

(pod)(r,0) = (pod)(r,1)

(pod)(0,t) = p(0)

(pod)(1,t) = (pocra)(t)
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So
d(pod) =poce.1—p(0)

This implies that wind(p o ¢,1) = wind(p(0)) = 0, which is a contradiction.

-

Ci

/“ p(z)

Thanks for a great year!
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