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1/28/2019 - Continuity, the real numbers, least upper bound
property
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The least upper bound property

Here are two facts that are true for F = R but false for F = Q:

1. Existence of square roots: for a ∈ F , a > 0, there exists some b ∈ F such that b2 = a

2. The intermediate value theorem: let f : [a, b]∩F → R (where [a, b] = {x ∈ R : a ≤ x ≤ b})
be a continuous function. Assume f(a) < 0 and f(b) > 0. Then there exists some
c ∈ (a, b) ∩ F so that f(c) = 0.

Let’s first examine the existence of square roots. In 25a, we proved that there doesn’t exist a
rational b ∈ Q such that b2 = 2. We also stated the fundamental theorem of algebra,2 which
says that the polynomial x2 − 2 has a root (so there does exist some number whose square is 2).
We discussed the Babylonian method for approximating

√
2 as well (see your notes from 25a for

details). There is a less direct approach of proving the existence of
√

2 using the IVT (intermediate
value theorem):

Proof. Consider the function

f : [1, 2]→ R
x 7→ x2 − 2

Observe that f(1) = −1 < 0 and f(2) = 2 > 0. So the IVT says that there exists c ∈ (1, 2) with
f(c) = 0, which means c2 − 2 = 0, so c is the square root of 2.

This proof also gives a counterexample that shows Q doesn’t satisfy the IVT, since there is no
rational c with c2 = 2.

Definition. A subset A ⊂ R is bounded above if there exists z ∈ R such that a < z for all a ∈ A.
We call z an upper bound for A. Furthermore, we say z is the least upper bound of A if z ≤ z′
for any other upper bound z′. In this case, we write z = supA.

Examples

• If A = {1, 2, 3}, then supA = 3 = maxA.

• If A = {1− 1
n : n ∈ N}, then supA = 1 (note that this set doesn’t have a maximum).

• If A = {x ∈ Q : x2 < 2}, then supA =
√

2.

• If B = N, then supB does not exist (B has no upper bound).

• If C = ∅, then supC does not exist (every z ∈ R is an upper bound).

Theorem. (least upper bound property) If A ⊂ R is nonempty and bounded above, then A has
a least upper bound (supA exists).

Remark. R is the unique ordered field (F,+, ·, <) with the least upper bound property.

2We’ll prove this in 25b!
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Continuity and the IVT

Definition. Let f : R → R be a function. f is continuous at a if for every ε > 0 there exists
some δ > 0 so that |x− a| < δ implies |f(x)− f(x)| < ε.

f is not continuous at a if there exists some ε > 0 such that for every δ > 0 there exists x with
|x− a| < δ and |f(x)− f(a)| > ε.

Definition. A function f is continuous if it is continuous at each point a in the domain.

Most common functions are continuous. For example, polynomials, trigonometric functions, expo-
nentials, absolute values, etc. are all continuous.

We will now prove the IVT, but we first need a lemma.

Lemma. Suppose f : R→ R is continuous at a. If f(a) > 0, then f is positive near a. Precisely,
this means there exists δ > 0 so that |x− a| < δ implies f(x) > 0.

Proof. To apply continuity, we want to choose a specific ε. Choose ε = f(a)
2 . By the continuity of

f there exists δ > 0 such that |x− a| < δ implies |f(x)− f(a)| < f(a)
2 . In particular, this means

−f(a)

2
< f(x)− f(a) <

f(a)

2

0 <
1

2
f(a) < f(x) <

3

2
f(a)

So |x− a| < δ implies f(x) > 1
2f(a) > 0, as desired.

Proof. (of the IVT) We have a continuous f : [a, b] → R and we know that f(a) < 0 < f(b). We
want some c ∈ (a, b) with f(c) = 0. The idea will be to find the ‘last’ point where f is negative.
Consider

A = {x ∈ [a, b] : f(x) < 0}
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A is nonempty, since f(a) < 0, and A is bounded above by b. Then the least upper bound property
implies that c = supA exists.

The claim is that f(c) = 0. Either f(c) = 0, f(c) < 0, or f(c) > 0. We will rule out the lat-
ter two possibilities.

First suppose f(c) > 0. Then by the lemma, there exists c′ < c which is also an upper bound
for A (for example, we could choose c′ = c− δ

2 where δ is as in the statement of the lemma). This
contradicts the fact that c is the least upper bound for A.

Now suppose f(c) < 0. Then again by the lemma, we know f is negative on some open inter-
val around c, which means that there exists some a > c with f(a) < 0. This contradicts the fact
that c is an upper bound for A. Therefore f(c) = 0.

The IVT is a foundational part of calculus, and part of this course will be spent understanding in
what ways it can be generalized.

Dedekind cuts

Question: What is R?

We could try define R as the set of decimal expansions, but this has problems. There are multiple
ways of representing the same number, and it’s difficult to do arithmetic and understand elements
of R this way.

Idea: We understand Q well, so we will build R from Q by ‘filling in the gaps’ missing in the
rational numbers (for example, the square roots).

Definition. A cut is a subset α ⊂ Q that is

• nonempty and proper

• leftward-closed, in that if a ∈ α and b < a, then b ∈ α

• α has no largest element, which means that for each a ∈ α there exists some b ∈ α with b > a

Examples

• α = {x ∈ Q : x < 1
2} is a cut.

• {x ∈ Q : x2 < 2} is not a cut, since it is not leftward-closed (as it contains 0 but no
rationals less than −

√
2). We can make it a cut by instead defining

α = {x ∈ Q : x < 0 or x2 < 2}

Next time we will define R as the set {cuts α ⊂ Q} and make this set an ordered field, along with
showing that R has the least upper bound property.
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1/30/2019 - Skeleton of calculus, continuity theorems, Dedekind
cuts

Continuity theorems

Recall that a function f : [a, b] → R is continuous if for every point c ∈ [a, b], f is continuous
at c. This means that for any ε > 0, there exists some δ > 0 such that |x − c| < δ implies
|f(x)− f(c)| < ε.

Examples

Take f(x) = x2. Let’s show that f is continuous at c = 2. Fix ε > 0. We want to find δ > 0
such that |x−2| < δ implies |x2−4| < ε. In general, we want to ‘rewrite’ the second expression
to obtain the first. We can rewrite

|x2 − 4| = |x− 2| · |x+ 2|

If |x− 2| < 1, then |x+ 2| < 5 (since x must be between 1 and 3). Therefore

|x2 − 4| = |x− 2| · |x+ 2| < 5 · |x− 2|

So if |x− 2| < ε
5 , then 5|x− 2| < ε. Then for δ = min{1, ε5}, we have that |x− 2| < δ implies

|x2 − 4| < ε.

Let’s now show that f is continuous at c = 20. Fix ε > 0. We want to find δ > 0 such
that |x− 20| < δ implies |f(x)− 400| < ε. We have

|x2 − 400| = |x− 20| · |x+ 20| < 41 · |x− 20|

If we take δ = min{1, ε41}, then |x− 20| < δ implies |x2 − 400| < ε.

Note that the δ we found for c = 20 is smaller than for c = 2, as the graph of f(x) is ‘becoming
steeper’ at x = 20 then at x = 2, so we must consider a smaller region in the domain.

Note that δ should not depend on x (although it can depend on c).

Theorem. Let f : [a, b]→ R be a continuous function. Then we have the following three theorems:

1. (IVT) If f(a) < d < f(b), then there exists some c ∈ (a, b) such that f(c) = d.

2. (Boundedness theorem) There exists constants m ≤ M such that for all x ∈ [a, b], we have
m ≤ f(x) ≤M .

3. (Max/min value theorem) There exists points c1, c2 ∈ [a, b] so that for every x ∈ [a, b], we
have f(c1) ≤ f(x) ≤ f(c2).

In some sense, these are the three most important theorems of the course. What we do from now
on will build on them, and we will see to what extent they can be generalized.
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Sample application of the IVT

Theorem. Let p(x) = xn + an−1x
n−1 + . . .+ a0 ∈ Poly(R). If n is odd, then p has a real root,

namely there exists some c ∈ R such that p(c) = 0.

Proof. Factor p for

p(x) = xn(1 +
an−1

x
+ . . .+

a0

xn
)

When x is large, the terms in the parentheses will be very small. If |x| >> 0, then p(x) xn.
Hence there exists some a, b ∈ R such that p(a) < 0 < p(b). By the IVT, there exists some
c ∈ (a, b) with p(c) = 0.

Continuity is essential for each of these theorems. For example, consider the function

f(x) =

{
1
x x 6= 0

−1 x = 0

This function doesn’t take intermediate values in (−1, 0).

Note also that the boundedness theorem (and min/max value theorem) is false if we replace [a, b]
with (a, b). The same function f from above demonstrates this with the interval (0, 1).

The min/max value theorem is a stronger statement than the boundedness theorem (for exam-
ple, the function g(x) = x2 on (0, 1) satisfies the boundedness theorem, as 0 ≤ g(x) ≤ 1, but not
the min/max value theorem). We’ll now prove these, but we first need a lemma.

Lemma. Let f : [a, b] → R be a function. If f is a continuous at a point c ∈ [a, b], then f is
bounded near c. Precisely, there exists δ > 0 and a constant M such that |x − c| < δ implies
|f(x)| < M .

Proof. Since f is continuous at c, for ε = 1 there exists δ > 0 such that |x − c| < δ implies
|f(x)− f(c)| < 1. Rewriting this yields

−1 < f(x)− f(c) < 1

f(c)− 1 < f(x) < f(c) + 1

Take M = max{|f(c)− 1|, |f(c) + 1|}. Then whenever |x− c| < δ we have |f(x)| < M .

Recall the least upper bound property for R, which says that if A ⊂ R is nonempty and bounded
above then A has a least upper bound (supA exists).

Proof. (of the boundedness theorem) We will show there is a constant M such that f(x) ≤ M for
all x ∈ [a, b]. To do this, we will try to find the ‘last’ point z where f is bounded on the interval
[a, z]. Consider the set

A = {x ∈ [a, b] : f is bounded above on the interval [a, x]}
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A is nonempty, since f is certainly bounded on the interval [a, a] (which is just a single point). A
is also bounded above by b Then by the least upper bound property, we can take z = supA.

We want to show z = b. Suppose, for contradiction, that z < b. By the lemma, there exists
some δ > 0 such that f is bounded on (z − δ, z + δ). Let this bound be M1.

We also know that there exists some point y ∈ A ∩ (z − δ, z] (if not, then z − δ is an upper bound
for A that is strictly smaller than z, which contradicts the fact that z is the least upper bound of
A). So f is bounded on the interval [a, y], by definition of the fact that y ∈ A. Let this bound be M2.

We can just take the maximum of M1 and M2 so that f is bounded on the entire interval [a, z+ δ),
which means there is a point in A strictly greater than z. This contradicts the fact that z is an
upper bound for A. Hence z = b, so b is the least upper bound of A.

Final part of the proof (not presented in class)

It is still necessary to demonstrate that b ∈ A (namely that f is bounded on [a, b] inclusive). By
the lemma, f is bounded near b, which means there exists some δ > 0 such that f is bounded
by a constant M1 on (b− δ, b].

Since b is the least upper bound of A, there is some point y ∈ A ∩ (b − δ, b], which means
that f is bounded by a constant M2 on [a, y] by definition of A.

We can just take the maximum of M1 and M2 so that f is bounded on the entire interval
[a, b], which completes the proof (and shows that b ∈ A as desired).

The max/min value theorem is proved similarly. We know Y = {f(x) : x ∈ [a, b]} is nonempty and
bounded above by the boundedness theorem. Take M = supY , and consider

A = {x ∈ [a, b] : f(x′) < M for all x′ ∈ [a, x]}

Then show that f(c) = M for c = supA. (This is a good exercise to try. Hint: use the continuity
of f at c.)
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Least upper bound property

Lemma. N ⊂ R is not bounded above

You might wonder, why do we have to prove something like this? To motivate the discussion,
consider

Rat(R) =

{
p(x)

q(x)
: p, q ∈ Poly(R), q 6= 0

}
This is a field (we can appropriately define addition and multiplication). For f, g ∈ Rat(R),
we say f < g if there exists some δ > 0 such that f(x) < g(x) for all x ∈ (0, δ).

We have a copy of N contained in Rat(R) given by the nonnegative constant functions. How-
ever, N ⊂ Rat(R) is in fact bounded above by the rational function 1

x , as we can always find a
small δ > 0 for which 1

x is greater than a natural number n on the interval (0, δ).

Now we turn to proving the lemma.

Proof. Suppose, for contradiction, that N ⊂ R is bounded above. Then by the least upper bound
property, there is some z = supN. So n ≤ z for all n ∈ N. But then n+ 1 ≤ z for all n ∈ N, which
means n ≤ z− 1 for all n ∈ N. Hence z− 1 is an upper bound of N, which contradicts the fact that
z is the least upper bound of N.

To prove that R has the least upper bound property, we will give a construction of R. Last time
we defined a cut as a subset α ⊂ Q that is

• nonempty and proper

• leftward-closed

• has no largest element

We will define
R = {cuts α ⊂ Q}

Note that Q ⊂ R, so for any r ∈ Q there is a cut r∗ = {x ∈ Q : x < r}.

Theorem. Defined this way, R is an ordered field with the least upper bound property.

Recall that an ordered field is a quadruple (F,+, ·, <). The addition and multiplication make F
into a field, and < must satisfy a few axioms:

• < is transitive, in that a < b and b < c implies a < c

• < is a total order, in that either a < b, b < a, or a = b

• < is compatible with the field operationss, in that a < b implies a + c < b + c and, when
c > 0, we have a · c < b · c
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Next time, we will define the addition, multiplication, and order on this set, along with justifying
that these definitions satisfy the appropriate axioms. We will also prove the least upper bound
property.
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2/4/2019 - Convergence, sequences, limits, continuity

Construction of R

Recall that we defined
R = {cuts α ⊂ Q}

where a cut is a proper, nonempty subset of Q that is leftward-closed and contains no largest
element. Note that there is a natural injection i : Q ↪→ R given by associating r ∈ Q with the cut
i(r) = r∗ = {x ∈ Q : x < r}.

Theorem. R is an ordered field with the least upper bound property.

Proof. First we will define an order < on the set R. For two cuts α, β ∈ R, we will say α < β if
α ( β as subsets of Q. The order < should be transitive. This is clear.

< should also be a total order, which means that for any α, β ∈ R either α < β, β < α or
α = β. To see that this holds, suppose for contradiction that there exists α, β ∈ R such that none
of these are true. Since α 6< β, there exists b ∈ β ∩ αc. Similarly, there exists a ∈ α ∩ βc. a, b are
rational and Q is an ordered field, so either a < b, b < a, or a = b. We certainly can’t have equality
by choice of a and b. And a < b, b < a are impossible because cuts are leftward closed (for example,
if a < b, since b ∈ β we would also have a ∈ β, which is a contradiction).

We can now prove the least upper bound property. Let A ⊂ R be nonempty and bounded above
(namely, there is some cut β ∈ R such that α < β for all α ∈ A). Consider

γ =
⋃
α∈A

α ⊂ Q

First observe that γ is indeed a cut. It is nonempty, proper because A is bounded by β, leftward-
closed because each α is leftward-closed, and has no maximum element since none of the cuts α do.

γ is the least upper bound for A. Since α ⊂ γ, we have α ≤ γ for all α ∈ A. If γ′ is also an
upper bound for A, then α ⊂ γ′ for all α ∈ A. This implies that

⋃
α ⊂ γ′, so γ ⊂ γ′. Hence γ ≤ γ′.

Therefore γ is the least upper bound of A.

Next we want to make R into a field. Define

• α+ β = {x ∈ Q : x < a+ b for some a ∈ α, b ∈ β}

• If α, β > 0∗, then define α · β = {x ∈ Q : x < a · b for some a ∈ α, b ∈ β with a, b > 0}

• If α < 0∗ and β > 0∗, then define α · β = −((−α) · β).

• Note that −α is the unique cut with the property α + (−α) = 0∗. It is given by −α = {x ∈
Q : −x is less than all a ∈ α, but x is not the largest such value}

These operations make R into an ordered field. Moreover, they restrict to the usual operations on
Q ⊂ R. This is easy to check and will be left as an exercise.
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Application of this construction to the existence of
√
2

We will show that
√

2 does in fact exist. Consider

α = {x ∈ Q : x2 < 2 or x < 0}

α is a cut, and we claim that α2 = 2∗. First observe that α2 ≤ 2∗. This is because

α2 = {x ∈ Q : x < ab : a, b ∈ α and a, b > 0}

We want to show α2 ⊂ 2∗. Fix x ∈ α2. Then x < ab for a, b ∈ α and a, b > 0. Without loss of
generality assume a ≤ b. Then

x < ab < b2 < 2

so x ∈ 2∗, which shows that α ≤ 2∗.

Now suppose for a contradiction that α2 < 2∗. Then by the continuity of the map x 7→ x2 on
R, there exists some r ∈ Q so that r∗ > α and α2 < (r∗)2 < 2.a However, this means r ∈ α by
definition of α, so r∗ < α, which is a contradiction.

aThis follows because the continuous function x 7→ x2−2∗ is negative at α by assumption. Then it is negative
around α, so we can choose a point r∗ to the right of α for which the function is still negative.

Sequences and continuity

Sequences will give us an easier way to show that a function is not continuous.

Definition. A sequence in Rn is an ordered list (a1, a2, . . .) with each ai ∈ Rn.

Examples

• (1, 2, 4, 8, 16, . . .)

• (1, 1.4, 1.41, 1.414, . . .)

• (1,−1, 1,−1, . . .)

• an = ( 1
n , n) ∈ R2

Definition. A sequence (an) converges to p ∈ Rn if for every ε > 0, there exist some N such that
n ≥ N implies |an − p| < ε. If (an) converges to p, then we write an → p.

Note that for points x, y ∈ Rn, the notion of the distance |x− y| in Rn is given by

|x− y| =
√

(x1 − y1)2 + . . .+ (xn − yn)2

Definition. Given an increasing sequence 1 ≤ n1 < n2 < . . ., we define the subsequence
(an1 , an2 , an3 , . . .) of (a1, a2, a3, . . .).
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Examples

• A subsequence of (1, 2, 4, 8, . . .) is (1, 4, 16, 64, . . .)

• The sequence (1, 2, 4, 8, . . .) does not converge.

• The sequence (1, 1.4, 1.41, . . .) converges to
√

2.

• The sequence (1,−1, 1,−1, . . .) does not converge, but the subsequence (a2k) does con-
verge.

If an converges to p, then ank converges to p. However, it is possible that ank converges to p even
though an does not converge to p.

Sequences give us a way to think about continuity:

Theorem. The following are equivalent:

1. f is continuous at p.

2. For every sequence (a1, a2, . . .) in Rn that converges to p, the sequence (f(a1), f(a2), . . .)
converges to f(p).

So if we want to approximate the value of a continuous function at p, we can look at the values of
f on points near p.

Examples

• Consider the function

f(x) =

{
1 x = 0

0 otherwise

f is not continuous at 0. To show this using the theorem, consider the sequence given by
an = 1

n . (an) converges to 0, but (f(an)) does not converge to f(0) = 1, since f(an) = 0
for all an.

• Consider the function

g(x) =

{
sin( 1

x) x > 0

0 x = 0

Note that

g(
2

nπ
) =


0 neven

1 n = 4k + 1

−1 n = 4k + 3

(This should give a rough idea what the graph of g looks like.) g is not continuous at 0.
Consider the sequence given by an = 2

nπ . (an) converges to 0, but (f(an)) is the sequence
(1, 0,−1, 0, 1, 0, . . .), and it does not converge (to 0).

Now we will prove the theorem.
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Proof. Suppose f is continuous at p. Let (an) be a sequence converging to p. Fix ε > 0. We want
to show that there exists N > 0 such that n ≥ N implies |f(an)− f(p)| < ε. Since f is continuous
at p, there exists some δ > 0 such that |x − p| < δ implies |f(x) − f(p)| < ε. We know that the
sequence (an) converges to p, so there exists some N > 0 such that n ≥ N implies |an − p| < δ.
For n ≥ N , we have |an − p| < δ, which implies |f(an)− f(p)| < ε.

Now we will prove the other direction by contrapositive. Suppose that f is not continuous at
p. We will construct a sequence (an) which converges to p, but whose image (f(an)) does not
converge to f(p). Since f is not continuous at p, there exists ε > 0 so that for all δ > 0 there exists
x such that |x − p| < δ and |f(x) − f(p)| > ε. Then for δ = 1

n , choose such a sequence of points
(an) so that |an− p| < 1

n and |f(an)− f(p)| > ε. The sequence (an) converges to p, but the images
(f(an)) do not converge to f(p) (since they are always at least ε away).

Let’s try the following:

Theorem. If f : R → R is continuous at p and g : R → R is continuous at f(p), then
g ◦ f : R→ R is continuous at p.

Proof. Given a sequence (an) that converges to p, we want to show that ((g ◦f)(an)) converges
to (g ◦f)(p). Since f is continuous at p, f(an) converges to f(p). Since g is continuous at f(p),
g ◦ f(an) converges to g ◦ f(p), as desired.
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2/6/2019 - Topology, open/closed sets, compactness/Heine-Borel,
continuity

Real numbers and decimals

Fact. 0.9999 = 1.0000. What does this mean in our language? Define the cut

x =
⋃
k≥1

( 9

10
+ . . .+

9

10k
)∗

=
⋃
k≥1

(
1− 1

10k
)∗ ⊂ Q

Lemma. x = 1∗

Proof. We will show both inequalities. The direction x ≤ 1∗ is easier, since every r ∈ x is less
than 1 by definition.

It remains to show 1∗ ≤ x, so for each r ∈ Q with r < 1 there exists some k so that r < 1− 1
10k

(this is what r ∈ x means). Write r = a
b in lowest terms, with a ∈ Z, b ∈ N. We know a < b,

since r < 1. Furthermore, we know b− a ≥ 1 (since a and b are integers, their difference must
be at least 1).

So we want to find k such that
a

b
< 1− 1

10k

1

10k
< 1− a

b
=
b− a
b

Observe that it suffices to show
b− a
b
≥ 1

b
≥ 1

10b︸ ︷︷ ︸
(∗)

You can prove (∗) easily by showing that n < 10n by induction. We can take k = b+ 1, which
proves the lemma.

We’ll turn to another lemma that came up recently.

Lemma. For every ε > 0, there exists k ∈ N such that 1
10k

< ε.

Proof. Fix ε > 0. We can rewrite this as 10k > 1
ε . There exists a k ∈ N so that k > 1

ε . This
is because N ⊂ R is not bounded above (we showed this previously). By the claim from above,
10k > k > 1

ε .

This lemma also shows that the sequence (1, 1
2 ,

1
3 , . . .) converges to zero.

Limits and continuity

Even if f is not continuous at a, we can still try to describe behavior near a.
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Definition. We say f : Rn → Rm approaches limit L near a if for all ε > 0, there exists a
δ > 0 such that 0 < |x− a| < δ implies |f(x)− L| < ε. In such a case, we write

lim
x→a

f(x) = L

This looks a lot like the definition of continuity. However, note that the value of f(a) is irrelevant
when taking the limit of f at a. This is because we demand 0 < |x− a|, so we are never evaluating
f at the point a.

Examples

• Consider the function

f(x) =

{
1 x = 0

0 otherwise

Then
lim
x→0

f(x) = 0

By definition, f is continuous at a if and only if limx→a f(x) = f(a).

Theorem. (Algebra of limits) Fix f, g : Rn → Rm. Assume limx→a f(x) = L and limx→a g(x) = K.
Then we have

1. limx→a f(x) + g(x) = L+K

2. limx→a f(x)g(x) = LK when m = 1

3. limx→a
1

f(x) = 1
L when m = 1 and L 6= 0

Sample application of the algebra of limits theorem

• The function x 7→ xn is continuous because x 7→ x is continuous (this claim is easier), as
xn is the product of x n times.

• The function x 7→ x14−3x100

1−x3 is continuous everywhere it is defined (this is much easier
than showing continuity with ε and δ).

Proof. We must use the ε− δ definition. The three steps of such a proof are (a) algebra, (b) esti-
mation, and (c) write-up.

We will first prove statement 1 of the theorem. Fix ε > 0. Use algebra to rewrite∣∣f(x) + g(x)− (L+K)
∣∣ =

∣∣f(x)− L+ g(x)−K|
≤
∣∣f(x)− L

∣∣+
∣∣g(x)−K

∣∣
by the triangle inequality. Now estimate to conclude that we should make each of the two parts
less than ε

2 . By assumption, there exists δf , δg > 0 such that 0 < |x−a| < δf implies |f(x)−L| < ε
2

17



and 0 < |x− a| < δg implies |f(x)−K| < ε
2 .

Now to write up the solution, take δ = min{δf , δg}. If 0 < |x− a| < δ, then∣∣f(x) + g(x)− (L+K)
∣∣ ≤ ∣∣f(x)− L

∣∣+
∣∣g(x)−K

∣∣
<
ε

2
+
ε

2
= ε

as desired.

Now we will prove the second statement of the theorem. Write∣∣f(x)g(x)− LK
∣∣ =

∣∣f(x)g(x)− Lg(x) + Lg(x)− LK
∣∣

≤
∣∣f(x)− L

∣∣︸ ︷︷ ︸
(∗)

·|g(x)|+ |L| ·
∣∣g(x)−K

∣∣︸ ︷︷ ︸
(∗)

We can make (∗) small, but we will have to be a bit careful here, since |g(x)| is not actually constant
as x varies. The idea will be to find a bound for this value |g(x)|. There exists some δg > 0 such
that 0 < |x− a| < δg implies |g(x)−K| < ε

2|L| . Then for these values of x,

K − ε

2|L|
< g(x) < K +

ε

2|L|

g(x) < max

{∣∣∣∣K − ε

2|L|

∣∣∣∣, ∣∣∣∣K +
ε

2|L|

∣∣∣∣}︸ ︷︷ ︸
M

There also exists δf > 0 such that 0 < |x− a| < δf implies |f(x)−L| < ε
2M . Take δ = min{δf , δg}.

The writeup follows similarly. It’s a good idea to try proving statement 3 of the theorem yourself.

Generalized boundedness theorem

Recall that the boundedness theorem says that if f : [0, 1]→ R is a continuous function, then f is
bounded. Precisely, this means that there exists a constant M such that |f(x)| ≤M for all x ∈ [0, 1].

Further recall that if we replace [0, 1] with (0, 1), the analagous statement is false (for example,
consider f(x) = 1

x).

Question. What is the difference between [0, 1] and (0, 1) that allows the theorem to fail?

Question. For which X ⊂ Rn does the boundedness theorem hold?

For which of the following does the boundedness theorem hold?

• X = [0, 1]n

• X = {x ∈ Rn : |x| = 1}

• X = {x ∈ Rn : |x| ≤ 1}

18



• X = {A ∈Mn(R) : AtA = I} (the isometries/orthogonal matrices)

• The Hawaiian earring:

• The Serpinski triangle:

The tool we used for the boundedness theorem was the least upper bound property. However, this
is not enough for higher-dimensional situations. We will need a new tool: compactness.

Topology definitions

Definition. Let A ⊂ Rn. A point p ∈ Rn is a limit point of A if there is a sequence (an) ⊂ A\{p}
so that (an) converges to p.

Definition. Let A ⊂ Rn. If p ∈ A is not a limit point of A, then p is an isolated point.

Definition. A subset A ⊂ Rn is closed if it contains all of its limit points.

Definition. A subset A ⊂ Rn is open if for all a ∈ A, there exists some r > 0 such that the ball
Br(a) = {x ∈ Rn : |x− a| < r} is contained in A.

Examples

• If A = {(x, y) : x2 + y2 ≤ 1} ∪ {(2, 0)}, (0, 0) is a limit point. Take the sequence
(1

2 , 0), (1
3 , 0), (1

4 , 0), . . .. However, (2, 0) is not a limit point. Any sequence in A \ {(2, 0)}
cannot converge to (2, 0). So (2, 0) is an isolated point.

• Defined as above, A is closed.

• Note that if we replace ≤ with < in the definition of A, A is no longer closed. However,
A is not open either (any ball around (2, 0) contains points not in A).

• Rn and ∅ are both open and closed.

Note that these notions generalize closed and open intervals in R.
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Definition. A subset A ⊂ Rn is sequentially compact if every sequence (an) ⊂ A has a subse-
quence (ank) that converges to some point p ∈ A.

Examples

• Any finite set is compact. A sequence visits a finite number of points infinitely many
times, so there is some p ∈ A which is visited by the sequence infinitely many times. We
can take the subsequence (p, p, p, . . .).

• (0, 1) ⊂ R is not sequentially compact, as the sequence (an) given by an = 1
n converges

to 0 6∈ (0, 1).

• R ⊂ R is not sequentially compact, since the sequence (an) given by an = n does not
converge and has no convergent subsequence.

For the purposes of some intuition, we can view compactness as a generalization of what it means
to be finite. For example, functions from finite sets are bounded, as are functions from compact sets.

More generally, note that sequentially compact sets are closed, as we can take a sequence that
converges to every limit point of such a set, and by compactness the set must contain that point.

Also observe that sequentially compact sets are bounded. Precisely, this means there exists some
R > 0 such that A ⊂ BR(0) (A is contained in the ball of radius R around 0). If a set isn’t
bounded, then we can take some sequence of points that are farther and farther from the origin.
This sequence has no converging subsequence.

Next time, we will prove that [0, 1] is compact and that the boundedness theorem generalizes
to continuous functions on compact sets.
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2/11/2019 - More topology, subset trichotomy, compactness and
coverings

Sequential compactness

Recall A subset A ⊂ Rn is

• closed if whenever (an) ⊂ A is a sequence that converges to p, p ∈ A.

• bounded if A ⊂ Br(0) for some r > 0. Equivalently, A ⊂ [−t, t]n for some t > 0 (since we
can fit balls inside boxes and boxes inside balls).

• sequentially compact if every (an) ⊂ A has a subsequence (ank) ⊂ (an) such that ank
converges to p with p ∈ A.

We also know that if A is sequentially compact, A is bounded and closed.

Examples

• R× [0, 1] ⊂ Rn is closed but not bounded. The sequence that goes off to infinitiy has no
convergent subsequence.

• (0, 1)2 is bounded but not closed. The sequence that becomes close to the boundary of
this set converges to a point outside of the set.

We can use our topological definitions to prove a generalization of the boundedness theorem.

Theorem. (Generalized boundedness theorem). Let A ⊂ Rd be sequentially compact and f : A →
Rd be a continuous function. Then f(A) = {f(a) : a ∈ A} is sequentially compact. In particular,
f(A) is bounded.

Proof. Fix a sequence (bn) ⊂ f(A). Write bn = f(an) for some an ∈ A. Since A is sequentially
compact, there exists a converging subsequence (ank) ⊂ (an) that converges to a point p ∈ A. Since
f is continuous, this implies that the subsequence (bnk) ⊂ (bn) converges to the point f(p) ∈ f(A),
by our characterization of continuous functions last class.

This is a very useful tool, but we will have to develop a way to recognize sequentially compact sets.

Theorem. A closed interval [a, b] ⊂ R is sequentially compact.

Proof. Fix a sequence (xn) ⊂ [a, b]. For c ∈ [a, b], if for all ε > 0 there exists n such that
xn ∈ (c− ε, c+ ε) \ {c}, then there exists a subsequence converging to c (choose xnk to be within 1

k
of c. Be sure to choose xnk so that the resulting sequence is indeed an ordered subsequence of (xn)).
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So if there does not exist a subsequence that converges to c, then there exists some ε > 0 such that
(c− ε, c+ ε) contains no points of the sequence. We will now apply the least upper bound property.
Define the set

A = {x ∈ [a, b] : xn < x for only finitely many n}

Certainly a ∈ A and A is bounded above by b, so by the least upper bound property c = supA exists.

Now suppose for contradiction that there is no convergent subsequence to c. Then there exists
ε > 0 such that no xn is within (c − ε, c + ε). Then any point in (c, c + ε) is also in A, so this
contradicts the fact that c is an upper bound of A. Hence there is a subsequence that converges to c.

Note that we must also consider the case when c = b. Then for any ε there must be a point
in (c− ε, b)

Theorem. [0, 1]n ⊂ Rn is sequentially compact. In general, closed intervals are compact.

Proof. The proof is left as an exercise. You can do this by projecting the sequence on to each of
the n intervals [0, 1] and using the sequential compactness of the closed interval, proceeding by
induction.

Theorem. (Bolzano-Weierstrass theorem). Every bounded sequence in Rn has a convergent sub-
sequence.

Proof. Let (xn) be a bounded sequence. Then (xn) ⊂ [−t, t]n for some t > 0. The product [−t, t]n
is sequentially compact, so (xn) has a convergent subsequence.

Theorem. (Heine-Borel theorem). A is sequentially compact if and only if A is closed and bounded.

Proof. We proved the forward direction as a lemma last class, so it remains to show the reverse
implication.

Fix A ⊂ Rn closed and bounded, and take a sequence (an) ⊂ A. A is bounded, so A ⊂ [−t, t]n
for some t > 0. Hence (an) has a convergent subsequence (ank) that converges to p ∈ [−t, t]n.
However, we also need that p ∈ A. This is true because A is closed.

Exercise

Let A = { 1
n : n ∈ N} and B = A ∪ {0}. Are A,B sequentially compact?

• A is not closed, and hence not sequentially compact. The sequence (an) given by an = 1
n

does not converge to a point in A.

• B is sequentially compact. B is closed and bounded. You can also argue directly by
finding a convergent subsequence, but this requires some care.

22



More topology

Recall that a set U ⊂ Rn is open if for all u ∈ U , there is some r > 0 such that Br(u) ⊂ U . We
will now further explore the relationship between being open and closed.

Lemma. If U ⊂ Rn is open, then U c is closed. If A ⊂ Rn is closed, then Ac is open.

Proof. Let U be open. Take (xn) ⊂ U c to be a sequence converging to p. We want to show p ∈ U c.
Suppose for contradiction that p ∈ U . U is open, so there exists r > 0 such that Br(p) ⊂ U .
However, since (xn) converges to p, so there is some N such that n ≥ N implies that xn ∈ Br(p).
This contradicts the assumption that xn ∈ U c.

Let A be closed. Suppose Ac is not open. Then there is some p ∈ Ac such that for all r > 0,
there is some point a ∈ A ∩ Br(p). Then there exists a sequence (an) ⊂ A that converges to p
(by taking an ∈ A to be some point within 1

n of p). This contradicts the assumption that A is
closed.

Remember that subsets of Rn can be open, closed, both open and closed, or neither open nor
closed. However, there is still a trichotomy.

Let Y ⊂ Rn. Then for x ∈ Rn, exactly one of the following holds:

• There exists r > 0 such that Br(x) ⊂ Y . In this case we say x is an interior point of
Y .

• There exists r > 0 such that Br(x) ⊂ Y c. In this case we say x is an exterior point of
Y .

• For every r > 0, the ball Br(x) intersects both Y and Y c. In this case we say x is a
boundary point of Y .

They we can decompose Rn into

Rn = int(Y ) t bd(Y ) t ext(Y )

Note that Y is open if and only if Y = int(Y ), and Y is closed if and only if bd(Y ) ⊂ Y .

Examples

Let Y = {(x, y) ∈ R2 : x2 + y2 < 1} ∪ {(2, 0)}.

• The interior of Y is {(x, y) ∈ R2 : x2 + y2 < 1}.

• The boundary of Y is {(x, y) ∈ R2 : x2 + y2 = 1} ∪ {(2, 0)}.

• The exterior of Y consists of all the other points.

We can use open and closed sets to characterize continuity.
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Lemma. A function f : Rn → Rm is continuous if and only if U ⊂ Rm is open implies f−1(U) ⊂ Rn
is open.

Covering compactness

Let U be a collection of open sets in Rn. U could be finite, countable, or uncountable. Generally
we will write

U = {Uβ : β ∈ B}

Definition. U is an open cover of X ⊂ Rn if

X ⊂
⋃
β∈B

Uβ

If V ,U are both open covers of X with V ⊂ U , then V is a subcover of U .

Definition. X ⊂ Rn is covering compact if any open cover of X has a finite subcover.

Examples

• Let X = R. Then the cover
U = {(n, n+ 2) : n ∈}

is an open cover of R with no finite subcover. Hence R is not convering compact. However,
note that R does have finite covers (for example U = {R}).

• If X is finite, then X is covering compact.

We will prove the following results.

Theorem. X ⊂ Rn is sequentially compact if and only if X is covering compact.

Theorem. [0, 1]n ⊂ Rn, and closed intervals in general, are covering compact.

Theorem. (Nested interval theorem). If Qk ⊂ Rd are nested rectangles such that Qk+1 ⊂ Q for
all k, then

⋂
Qk 6= ∅.
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2/13/2019 - Differentiability, mean value theorem, Taylor
polynomials

Compactness

Recall that we have two notions of compactness:

• X ⊂ Rn is sequentially compact if for all sequences (xn) ⊂ X, there is a subsequence
(xnk) ⊂ (xn) that converges to some point p ∈ X.

• X ⊂ Rn is covering compact if every open cover of X has a finite subcover. In other
words, whenever

X ⊂
⋃
β∈B

Uβ

there exists β1, . . . , βr ∈ B such that

X ⊂ Uβ1 ∪ . . . ∪ Uβr

We will spend today working on the following theorem:

Theorem. [0, 1]n ⊂ Rn is covering compact.

Alternate proof of the boundedness theorem

Theorem. If f : [0, 1] → R is continuous, then there exists a constant M > 0 such that
|f(x)| ≤M for all x ∈ [0, 1].

Proof. By continuity, for each y ∈ [0, 1] there exists a δy such that |x − y| < δy implies
|f(x)− f(y)| < 1. Equivalently, this means

f(y)− 1 < f(x) < f(y) + 1

|f(x)| < max{|f(y) + 1|, |f(y)− 1|} = My

The open sets {Bδy(y) : y ∈ [0, 1]} give a covering of [0, 1]. Since [0, 1] is covering compact,
there exist finitely many y1, . . . , yr such that the balls By1(y1), . . . , Byr(yr) cover [0, 1]. Then
for x ∈ [0, 1] we know that

|f(x)| < max{My1 , . . . ,Myr} = M

which completes the proof.

As in the above proof, compactness is used as a tool ‘to go from the infinite to the finite.’ You will
prove the following corollary on homework.

Corollary. X is sequentially compact if and only if X is covering compact.
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We will now turn to prove the theorem, but we will need another fact first, which you will also
prove on the homework.

Theorem. (Nested interval theorem/Onion ring3 theorem). Let Qk ⊂ Rn be closed rectangles such
that Qk+1 ⊂ Qk. Then ⋃

k

Qk 6= ∅

Now we will prove that [0, 1]n ⊂ Rn is covering compact.

Proof. Suppose, for contradiction, that there exists a covering U of [0, 1]n with no finite subcover.
Decompose [0, 1]n into 2n quadrants, based on whether or not a point is in the first or second half
of each interval [0, 1]. One of these quadrants must not have a finite subcover (or else there would
be a finite subcover for all of [0, 1]n). Let Q1 be this quadrant.

Inductively define Qk+1 ⊂ Qk with the properties

1. Qk+1 is not covered by finitely many elements of U .

2. The diameter of Qk is
√
n

2k
(this is the diagonal of the quadrant).

The onion ring theorem implies that there is some z ∈
⋂
kQk. Then by definition of the cover U ,

there is some open U ∈ U . Since U is open and the diameters of Qk go to zero, there is some N
such that n ≥ N implies Qn ⊂ U . This is a contradiction, since all of these Qn are contained in the
single set U . However, we chose the Qn to have no finite subcover. Therefore U does not exist, so
[0, 1]n is covering compact.

This concludes the first part of the course, in which we covered

• the continuity theorems (intermediate value theorem, boundedness theorem, min/max value
theorem)

• the least upper bound property and compactness

• the compactness theorems (Bolzano-Weierstrass theorem and Heine-Borel theorem)

We will use these foundational results in the next part of the course.

3
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Differentiability

Question: Given a function f : R→ R, what is the linear map `(x) = mx+ b that best approxi-
mates f near a ∈ R?

Assume a = 0. Then we want `(0) = f(0), so we should take b = f(0). To find m, consider secant
lines.

For sufficiently nice f , we would expect that the slope

f(h)− f(0)

h

converges.

Definition. A function f : R→ R is differentiable at a ∈ R if

lim
h→0

f(a+ h)− f(a)

h

exists. Denote this limit by f ′(a).

Definition. A function f : R→ R is differentiable if it is differentiable at all a ∈ R.

Basic facts about differentiable functions

Let f, g : R→ R be differentiable functions.

• f is continuous.

• (f + g)′ = f ′ + g′

• (fg)′ = f ′g + fg′

• (f/g)′ = f ′g−fg′
g2

• (f ◦ g)′(a) = f ′(g(a))g′(a)
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• If f(x) = c is constant, then f ′(x) = 0.

These are all not too difficult to prove. We will show the first one now.

Proof. Write

lim
h→0

f(a+ h)− f(a)

h
= lim

x→a

f(x)− f(a)

x− a
using the substitution x = a+ h. Then we have

lim
x→a

f(x)− f(a) = lim
x→a

(
f(x)− f(a)

x− a

)
(x− a)

= lim
x→a

(
f(x)− f(a)

x− a

)
· lim
x→a

x− a

= f ′(a) · 0 = 0

The only tricky one is the chain rule, which we will return to in more generality later.

Corollary. We can differentiate polynomials and rational functions (quotients of polynomials).

Examples

• Consider the function

f(x) =

{
x2 x ≥ 0

0 x < 0

To compute f ′(x) away from 0, we can just use the differentiation rules (as the derivative
depends on the local behavior of f). But to compute f ′(0), we must use the limit
definition. By examining the left and right limits we have

lim
h→0+

f(h)

h
= lim

h→0

h2

h
= 0

lim
h→0−

f(h)

h
= lim

h→0

0

h
= 0

So the overall limit indeed exists, and we have f ′(0) = 0.

Differentiation defines a function D : V →W , where V is the set of differentiable functions and W
is the set of all functions. In fact, V and W are vector spaces. The rules for sums, products, and
constants imply that D is actually a linear map.

From this perspective, it’s natural to ask about the kernel and image of D. The kernel certainly
contains the constant functions, but is there anything else?
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Theorem (Mean value theorem). Let f : [a, b]→ R be a continuous function such that the restric-
tion f |(a,b) : (a, b)→ R is differentiable. Then there exists c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c)

Proof. We will prove the result in two cases. First assume that f(a) = f(b). Then we want to find
c ∈ (a, b) such that f ′(c) = 0. f is continuous on [a, b], so by the min/max value theorem there
exist c1, c2 ∈ [a, b] such that f(c1) ≤ f(x) ≤ f(c2) for all x ∈ [a, b].

Suppose c1 and c2 are both at the endpoints. Then f is constant, and so it has derivative f ′(x) = 0
everywhere.

Suppose at least one of c1, c2 in in (a, b). Without loss of generality say c = c2 ∈ (a, b) for
f(x) ≤ f(c) for all x ∈ [a, b]. The claim is that f ′(c) = 0. Compute left and right limits for

lim
x→c−

f(x)− f(c)

x− c
≤ 0

lim
x→c+

f(x)− f(c)

x− c
≥ 0

However, we know that this limit exists since f is differentiable by assumption, so both limits must
be 0. This implies f ′(c) = 0. This completes the proof in the case where f(a) = f(b).

For the general case, consider the function

g(x) = f(x)−
(
f(b)− f(a)

b− a

)
(x− a)

Then g satisfies the first case, so g′(c) = 0 for some c ∈ (a, b). This proves that there exists c ∈ (a, b)
such that

f ′(c) =
f(b)− f(a)

b− a
(Check the details.)
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Now we claim that the kernel of D is precisely the constant functions. Suppose f ′(x) = 0 for all
x ∈ R. Apply the mean value theorem to f |[0,a][0, a]→ R. There exists some c ∈ (0, a) such that

0 = f ′(c) =
f(a)− f(0)

a

This implies f(a) = f(0). Since a is arbitrary, this means that f is a constant function.

The image of D is a more difficult question that we will touch on later.
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2/20/2019 - Polynomial approximation, second derivative test

Derivative interpretations

Last time we defined the derivative of a function f : R→ R by

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

x→a

f(x)− f(a)

x− a
which is the limit of the slope of the secant lines. The derivative captures the idea that, as we zoom
in on a differentiable function, the function itself begins to look like a line.

We can use different notations for the derivative of a function.

• The notation f ′(a) was introduced by Langrange, around 1770.

• The notation Df(a) emphasizes the fact that the derivative is a differential operator on
the vector space of smooth functions.

• The notation df
dx(a) was introduced by Leibniz, which he defined as the the value

f(a+ dx)− f(a)

dx

when dx is ‘infinitely small.’ (This was before the limit was invented!)

If f : (a, b) → R is differentiable, then we can view the derivative f ′ : (a, b) → R as a function as
well.

Definition. If f ′ : (a, b) → R as a function itself is continuous, then the function f is continu-
ously differentiable and f is C1. More generally, if f ′, f ′′, . . . , f (k) all exist and are continuous,
then f is Ck. Furthermore, if f (k) exist for all k, then f is smooth.

Question: What does f ′ tell us about f?

Corollary. If f ′(x) = 0 for all x, then f is a constant function.

Corollary. Let f be C1. Then if f ′(c) > 0, f is increasing near c (meaning x < y implies
f(x) < f(y). Similarly, if f ′(c) < 0, f is decreasing near c.

We’ll use the mean value theorem, which says that if f : [a, b]→ R is a continuous function that is
differentiable on (a, b), then there exists a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

Proof. Since f ′(c) > 0 and f ′ is continuous (as f is C1), we know that f ′ is positive near c, namely
that there exists δ > 0 such that x ∈ (c− δ, c+ δ) implies f ′(x) > 0. Take points x and y such that

c− δ < x < y < c+ δ
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The mean value theorem for f on [x, y] implies that there exists c ∈ (x, y) such that

f(y)− f(x) = f ′(c)︸︷︷︸
>0

· (x, y)︸ ︷︷ ︸
>0

> 0

So we have shown that x < y implies f(x) < f(y).

Examples

• The function f(x) =
√
x has derivative

f ′(x) =
1

2
√
x

We can show this formally by observing that if we define

g(x) = f(x) · f(x) = x

then the product rule yields
1 = g′(x) = 2f(x)f ′(x)

This implies

f ′(x) =
1

2f(x)

Note that to apply the product rule as we just did, we need to know that the functions
involved are differentiable. So we really should compute the limit

lim
x→a

√
x−
√
a

x− a

to determine the derivative of
√
x.

Proof of the product rule

Proof. If we have two differentiable functions h, k : R→ R, we have

(hk)′(a) = lim
x→a

h(x)k(x)− h(a)k(a)

x− a

= lim
x→a

h(x)k(x)− h(a)k(x)

x− a
+
h(a)k(x)− h(a)k(a)

x− a

= lim
x→a

h(x)− h(a)

x− a
· k(x) + h(a)

k(x) = k(a)

x− a
= h′(a)k(a) + h(a)k′(a)

where we are using the fact that both h and k are differentiable to simplify to the last line.

If we replace f ′(c) > 0 with f ′(c) ≥ 0, we cannot assume that f is constant near c. For example,
consider the functions f(x) = x2 and f(x) = x3, which both have derivative 0 at 0, but neither are
constant.
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Definition. If f ′(c) = 0, then c is a critical point of f .

We showed last time that if c is a local minimum or maximum of a differentiable function f , then
c is a critical point of f . We examined the left and right limits of

f ′(c) = lim
x→c

f(x)− f(c)

x− c

However, if c is a critical point of f , it is not necessarily true that f has a local minimum or
maximum at c. For example, take the function f(x) = x3.

Question: How can we use derivatives to describe the behavior of a function near a critical
point?

Noteworthy/cautionary examples

Examples

• Define the function

f(x) =

{
x sin( 1

x) x 6= 0

0 x = 0

f is continuous. At x = 0, we can see this by examining

lim
x→0

x sin(1/x)

Since | sin(1/x)| ≤ 1, the claim

lim
x→0

x sin(1/x) = 0

follows from the squeeze theorem (squeeze this function between the functions x and −x).
However, f is not differentiable at 0, since

f ′(0) = lim
x→0

f(x)− f(0)

x
= lim

x→0
sin(1/x)
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f is continuous on [0, 1] and differentiable on (0, 1) so we can apply the mean value the-
orem.

If we replace x sin(1/x) with xm sin(1/x), we get examples that are Cr but not Cr+1

(where r is related to m).

• Thomae’s function f : [0, 1]→ R is given by

f(x) =

{
1
b if x = a

b in lowest terms

0 x is irrational

f is not continuous at each rational a/b ∈ Q (we can choose a sequence (xn) that converges
to x with xn irrational). However, the surprising result is that f is continuous at all
irrational numbers x 6∈ Q. Fix some ε > 0. Then there are only finitely many rational
numbers a/b with 1/b > ε (when b < 1/ε). Choose δ small enough to avoid these rational
numbers a/b.

Polynomial approximations

Definition. Let f : R → R be a Ck function, and fix some a ∈ R. Then the kth Taylor
polynomial of f at a is

Pk(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + . . .+

f (k)(a)

k!
(x− a)k

In the case where k = 1, we have

P1 = f(a) + f ′(a)(x− a)

This is the linear approximation of the function f . In general, Pk(x) is designed so that we have

P
(i)
k (a) = f (i)(a) for i ≤ k.

Theorem. (Approximation theorem). Fix k, f : R → R, and let P = Pk be the kth Taylor
polynomial. Then

1. P approximates f to order k at a. If we set R(h) = f(a+ h)− P (a+ h), then

lim
h→0

R(h)

hk
= 0

2. P is the unique polynomial of degree less than or equal to k that satisfies the above condition.
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3. If f is actually Ck+1, then for each h > 0 there exists c ∈ (a, a+ h) such that

R(h) =
f (k+1)(c)

(k + 1)!
· hk+1

Intuitively, the theorem is saying that the Taylor polynomials are very good approximations for f
near a. The function R(h) should be viewed as the error term, which is the difference between our
approximation and the function f .

f(a+ h) = P (a+ h)︸ ︷︷ ︸
approximation

+R(h)

The fact that the error term R(h) has limit

lim
h→0

R(h)

hk
= 0

tells us that R(h) is going to zero faster than hk goes to zero, which means that R(h) goes to zero
extremely quickly. Polynomials are very easy to evaluate, graph, and understand, so it is important
that we can approximate functions well with polynomials.

Corollary. (Second derivative test). Let f : R→ R be a C2 function, and let c be a critical point
of f . If f ′′(c) < 0, then c is a local maximum of f , and if f ′′(c) > 0, then c is a local minimum of
f .

This is another example of how we can use the derivatives of a function to gain insight about its
behavior.

Proof. Consider the 2nd Taylor polynomial

P (c+ h) = f(c) + f ′(c) · h+
f ′′(c)

2
· h2

We assumed that c is a critical point of f , so the second term vanishes for

P (c+ h) = f(c) +
f ′′(c)

2
· h2

This function is an upward or downward facing parabola. By the approximation theorem, we know
that the limit

lim
h→0

f(c+ h)− P (c+ h)

h2
= lim

h→0

f(c+ h)− f(c)− (f ′′(c)/2)h2

h2

= lim
h→0

f(c+ h)− f(c)

h2
− f ′′(c)

2

should equal 0. In other words, we should have

lim
h→0

f(c+ h)− f(c)

h2
=
f ′′(c)

2

Say f ′′(c) > 0. So when h is sufficiently small (in some open interval of width δ), we must have

f(c+ h)− f(c)

h2
> 0

which implies that f(c+ h)− f(c) > 0, so f(c) < f(c+ h). This means that c is a local minimum,
as f(c) < f(c+ h) whenever h ∈ (c− δ, c+ δ). The case of a local maximum is similar.
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2/25/2019 - Integrability, Riemann integral

Polynomial approximations

Recall that if we have a Ck function f : R→ R, the kth order Taylor polynomial at a is defined

Pk(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
x2 + . . .+

f (k)(a)

k!
(x− a)k

The approximation theorem tells us

1. These polynomials are good approximations for f at a, namely that

lim
h→0

f(a+ h)− Pk(a+ h)

hk
= 0

2. These polynomials are unique. If Q ∈ Polyk(R) is another polynomial that satisfies

lim
h→0

f(a+ h)−Q(a+ h)

hk
= 0

then Q = Pk.

3. If f (k+1) exists, then for h 6= 0 there exist θ ∈ (0, h) so that

R(h) = f(a+ h)− Pk(a+ h) =
f (k+1)(θ)

(k + 1)!
hk+1

Application of Taylor polynomials

We will approximation sin 1. It’s hard to imagine how we can get a grip on this one. Take
f(x) = sin(x). The kth derivatives of sin are

f(x) = sin(x) f(0) = 0

f ′(x) = cos(x) f ′(0) = 1

f ′′(x) = − sin(x) f ′′(0) = 0

f ′′′(x) = − cos(x) f ′′′(0) = −1

So we can compute

Pk(x) = 0 + x+ 0− x3

3!
+ 0 +

x5

5
+ . . .
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The first few approximations of sin(1) with Taylor polynomials are
P1(1) = 1

P2(1) = 1

P3(1) = 1− 1
6

. . .

How far do we need to go to get sin(1) to 3 decimal places? The theorem implies

|Rk(1)| =
∣∣∣∣fk+1(θ)

(k + 1)!
1k+1

∣∣∣∣ ≤ 1

(k + 1)!

If we take k = 7, then we are bounding the error by

1

7!
≈ 0.000024

Evaluating the 7th order Taylor polynomial yields

P7(1) = 1− 1

6
+

1

120
− 1

5040
=

4241

5040
= 0.841468

sin(1) ≈ 0.841471

We will now prove the approximation theorem.

Proof. Let k = 1. Then we have

lim
h→0

f(a+ h)− P1(a+ h)

h
= lim

h→0

f(a+ h)− f(a)− f ′(a)h

h

=

(
lim
h→0

f(a+ h)− f(a)

h

)
− f ′(a)

= 0

since f is differentiable at a. Now let k = 2, which requires a different argument (the higher order
cases follow similarly). Note that

R(h) = f(a+ h)− P2(a+ h)

is C2 (since f is C2 and the polynomial P2 is smooth) and R(0) = 0, R′(0) = 0, and R′′(0) = 0 by
construction of P2 (since P2 has the same 1st and 2nd derivatives as f). Then we have∣∣∣∣R(h)

h2

∣∣∣∣ =

∣∣∣∣R(h)−R(0)

h2

∣∣∣∣
=

∣∣∣∣R′(t) · hh2

∣∣∣∣
=

∣∣∣∣R′(t)h

∣∣∣∣
≤
∣∣∣∣R′(t)t

∣∣∣∣
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where the second line is using the mean value theorem on (0, h), and the final inequality follows
because t ≤ h. This expression goes to 0 as t goes to zero, since R′′(0) = 0. This shows

lim
h→0

R(h)

h2
= 0

When k ≥ 3, the proof works similarly. Iteratively apply the mean value theorem and repeat this
argument to bring the exponenent of the denominator down, and then use the fact that R is Ck

and all of its derivatives are 0.

To prove the second part of the theorem, assume that P and Q both approximate f to order
k. Then

lim
h→0

P (a+ h)−Q(a+ h)

hk
= lim

h→0

P (a+ h)− f(a+ h)

hk
+
f(a+ h)−Q(a+ h)

hk

= 0 + 0

So P and Q approximate each other to order k. Write

P (x) = pkx
k + . . .+ p1x+ p0

Q(x) = qkx
k + . . .+ q1x+ q0

Then

0 = lim
h→0

P (a+ h)−Q(a+ h)

hk

= lim
h→0

(
(pk − qk)(a+ h)k

hk
+ . . .+

(p1 − q1)(a+ h)

hk
+
p0 − q0

hk

)
This implies that pi − qi must be zero for all i.

Perhaps the terms in this sum indeed go to infinity, but simply cancel each other out?

This can be patched by inducting on the degree of the polynomials P and Q. When k = 0,
the uniqueness of P is equivalent to the uniqueness of the derivative. For k > 0, consider the
truncated polynomials P ′ and Q′ that consist of the first k terms of P and Q (excluding the
xk term). P ′ and Q′ are (k − 1)th order approximations of f , so by the inductive hypothesis
they are equal. Applying the argument from above then yields pk = qk, so P = Q as desired.
Email me if you have questions.

To prove the last part of the theorem, we’ll restrict our attention to k = 1. Say h > 0. We want to
find θ ∈ (0, h) such that

f ′′(θ)

2
h2 = R(h)

f ′′(θ) =
2R(h)

h2

The idea will be to apply Rolle’s theorem4 to the cleverly chosen function

g(t) = R(t)− R(h)

h2
· t2

4A special case of the mean value theorem. If g(a) = g(b), there exists some c ∈ (a, b) such that g′(c) = 0.
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We know g(0) = 0 = g(h), so by Rolle’s theorem there exists s ∈ (0, h) such that

0 = g′(s)

= R′(s)− 2R(h)

h2
· s

Also g′(0) = 0 = g′(s), so by Rolle’s theorem (again!) there exists s′ ∈ (0, s) such that

0 = g′′(s′)

= R′′(s′)− 2R(h)

h2

We have
R(h) = f(a+ h)− f(a)− f ′(a)h

R′′(h) = f ′(a+ h)

Hence taking θ = s′ yields

R(h) =
f ′(a+ θ)

2
h2

as desired.

Integration

The three big parts of calculus are differentiation, integration, and the fundamental theorem of
calculus. We will now shift gears to integration.

Archimedes - ‘Measurement of Circle’

Archimedes demonstrated two theorems

Theorem. A circle C of radius r and circumference c has area cr
2 .

If we define π by c = 2πr, then the area is given by the familiar formula πr2.

Theorem. We have
223

71
< π <

22

7

Proof. The proof of the first theorem is given by the ‘method of exhaustion.’ The idea is to
approximate C by inscribed polygons.
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If Pn is the regular n-sided inscribed polygon in C, let q be the perimeter of Pn and h be the
length of the segment from the middle of a side of Pn and the center of the circle.

Note that the area of Pn is given qh
2 , and that visually we have cr

2 ≥
qh
2 . The claim (which will

be proved below) is that the area of C is the supremum of the areas of Pn. From this it follows
that the area of C is less than or equal to cr

2 .

The reverse inequality is proved by similarly considering circumscribed polygons.

To prove the claim, we know that the area of C is greater than or equal to the supremum
of the areas of Pn. To show equality we’ll make

En = Area(C)−Area(Pn)

arbitrarily small. In fact,

E2n ≤
1

2
En

To justify this, you should draw a picture that shows why doubling the number of sides more
the halves the error of the approximation.

To approximate π in the second theorem, we just have to compute the perimeters of Pn. For
example, the perimeter of P6 is 6, so this tells us π > 3. There is a recursive formula for q2n in
terms of qn. If

qn = n · sn
where sn is the side length of Pn, then we have

s2
2n = 2−

√
4− s2

n

(Prove this with the Pythagorean theorem.) So we can easily compute

s6 = 1

s12 = 2−
√

3

s24 = 2−
√

2 +
√

3

s48 = 2−
√

2 +
√

2 +
√

3

s96 = 2−

√
2 +

√
2 +

√
2 +
√

3

Archimedes approximated s96 to get a lower bound π > 223
71 . This is method of extreme

exhaustion.

We will define the integral with a similar idea. Define the volume of a rectangle in Rn by

vol
(
[a1, b1]× . . .× [an, bn]

)
=

n∏
i

(bi − ai)
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We will then compute volumes of more complicated shapes by exhaustion.

To make this precise, we will need a few definitions.

Definition. A partition P of [a, b] is a finite subset P ⊂ [a, b] that contains the endpoints. More
generally, a partition of Q = [a1, b1]× . . .× [an, bn] is a tuple P (P1, . . . , Pn), where Pi is a partition
of [ai, bi].

A partition P of a rectangle Q decomposes Q into subrectangles.

Definition. Given a function f : Q → R that is bounded, a partition P of Q, and a subrectangle
R ⊂ Q, define

mR = inf{f(x) : x ∈ R}

MR = sup{f(x) : x ∈ R}

The lower/upper sums of P are

L(f, P ) =
∑
R

mR · vol(R)

U(f, P ) =
∑
R

MR · vol(R)

Definition. The lower/upper integral of a bounded function f is defined∫
Q

f = sup{L(f, P ) : P a partition}

∫
Q
f = inf{U(f, P ) : P a partition}

Definition. A bounded function f is integrable if∫
Q

f =

∫
Q
f
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2/27/2019 - Integrability criteria, fundamental theorem of
calculus, measure

The integral

Last time we defined the integral of a bounded function f : Q → R defined on a closed rectangle
Q ⊂ Rn. We said f is integrable if ∫

Q

f =

∫
Q
f

where the lower/upper integrals are defined as∫
Q

f = sup{L(f, P ) : P a partition}

∫
Q
f = inf{U(f, P ) : P a partition}

where the lower/upper sums of a partition P are

L(f, P ) =
∑

R a subrectangle

mR · vol(R)

U(f, P ) =
∑

R a subrectangle

MR · vol(R)

and
mR = inf{f(x) : x ∈ R}

MR = sup{f(x) : x ∈ R}

Examples

• Define f : [0, 1]→ R by

f(x) =

{
1 x ∈ Q
0 x 6∈ Q

For any P , we have

U(f, P ) =
∑
R

MR · vol(R)

= 1

Since the rationals are dense in [0, 1], there will always be some rational in R, which
forces MR = 1. Similarly

L(f, P ) = 0

for all partitions P , which means that f is not integrable.
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• Define f : [0, 1]→ R on [0, 1]. We claim∫
[0,1]

f =
1

2

This matches our intuition, as the integral should measure the area of the triangle under
the graph of f from 0 to 1.

To prove this, define the partition

Pn = {0, 1

n
,

2

n
, . . . ,

n− 1

n
, 1}

Then we have

U(f, Pn) =

n∑
i=1

i

n
· 1

n

=
1

n2

n∑
i=1

i

=
1

n2
· n(n+ 1)

2

=
1

2
(1 +

1

n
)

The lower sum is similarly

L(f, Pn) =
n−1∑
i=0

i

n
· 1

n2

=
1

2
(1− 1

n
)

Then we have

1

2
= sup{L(f, Pn)}

≤ sup{L(f, P )}
≤ inf{U(f, P )}

≤ inf{U(f, Pn)} =
1

2

which proves that ∫
Q

f =

∫
Q
f =

1

2

• Define f : [0, 1]→ R on [0, 1] by {
1 x = 1

2

0 x 6= 1
2
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f is indeed integrable. To prove this, define the partition

Pn = {0, 1

2
− 1

n
,
1

2
+

1

n
, 1}

Then

U(f, Pn) = 1 · 2

n
=

2

n

By taking n, the upper and lower sums both converge to 0, so f is integrable with integral
0.

In general, the third example from above should convince you that if f is not continuous at only
finitely many points, then f is integrable. We will explore the question of precisely when a function
is integrable later.

Question: In the definition of the integral, where did we use the fact that f is bounded?

Answer: To define mR and MR, we need to know that f is bounded (for the supremum
and infinum to exist).

Question: Why are
∫
Q
f and

∫
Qf always defined?

Answer: All the lower sums are bounded by any upper sum, and vice versa. See the lemma
below.

Lemma. For any partitions P and P ′

L(f, P ) ≤ U(f, P ′)

In particular, {L(f, P )} are bounded above by any U(f, P ′).

Definition. Let P = (P1, . . . , Pn) and P̂ = (P̂1, . . . , P̂n) be partitions of Q. P̂ is a refinement of
P if Pi ⊂ P̂i for all i.

P̂ is a refinement because the subrectangles are smaller: each subrectangle of P̂ is contained in a
subrectangle of P .

Proof. There are two important facts about partitions we will use.

1. If P̂ is a refinement of P , then

L(f, P ) ≤ L(f, P̂ ) (1)

U(f, P ) ≥ U(f, P̂ ) (2)

Inequality (1) follows because if R̂ ⊂ R, then mR̂ ≥ mR, as we are looking at the infinum
of f on a set that contains fewer points. Inequality (2) follows from a similar reason. So
refinements make the lower sums increase and the upper sums decrease.
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2. Any two partitions P and P ′ have a common refinement given by

P ′′ = (P1 ∪ P ′1, . . . , Pn ∪ P ′n)

Given P and P ′, let P ′′ be their common refinement. Then we have

L(f, P ) ≤ L(f, P ′′)

≤ U(f, P ′′)

≤ U(f, P ′)

which is the inequality we were aiming for.

There are two components of the theory of integration. The first part seeks to answer which func-
tions are integrable. The second part develops techniques to compute integrals without resorting
to the definitions (namely with the fundamental theorem of calculus).

Integrability criteria

Theorem. If f : Q→ R is continuous, then f is integrable.

Any important observation will help us here. If for every ε0 > 0 there exists a partition P such
that U(f, P ) − L(f, P ) < ε, then f is integrable. It’s easy to see the contrapositive: if f is not
integrable, then the infininum of {U(f, P )} and the supremum of {L(f, P )} differ. Take ε to be
the distance between them. Then there is no partition such that U(f, P )− L(f, P ) < ε, since this
would contradict the infinum/supremum on the upper/lower sums.

Recall that if f is continuous on Q (a closed rectangle), then f is uniformly continuous. So for all
ε > 0, there exists some δ > 0 such that |x− y| < δ implies |f(x)− f(y)| < ε.

Proof. Fix ε > 0. By the above remark, we want to find P such that U(f, P ) − L(f, P ) < ε. In
other words, we want to make the quantity

U(f, P )− L(f, P ) =
∑
R

(MR −mR) · vol(R)

By the uniform continuity of f , we can choose δ > 0 such that |x− y| < δ implies

|f(x)− f(y)| < ε

vol(Q)

Then choose a partition P fine enough so that all the subrectangles have diameter smaller than δ.
Then ∑

R

(MR −mR) · vol(Q) <
∑
R

ε

vol(Q)
· vol(Q) = ε

Then f is integrable, as desired.
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Examples

• Define the set
B = {(x, y) ∈ R2 : x2 + y2 ≤ 1}

Define the function χB : Q→ R by

χB(x, y) =

{
1 x ∈ B
0 x 6∈ B

The integral
∫
Q χB give us the area of the circle (as the graph of χB in three dimensions

is a cyclinder of length 1).

χB is discontinuous at all points in the boundary of B, which consists of the circle
of radius 1. We would like to be able to compute integrals like this.

Theorem. If B ⊂ Rn is a subset, then χB is the characteristic function of B and is defined

χB =

{
1 x ∈ B
0 x 6∈ B

χB is integrable if and only if the boundary of B has measure 0.

We will come back to this theorem and define the different parts of the statement.

The fundamental theorem of calculus

If a < b, we sometimes write ∫
[a,b]

f =

∫ b

a
f =

∫ b

a
f(x) dx

dx is just a symbol write now. As a convention, we take∫ b

a
f = −

∫ a

b
f

Theorem. (Fundamental theorem of calculus). Let f : [a, b]→ R be a continuous function. Then

1. The function F defined

F (t) =

∫ t

a
f(x) dx

is differentiable on (a, b), and its derivative F ′ is given by f .

2. If g : [a, b]→ R is continuous and differentiable on (a, b) with g′ = f , then∫ b

a
f = g(b)− g(a)

The second part of the theorem tells us we can compute the integral of any function for which we
know an antiderivative. The first part of the statement says that any function has an antiderivative
(if we just take g = F ).
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Examples

• We have ∫ 1

0
x2 − x3 = g(1)− g(0) =

1

3
− 1

4

for g(x) = 1
3x

3 − 1
4x

4.

We should believe that the function F defined above is differentiable, since the difference quotient

F (t+ h)− F (t)

h
≈ h · f(t)

h
= f(t)

since f is continuous (draw a picture to make this argument clear).

We will use the integral to define the area of a subset of Rn by successively performing better
approximations of the subset with rectangles. This idea agrees with our intuition of the area of
simple shapes, and it will turn out to be the correct definition to take.

Measure

Definition. A subset B ⊂ Rn has measure 0 if for all ε > 0, there exist countably many rectangles
Q1, Q2, . . . (or balls) that cover B so that

B ⊂
∞⋃
i=1

Qi

∞∑
i=1

vol(Qi) < ε

Examples

• If B ⊂ Rn is finite, B has measure 0. Cover each point x ∈ B with a ball of total volume
less than ε/|B|.

• Q ⊂ R has measure 0. Since Q is countable, write Q = {q1, q2, . . .}. Take

Qi =
(
qi −

ε

2i
, qi +

ε

2i
)

The {Qi : i ∈ N} rectangles cover Q, and

∞∑
i=1

vol(Qi) =

∞∑
i=1

ε

2i
= ε

using the formula for the sum of a geometric series.
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3/4/2019 - Integrability and measure, Cavalieri and Fubini

Integrability and measure

Recall that a subset B ⊂ Rn has measure 0 if for all ε > 0, there exist open rectangles Q1, Q2, . . .
that cover B such that ∑

vol(qi) < ε

We saw that finite sets, countable sets, and countable unions of measure 0 sets are all measure 0.
The idea with the second two is to cover the set with open rectangles whose area is shrinking like
the terms of a geometric series, and hence converges to a value less than ε.

The Cantor set

Let C0 = [0, 1], C1 = [0, 1/3] ∪ [2/3, 3], and continue to inductively define Cn by removing the
middle third of each subinterval. Then the Cantor set is given by

C =
∞⋂
n=1

Cn

C has measure 0. Observe that C0 has volume 1, C1 has volume 2/3, C2 has volume 4/9, and
so on. So Cn has volume 2n/3n. Since

lim
n→∞

(
2

3

)n
= 0

we can always consider n large enough so that it is possible to cover C with open sets of arbi-
trary volume.

Note that although C has measure 0, it is uncountable. We can represent C as the ternary
decimal expansions 0.a1a2 . . . that don’t end in repeating the value 2 and that don’t contain
any 1.

We can use measure to characterize integrable functions.

Theorem (Riemann-Lebesgue Theorem). Let f : Q → R be a bounded function, with Q ⊂ Rn a
closed rectangle. Define

Bf = {x ∈ Q : f is not continuous at x}

Then f is integrable if and only if Bf has measure 0.
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The theorem from last time is a particular instance of this more general result (see the below
example). We won’t prove this now, but some aspects of it are on the homework.

Examples

• If f is continuous, then Bf = ∅, so
∫
Q f exists. We proved last time this was integrable

using uniform continuity, but it now follows directly from the theorem.

• Let C ⊂ Rn be bounded at C ⊂ Q with Q a closed rectangle. The characteristic function
of C is

χC(x) =

{
1 x ∈ C
0 otherwise

Then BχC = bd(C), so χC is integrable if and only if bd(C) has measure 0.

• Define

f(x) =

{
1 x = 1

2

0 otherwise

g(x) = χC∩[0,1] =

{
1 x ∈ Q
0 otherwise

Bf = {1/2} and has measure 0, so f is integrable. But Bg = bd(Q ∩ [0, 1]) = [0, 1] (as
every neighborhood of any x ∈ [0, 1] contains both rational and irrational points), so g is
not integrable.

• Let C = B1(0) ⊂ R3. Then the boundary of B1 is the hollow sphere of radius 1, and has
measure 0 (by the homework). Then

vol(C) =

∫
[−1,1]

χC

exists, and we will return to the question of evaluating it later.

• Recall that Thomae’s function is defined

f(x) =

{
1
q x = p

q

0 otherwise

We know BT = Q∩[0, 1], which are countable. Then BT has measure 0, so f is integrable.
Note the difference between this example and g defined above. Thomae’s function is
integrable because it is in fact continuous at all irrational numbers.

We can also evaluate some of the integrals using the below result, which is left as an exercise.
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Let f : Q→ R be a function, and suppose the set

{x ∈ Q : f(x) 6= 0}

has measure 0. If f is integrable, then ∫
Q
f = 0

This claim is not too hard to prove, and it is a worthwhile exercise. This result implies that
the integral of Thomae’s function is 0.

The fundamental theorem of calculus

Theorem (Fundamental Theorem of Calculus). Let f : [a, b]→ R be continuous. Then

(i) F (x) =
∫ x
a f is differentiable, and F ′(x) = f(x).

(ii) If g[a, b]→ R is a differentiable such that g′(x) = f(x) for all x, then∫ b

a
f = g(b)− g(a)

This theorem implies all of the familiar integration rules, such as substitution of variables and
integration by parts.

Corollary (Substitution of variables). Let f : [a, b]→ R, and suppose u : [c, d]→ [a, b] is bijective
and differentiable with u(c) = a and u(d) = b. Then∫ b

a
f(x) dx =

∫ d

c
f(u(y))u′(y) dy

Proof. If F ′(x) = f(x), then

(F ◦ u)′(y) = F ′(u(y))u′(y)

= f(u(y))u′(y)

by the chain rule and the fundamental theorem of calculus. Then this yields∫ d

c
f(u(y))u′(y) dy = (F ◦ u)(d)− (F ◦ u)(c)

= F (b)− F (a)

=

∫ b

a
f(x) dx
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Corollary (Integration by parts). If f, g : [a, b]→ R are differentiable, then we have

[fg]ba =

∫ b

a
(fg)′ =

∫ b

a
f ′g + fg′

∫ b

a
f ′g = f(b)g(b)− f(a)g(a)−

∫ b

a
fg′

Examples

• We can compute ∫ π/2

0
cos2(θ) dθ =

∫ π/2

0
cos θ︸︷︷︸
f ′

cos θ︸︷︷︸
g

dθ

=

[
sin θ cos θ

]π/2
0

sin θ(− sin θ) dθ

=

∫ π/2

0
sin2 θ dθ

=

∫ π/2

0
1 dθ − cos2 θ dθ

=

∫ π/2

0
1 dθ −

∫ π/2

0
cos2 θ dθ

using integration by parts. Hence ∫ π/2

0
cos2 θ dθ =

π

4

• We can compute the area of the circle by integration

A = 2 ·
∫ 1

−1

√
1− x2 dx

Subsituting x = sin θ and dx = cos θ dθ yields

A = 2 ·
∫ π/2

−π/2

√
1− sin2 θ cos θ dθ

= 2 ·
∫ π/2

−π/2
cos2 θ dθ

= 2 ·
(

2 ·
∫ π/2

0
cos2 θ dθ

)
= π

as cosine is even and therefore symmetric about the y-axis.

Proof of the fundamental theorem of calculus. Let f : [a, b] → R be a continuous function and
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define F (x) =
∫ x
a f as in the theorem. To prove the first part of the theorem, observe that we have

F ′(c) = lim
h→0

F (c+ h)− F (c)

h

And

F (c+ h)− F (c)

h
=

∫ c+h
a f −

∫ c
a f

h
=

∫ c+h
c f

h

Say h > 0 (the other case is identical). Let m,M be the minimum and maximum of f on the closed
interval [c, c+ h]. Then

m · h ≤
∫ c+h

c
f ≤M · h

m ≤ 1

h

∫ c+h

c
f ≤M

You will prove this intuitive fact rigorously on the homework. As h goes to 0, m and M converge
to f(c), since f is continuous by assumption.

To prove the second part of the theorem, let g be an antiderivative of f . Then both g′ = f
and F ′ = f . This implies (g − F )′ = 0, so g − F = c for some constant c. We can compute this
constant

c = g(a)− F (a) = g(a)− 0

Then

g(a) = g(b)− F (b) = g(b)−
∫ b

a
f∫ b

a
f = g(b)− g(a)

as desired.

Examples

• Define H(x) =
∫ x2

0 f(t) dt. Then we can view H as the composition x 7→ x2 7→
∫ x

0
2f .

By substitution of variables, we have

H(x) =

∫ x2

0
f(t) dt =

∫ x

0
f(x2) · 2x dx

Then the fundamental theorem of calculus implies H ′(x) = 2xf(x).

Fubini’s Formula

We will introduce one more theorem that’s extremely useful for evaluating integrals. We would
like to be able to use the fundamental theorem of calculus, which tells us how to integrate over
an interval in R, to compute integrals in higher-dimensional settings. It works by cutting up the
domain into ‘slices’ that are one-dimensional integrals and then performing a successive integrals.
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Theorem (Fubini’s Formula). Let Q = [a, b]× [c, d] and f : Q→ R be continuous. Then∫
Q
f =

∫ b

x=a

(∫ d

y=c
f(x, y) dy

)
dx

Examples

• We can use Fubini’s theorem to compute the volume of B1(0) ⊂ R3. Define the function
f : Q = [0, 1]× [0, 1]→ R by

f(x, y) =

{√
1− x2 − y2 x2 + y2 ≤ 1

0 otherwise

Then

vol(B) = 8 ·
∫
Q
f

= 8 ·
∫ 1

x=0

(∫ 1

y=0
f(x, y) dy

)
dx

= 8 ·
∫ 1

x=0

π

4
(1− x2) dx

= 2π

[
x− x3

3

]1

0

=
4π

3

Theorem (Fubini’s Theorem). Let Q = A×B ⊂ Rk × Rm and f : Q→ R be continuous. Then∫
Q
f =

∫
A

(∫
B
f(x, y) dy

)
dx

The continuity assumption is important here. For example, Fubini’s theorem fails for the function

f(x, y) =

{
1 x = 1

2 , y ∈ Q
0 otherwise

defined from [0, 1]2, as ∫ 1

y=0
f(

1

2
, y) dy

does not exist. It is possible to remedy this problem and further strengthen the theorem.

Application

Theorem (Cavalieri’s Principle). Shapes with cross sections of equal area have equal volume.
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3/6/2019 - Function spaces, ODEs

Fubini’s theorem

Recall Fubini’s theorem, which says if f : [a, b]× [c, d]→ R is continuous, then we can compute∫
Q
f =

∫ b

x=a

∫ d

y=c
f(x, y) dy dx

There is a version of the theorem for when f is discontinuous but still integrable. See Pugh for the
details. We will prove the continuous case now.

Proof. Define I(x) =
∫ d
c f(x, y) dy. We want to show∫

Q
f =

∫ b

a
I

Fix a partition P = (P1, P2) of Q. The main claim of the proof will be that

L(f, P ) ≤ L(I, P1) ≤ U(I, P1) ≤ U(f, P )

Since f is integrable, this implies that I is integrable and
∫
Q f =

∫ b
a I.

Let’s show L(f, P ) ≤ L(I, P1). If S is a subinterval of P1 and T is a subinterval of P2 we have

L(f, P ) =
∑
S×T

inf{f(x, y) : (x, y) ∈ S × T} · vol(S × T )

=
∑
S

(∑
T

inf{f(x, y) : (x, y) ∈ S × T} · vol(T )

)
︸ ︷︷ ︸

(∗)

·vol(S)

and
L(I, P1) =

∑
S

inf{I(x) : x ∈ S}︸ ︷︷ ︸
(∗∗)

·vol(S)

Then it’s evident that if we want to show L(f, P ) ≤ L(I, P1), we should prove that (∗) is less than
or equal to (∗∗). Fix some x ∈ S, then

I(x) =

∫ d

c
f(x, y) dy

≥ L(f(x, ), P2)

=
∑
T

inf{f(x, y) : y ∈ T} · vol(T )

≥
∑
T

inf{f(x, y) : (x, y) ∈ S × T} · vol(T ) = (∗)

since if we take the infinum over the larger set S×T , the result is smaller than the infinum over the
slice {x}×T . So for each fixed x ∈ S, I(x) is greater than or equal to (∗). Then inf{I(X) : x ∈ S},
which is (∗∗), is greater than or equal to (∗).

The inequality U(I, P1) ≤ U(f, P ) follows similarly, so this completes the proof.
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This completes our discussion of calculus. We will develop many of these tools in the multivariable
context, but first we will explore differential equations.

Differential equations

Definition. Given a function f(t, x), define a differential equation

x′ = f(t, x)

A differential equation involves both a function and its derivatives. A solution to this equation is
a function x(t) so that

x′(t) = f(t, x(t))

for all t.

Examples

• Consider the function given by

f(t, x) =
−t
x

Then x′ = −t/x. The function

x(t) =
√
a2 − t2

is a solution to this differential equation, as

x′(t) =
−2t

2
√
a2 − t2

=
−t√
a2 − t2

=
−t
x(t)

Differential equations often model physical phenomena. We can think of x(t) as the position of a
particle at time t. Geometrically, we can view a differential equation by constructing a plot in the
following way. At a point (t, x) ∈ R2, draw a line segment with slope f(t, x).

Then the graph of a solution x(t) is tangent everywhere to the line field (which is the collection of
points in R2 with their associated lines). This follows from what it means to be a solution and how
we constructed this line field.
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Examples

• Let x′ = 1 + t− x. To plot the line field, for each c ∈ R draw the curve f(t, x) = c. Then
draw the line segments of slope c along this curve.

Without being able to explicitly solve for x(t), we can get a sense of their form by
examining the graph of this differential equation.

Plot a solution by choosing an initial condition x(t0) = x0. Then follow the line
field, beginning at the point (t0, x0) ∈ R2 to find as solution. In this example, x(t) = t is
a solution.

There are some questions we can ask about these solutions. For example, it seems like all
of the solutions converge to the line x(t) = t in some sense. What exactly is happening?
Is it possible for a solution to ‘cross’ this line?

• Let x′ = x−1
t . Then we have the following graph and solutions.
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General Questions: Consider a differential equation f(t, x) and intitial condition x(t0) = x0.

1. Is there a solution to {
x′ = f(t, x)

x(t0) = x0

2. Is the solution unique (for a given initial condition)? In general the answer is no.

Examples

• For example, the equation x′ = x−1
t from above has no solutions when the initial condition

is x(0) = x0 6= 1. Uniqueness fails for the initial condition x(0) = 1.

To answer these questions, we will develop the theory of function spaces.

Space of bounded functions

Definition. The space of bounded functions is the vector space

Cb = Cb([a, b],R) = {f : [a, b]→ R bounded}

Cb comes with a natural norm, called the sup norm, given by

‖ · ‖ : Cb → [0,∞)

f 7→ ‖f‖ = sup{|f(x)| : x ∈ [a, b]}

The sup norm satisfies the three essential properties of a norm:

1. Nondegeneracy, which means ‖f‖ = 0 if and only if f = 0.

2. Compatibility with multiplication, which means for scalars c ∈ R we have ‖cf‖ = |c| · ‖f‖.

3. Triangle inequality, which means ‖f + g‖ ≤ ‖f‖+ ‖g‖.

We can interpret ‖f − g‖ as the ‘distance’ between two functions, where the distance between f
and g is the largest distance between the graphs of the two functions.

The sup norm makes Cb into a metric space, which is just a set that has a distance function
that is symmetric, nondegenerate, and satifies the triangle inequality. The important idea is that
this allows us to employ topological concepts when talking about the function space Cb.

Definition. A sequence of functions (fn) with fn ∈ Cb converges uniformly to f ∈ Cb if

lim
n→∞

‖fn − f‖ = 0

Definition. A sequence of functions (fn) with fn ∈ Cb converges pointwise to f ∈ Cb if

lim
n→∞

fn(x) = f(x)

for all x.
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Note that uniform convergence implies pointwise convergence, but the converse does not nec-
essarily hold. A nice counterexample comes from taking

fn = χ[n,n+1]

The fn functions converge pointwise to 0, but they do not converge uniformly to anything.

Examples

• Define fn(x) = x
n on the interval [0, 1]. Then (fn) converges uniformly to 0.

• Define fn(x) = xn on [0, 1]. For x < 1,

lim
n→∞

fn(x) = 0

For x = 1, fn(x) = 1 for all n. Then (fn) converges pointwise to the function

f(x) =

{
1 x = 1

0 otherwise

However, (fn) do not converge uniformly. Since each fn is continuous, for a small ε the
function cannot jump from an ε neighborhood around 0 to an ε neighborhood around
1 without passing through the intermediary points. This is a special case of the below
theorem.

Note that if a sequence converges pointwise to some function, then if they converge uniformly they
must converge uniformly to that function. In general, uniform convergence preserves nice properties
of functions like continuity and integrability.

Theorem. Suppose the sequence (fn) converges uniformly to a function f , where each fn is con-
tinuous. Then f is continuous.

Proof. To prove that f is continuous at p ∈ [a, b], fix ε > 0. Then the triangle inequality applied
twice yields

|f(x)− f(p)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(p)|+ |fn(p)− f(p)|

The left and right terms are small by uniform continuity, and the middle term is small by the
continuity of fn. To make this prcise, choose n large enough so that

|fn(x)− f(x)| < ε

3

for all x by uniform convergence. Choose δ > 0 such that |x− p| < δ implies

|fn(x)− fn(p)| < ε

3

Then |x− p < δ implies |f(x)− f(p) < ε, as desired.

Corollary. C0 ⊂ Cb is a closed subspace. In words, the space of continuous functions is closed in
the bounded functions.

59



Proof. This follows immediately from the previous theorem, since any converging sequence of func-
tions in C0 converges to a function in C0.

Theorem. Cb is a complete metric space. In other words, if (fn) is a Cauchy sequence in Cb,
then fn converges to some f ∈ Cb.

We will prove this next time.

Corollary. The continuous functions C0 ⊂ Cb is also complete.

Proof. Let (fn) be a Cauchy sequence of continuous functions. Cb is complete, so (fn) converges
to some f ∈ Cb. Uniform convergence of continuous functions to f implies that f is continuous, as
desired.
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3/11/2019 - Function convergence, equicontinuity, Arzela-Ascoli
theorem

ODE (ordinary differential equation) existence

Theorem (Peano’s Theorem). If f(t, x) is continuous near (t0, x0), then the initial value problem{
x′ = f(t, x)

x(t0) = x0

has a solution near t0. Namely, there exists ε > 0 and a function φ : (t0 − ε, t0 + ε)→ R such that
φ(t0) = x0 and φ′(t) = f(t, φ(t)) for all t ∈ (t0 − ε, t0 + ε).

Examples

• We saw last time that the solutions of x′ = −t/x are of the form φ(t) =
√
a2 − x2 (semicir-

cles). This solution is only defined on [−a, a], which is why the theorem only guarantees
the existence of a local solution. It doesn’t imply that there is always a solution defined
on all of R.

The theorem also doesn’t say anything about the case when x(t0) = 0, since f(t, x) =
−t/x is not continuous at (t0, 0).

• Uniqueness of solutions is also not guaranteed. Consider the function

f(t, x) =

{√
x x ≥ 0

0 otherwise

Consider the solutions that begin at (0, 0). Then we can follow the slope field to find
solutions. The obvious solution φ1(t) = 0, which is a horizontal line. But there’s also
another solution given by

φ2(t) =

{
t2

4 t ≥ 0

0 t < 0

There is a stronger theorem called Picard’s theorem that guarantees the existence and unique-
ness of a solution to a differential equation, assuming that the function f is Lipschitz. We
won’t speak about this, but you can see Pugh for details.

Uniform convergence

Recall that Cb = Cb([a, b]) is the vector space of bounded functions with a norm defined by

‖f‖ = sup{|f(x)| : x ∈ [a, b]}

This makes Cb into a metric space. We can talk about uniform convergence, which says that a
sequence (fn) converges to a function f if limn→∞ ‖fn − f‖ = 0.
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We proved last time that if a sequence of functions (fn) that are continuous at p converges to
f , then f is continuous at p as well. So uniform convergence preserves continuity. We can show
that uniform convergence preserves other ‘nice’ properties of functions as well.

Theorem. If a sequence of functions (fn) converges uniformly to f and each fn is integrable, then
f is integrable and ∫ b

a
f = lim

n→∞

∫ b

a
fn

In such a situation, we might say that ‘limits and integrals commute,’ since this equation is equiv-
alent to ∫ b

a
lim
n→∞

fn = lim
n→∞

∫ b

a
fn

Proof. To prove that f is integrable, note that by the Riemann-Lebesgue theorem, it suffices to
show that

Bf = {x ∈ [a, b] : f discontinuous at x}

has measure 0. We know that fn is integrable, so Bfn has measure 0. Then each fn is continuous
on [a, b] \Bfn . All of the fn functions are continuous on

[a, b] \
⋃
k

Bfk

By the above theorem, this implies that f is continuous on [a, b] \
⋃
Bfk .

⋃
Bfk has measure 0,

since it is the countable union of measure 0 sets. Therefore f is integrable.

To show that
∫ b
a f = limn→∞

∫ b
a fn, observe that we have∣∣∣∣ ∫ b

a
f −

∫ b

a
fn

∣∣∣∣ =

∣∣∣∣ ∫ b

a
f − fn

∣∣∣∣
≤
∫ b

a
|f(x)− fn(x)| dx

≤ ‖f − fn‖ · (b− a)

by Homework 4. As n goes to infinity, the quantity ‖f − fn‖ goes to 0, as desired.

We also have the theorem from last time asserting the completeness of the function space Cb.

Theorem. If (fn) is a Cauchy sequence in Cb, then there exists f ∈ Cb such that fn converge
uniformly to f .

Proof. Since (fn) is a Cauchy sequence, for all ε > 0 there exists N > 0 such that n,m > N implies
|fn(x) − fm(x)| < ε for all x. Then for each particular x ∈ [a, b], then sequence (fn(x)) in R is
Cauchy. R is complete, so each of these sequences converges. Then we can define

(x) = lim
n→∞

fn(x)
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So we know that the fn functions converge pointwise to f , but we must show that they also converge
uniformly. Fix ε > 0. Then

|f(x)− fn(x)| ≤ |f(x)− fm(x)|+ |fm(x)− fn(x)|

We know the second term is small for all x because (fn) is a Cauchy sequence, and we know the
first term is small for each x when m is sufficiently large. Choose N such that n,m > N implies
‖fn − fm‖ < ε/2. For each x, choose mx > N so that |f(x)− fm(x)| < ε/2.

If n > N , then for each x ∈ [a, b] we have

|f(x)− fn(x)| ≤ |f(x)− fmx(x)|+ |fmx(x)− fn(x)|

<
ε

2
+
ε

2
= ε

We must still show f ∈ Cb. Since ‖fn − f‖ < 1, this implies ‖f‖ ≤ ‖fn‖ + 1 by the triangle
inequality. So f is bounded, which completes the proof.

Arzela-Ascoli theorem

We will now turn to the Bolzano-Weierstrass theorem for Cb. Recall that the Bolzano-Weierstrass
theorem stated that if (xn) is a bounded sequence in R, then there exists x ∈ R and a subsequence
(xnk) of (xn) such that xnk converge to x.

Question: What condition on a sequence (fn) in Cb guarantees a uniformly convergent subse-
quence?

The naive approach would be to similarly demand that (fn) are bounded in norm (meaning
‖fn‖ ≤ M for some M > 0), but this is not enough. For example, the sequence of functions
defined by fn(x) = xn on [0, 1] is bounded in norm by 1, but there is no convergent subsequence.
This is easy to see, since fn converge pointwise to the discontinuous function

f(x) =

{
1 x = 1

0 x 6= 0

even though each of them are continuous (continuous functions converge uniformly to another
continuous function). In fact, ‖fn − f‖ = 1 for all n. So the situation in Cb is more subtle.

Theorem. Let (fn) be a bounded sequence of continuous functions in C0. If (fn) is equicontin-
uous, then there exists a subsequence (fnk) and f ∈ C0 such that (fnk) converges uniformly to
f .

We haven’t defined equicontinuity yet, so the theorem doesn’t say much. We will work up to the
definition.

Lemma. Suppose the sequence (fn) in Cb is bounded as a sequence. Then there exists a subsequence
(gk) such that (gk) converges pointwise on Q ∩ [a, b].
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Examples

• Suppose (fn) is the sequence defined by

fn
(1

k

)
=
n mod k

k
∈
{

0,
1

k
, . . . ,

k − 1

k

}
and let f(x) = 0 for other x. Then, for example, we have

fn(1) = (0, 0, 0, . . .)

fn
(

1
2

)
=
(

1
2 , 0,

1
2 , 0, . . .)

fn
(

1
3

)
=
(

1
3 ,

2
3 , 0,

1
3 ,

2
3 , 0, . . .)

The first functions converge to 0. We can take subsequences of these functions, examining
each point individually to select a subsequence that converges on that point. See the
below proof for details.

Proof. Let Q = {q1, q2, . . .} be an enumeration of Q ∩ [a, b]. We will build a nested family of sub-
sequences of (fn). Note that fn(q1) is a bounded sequence in R, so by Bolzano-Weierstrass there
exists a subsequence (fnk) such that (fnk(q1)) converges to y1.

Look at this sequence (fnk). fnk(q2) is a bounded sequence in R, so there is a subsequence (fnk` (q2))
that converges to y2.

We can similarly continue in this way, defining the kth subsequence (fkn) of (fk−1
n ). Then these

sequences have the property that fkn(qi) converges to yi whenever i ≤ k. So the kth subsequence
converges on the first k points.

Define gk = fkk (the kth term of the kth subsequence). Then by construction, (gk) is a subse-
quence of (fn) such that (gk(qi)) converges to yi for all i.

Suppose (fn) is a sequence of continuous functions. The subsequence (gk) from above also consists
of continuous functions. We would like to show that (gk) converges uniformly. However, since C0

is complete, it’s enough to show that (gk) is a Cauchy sequence.

So we want to show |gk(x)− g`(x)| is small for all x. We have

|gk(x)− g`(x)| ≤ |gk(x)− gk(qi)|+ |gk(qi)− q`(qi)|+ |q`(qi)− g`(x)|

using the triangle inequality twice. The first and last terms are small by the continuity of gk and
g`, so by chooseing qi sufficiently close to x we can bound these. The middle term is small because
(gk(qi)) converges to yi. The problem is that we don’t know how these terms interact with each
other.

Definition. A sequence of functions (fn) is equicontinuous if for all ε > 0, there exists δ > 0
such that |x− y| < δ implies |fn(x)− fn(y)| < ε for all n.
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Examples

• Define fn(x) = xn on [0, 1]. The sequence (fn) is not equicontinuous. Each fn is contin-
uous at x = 1. If |1− y| < ε/n = δn, then |1− yn| < ε. However, δn converges to 0 as n
goes to infinity, so we cannot choose some δ such that works for all of the fn functions.

Next time we will see some more examples of equicontinuity and then prove the Arzela-Ascoli
theorem.
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3/13/2019 - Arzela-Ascoli theorem, ODE existence theorem

Equicontinuity and Arzela-Ascoli

Recall that Cb = Cb([a, b],R) is the space of bounded functions on [a, b]. A sequence of functions
(fn) is bounded if there exists M > 0 such that ‖fn‖ ≤ M for all n (each fn as a function is
bounded by definition, but this is saying that the norms of these functions are also bounded by
some M).

Recall that (fn) is equicontinuous if for all ε > 0 there exists δ > 0 such that |x − y| < δ im-
plies |fn(x)− fn(y)| < ε for all n. When we restrict our attention to one particular n, this means
that each fn is uniformly continuous. The added power of equicontinuity says that δ doesn’t actu-
ally depend on the particular function fn we are considering.

Examples

• Suppose each fn is differentiable and ‖f ′n‖ ≤M for all n. Then (fn) is equicontinuous.

Proof. We have
|fn(x)− fn(y)| = |f ′(c)(x− y)| < M · |x− y|

by the mean value theorem. The right hand side does not depend on n, so take δ <
ε/M .

• Suppose (gn) is a bounded sequence with ‖gn‖ ≤M for all n. Define

φn(x) =

∫ x

a
gn(t) dt

Then (φn) is equicontinuous.

Proof. We have

|φn(x)− φn(y)| =
∣∣∣∣ ∫ x

a
gn −

∫ y

a
gn

∣∣∣∣
=

∣∣∣∣ ∫ x

y
fn

∣∣∣∣
≤ ‖gn‖ · |x− y|
≤M · |x− y|

The right hand side does not depend on n, so take δ < ε/M .

The sequence (fn) defined by fn(x) = xn on [0, 1] is not equicontinuous. This is reflected
in the fact that f ′n(1) = n, so the norms of the derivatives f ′n are unbounded.

Theorem (Arzela-Ascoli Theorem). Suppose (fn) is a sequence of bounded functions that is itself
bounded and equicontinuous. Then there exists a subsequence (gk) of (fn) and a function g ∈ C0

such that gk converge to g.

66



Proof. Take Q = Q ∩ [a, b], and enumerate these by Q = {q1, q2, . . .}. Last time we showed there
there exists a subsequence (gk) such that the sequence (gk(q)) in R converges to q for all q ∈ Q.

The main claim is that this sequence is Cauchy, namely that for all ε > 0 there exists N > 0
such that k, ` > N implies |gk(x)− g`(x)| < ε for all x. Given the claim, there exists such a g ∈ C0

because the metric space C0 is complete.

Now to show the claim, fix ε > 0. (gk) is equicontinuous, as it’s a subsequence of a sequence of
equicontinuous functions. Then there exists δ > 0 such that |x−y| < δ implies |gk(x)−gk(y)| < ε/3
for all k. Choose m > 0 such that every x ∈ [a, b] is within δ of at least one of q1, q2, . . . , qm. We
can do this because Q ⊂ [a, b] is dense, so going far enough along in this sequence guarantees that
we are within δ of at least one of these.

Next, choose N > 0 such that k, ` > N implies |gk(qi) − g`(qi)| < ε/3 for all 1 ≤ i ≤ m. We
can do this because each sequence (gk(qi)) in R converges (and is Cauchy), so let N be the maxi-
mum of the Ni obtained from each of these sequence.

Then if k, ` > N , for each x choose qi such that |x− qi| < δ. This yields

|gk(x)− g`(x)| ≤ |gk(x)− gk(qi)|+ |gk(qi)− g`(qi)|+ |g`(qi)− g`(x)|

<
ε

3
+
ε

3
+
ε

3
= ε

which proves the claim, completing the proof.

Exercise

Consider the sequences of functions (fn) and (gn) defined by

fn(x) = sin(2πnx)

gn(x) = n · sin(
πx

n
)

One of these is bounded/equicontinuous, and the other is not.

(gn) is equicontinuous. Taking the derivative yields

|g′n(x)| = |π cos(
πx

n
)| ≤ π

So the derivatives are bounded. By the example above, this implies (gn) is equicontinuous.

(fn) is not equicontinuous. The functions oscillate more rapidly, and their derivatives are
increasing without bound.
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Then by the theorem, (gn) has a subsequence (gnk) that converges to some g. To determine g,
note that sin(πx/n) has Taylor polynomial

P (x) =
πx

n
−
(π
n

)3x3

3!
+
(π
n

)5x5

5!
+ . . .

Multiplying P (x) by n allows us to guess that gn converge to g, where g(x) = πx. This is in
fact true.

Peano’s existence for solutions to ODEs

Theorem (Peano’s Theorem (1886)). Consider an intial value problem{
x′ = f(t, x)

x(t0) = x0

If the function f is continuous near (t0, x0), then this problem has a solution near t0. Namely,
there exists φ : (t0 − α, t0 + α)→ R such that φ(t0) = x0 and φ′(t) = f(t, φ(t)).

Euler’s approximation method

• Choose a step size h > 0.

• Start at (t0, x0). Then move along the line of slope f(t, x0) for time h.

• Set (t1, x1) = (t0 + h, x0 + f(t0, h0)h).

• Follow the line of slope f(t1, x1) for time h, and continue to repeat this process.

This method yields a numerical approximation for a solution as h becomes small.

To find an actual solution, the idea will be to take a sequence φk of approximations with step size
hk, which goes to 0. Then we will show φk has a convergent subsequence using Arzela-Ascoli and
show that the limit is indeed a solution. We will sketch a proof with four steps.

Proof. Step 1. Translate the problem into something more tractable using the fundamental theorem
of calculus. If we have a solution φ such that φ′(t) = f(t, φ(t)) for all t is some interval, then
integrating yields ∫ t

t0

φ′(s) ds =

∫ t

t0

f(s, φ(s)) ds

By the fundamental theorem of calculus this is

φ(t) = x0 +

∫ t

t0

f(s, φ(s)) ds (1)

Conversely, given this equality, differentiation yields

φ′(t) = f(t, φ(t))
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So it suffices to find a function that satisfies (1).

Step 2. Use Euler approximations φk with step size h(k) that goes to 0. Some care should be
taken when choosing these step sizes, but we won’t go into this now.

Each φk is piecewise linear, so we can write

φk(t) = x0 +

∫ t

t0

φ′k(s) ds

This follows from the fundamental theorem of calculus. The only issue is that φk is not differentiable
at the transition points, but this is not a problem, as we can just break up the integral for

φk(t) = x0 + (φk(t1)− φk(t0)) + (φk(t)− φk(t1))

= x0 +

∫ t1

t0

φ′k(s) ds+

∫ t

t1

φ′k(s) ds

again using the fundamental theorem of calculus.

Step 3. The sequence (φk) is bounded and equicontinuous. Define

∆k(t) =

{
φ′k(t)− f(t, φk(t)) t 6= ti for some i

0 otherwise

The function ∆k measures the difference betwen the slope of our piecewise linear approximation
and the actual slope of the lines given by the differential equation at a point.

This yields

φk(t) = x0 +

∫ t

t0

φ′k(s) ds

= x0 +

∫ t

t0

f(s, φk(s)) + ∆k(s) ds

We want to show that the integrand is bounded independent of k. This implies that the derivatives
φ′k are bounded, which means (φk) is bounded and equicontinuous. f is continuous near (t0, x0),
so it is bounded near (t0, x0). We also know

|∆k(t)| = |f(ti, xi)− f(t, φ(t))|

We can ensure ∆k is small by taking a small step size, which ensures that these two terms are
not too far apart (as f is uniformly continuous, since it is continuous near (t0, x0)). In fact, (∆k)
will converge uniformly to 0 near (t0, x0). Since both of the summands in the integrand above are
bounded, (φk) is bounded and continuous.

Step 4. Apply Arzela-Ascoli to obtain a subsequence of (φk) that converges to φ uniformly. Replace
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φk with this subsequence. We must show that the limit φ satisfies equation (1). We have

φ(t) = lim
k→∞

(
x0 + φk(t)

)
= x0 + lim

k→∞

∫ t

t0

f(s, φk(s)) + ∆k(s) ds

= x0 +

∫ t

t0

lim
k→∞

(
f(s, φk(s)) + ∆k(s)

)
ds

= x0 +

∫ t

t0

f(s, ϕ(s) ds

as the ∆k converge to 0.
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3/25/2019 - Multivariable derivative, chain rule

Today we will start developing calculus in higher dimensions, starting with the derivative.

Multivariable derivatives

Definition. A function f : Rn → Rm is differentiable at a ∈ Rn if there exists a linear map
T : Rn → Rm such that

lim
h→0

f(a+ h)− f(a)− T (h)

|h|
= 0

Note that h is a vector in Rn, so we must take the norm in the denominator for this limit to make
sense, as we cannot divide by a vector. The numerator is a vector in Rm, so the limit is taken as a
vector (namely the limit of this expression is the zero vector in Rm).

Examples

• In the one-dimensional case, the multivariable derivative and the usual derivative coin-
cide. If f : R → R is differentiable in the usual sense at a ∈ R, we can take our linear
map to be T (h) = f ′(a) · h. Then

lim
h→0

f(a+ h)− f(a)− T (h)

|h|
= lim

h→0

|f(a+ h)− f(a)− f ′(a) · h|
|h|

= lim
h→0

∣∣∣∣f(a+ h)− f(a)

|h|
− f ′(a)

∣∣∣∣
So f is also differentiable in the multivariable sense.

Proposition. If f is differentiable at a ∈ Rn, the linear map T is unique.

Proof. The proof is left as an exercise.

Remark. If f is differentiable at a with associated linear map T , denote Df(a) = T .

Examples

• If f(x) = c for any x ∈ Rn and c ∈ Rm, you can check that Df(a) = 0 for all a ∈ Rn.

• If T : Rn → Rm is a linear map, then DT (a) = T for all a ∈ Rn.

The derivative at a point is a linear map between the domain and codomain of the function f .
It is the unique linear map that best approximates the function at this point. In this context,
the single-variable derivative f ′(a) should be understood as a linear map from R to R given
by multiplication by f ′(a). You can view this linear map abstractly, or alternatively choose a
basis to represent it as a matrix. We’ll discuss this idea further later.
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Examples

• If f : R→ R2 is a differentiable curve in the plane, we can view f as the trajectory of a
particle in R2. Then the derivative Df(a) is a matrix in M2×1(R) which is the velocity
vector.

• If f : R2 → R is differentiable, then Df(a) ∈ M1×2(R). The gradiant f(a) is defined as
Df(a)t ∈ M2×1(R). This vector points in the direction here f is increasing fastest at a.
For example, if we take f(x, y) = x2 + y2, you can check

Df(x, y) =
(

2x 2y
)

Then f(a) = Df(a)t points radially, in the direction in which f is increasing fastest.

These examples should give a geometric meaning about the derivative.

Definition. If f : Rn → R is differentiable at a ∈ Rn, then for any v ∈ Rn, the directional
derivative at a is given by

Dvf(a) = lim
t→0

f(a+ tv)− f(a)

t

This limit exists, and it is equal to Df(a)(v).

The directional derivative captures the rate of change of f as we move in the direction given by v.
The claim is that total differentiability of f implies that the directional derivatives exist and are
equal to Df(a)(v).

Proof. Since f is differentiable at a, we can define

R(h) = f(a+ h)− f(a)−Df(a)(h)

R is the numerator of the limit in the definition of the derivative, so by assumption

lim
h→0

R(h)

|h|
= 0

We can then compute the quantity

f(a+ tv)− f(a)

t
=
Df(a)(tv) +R(tv)

t

=
tDf(a)(v) +R(tv)

t

= Df(a)(v) +
R(tv)

t

by the linearity of Df(a). We can rewrite the second term as

R(tv)

|tv|
· |tv|
t
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By assumption, the first term goes to zero as t goes to zero. The second term is also ±|v|, so the
entire expression goes to zero as t goes to zero. This implies that the limit exists and

lim
t→0

f(a+ tv)− f(a)

t
= lim

t→0
Df(a)(v) +

R(tv)

|tv|
· |tv|
t

= Df(a)(v)

as desired.

Remark. Let f : Rn → R be differentiable at a ∈ Rn. When v = ei is a standard basis vector,
Df(a)(ei) is the ith partial derivative of f , denoted Dif(a). By the above proof, the matrix for
Df(a) with respect to the standard basis is then given by

Df(a) =
(
D1f(a) D2f(a) . . . Dnf(a)

)
Remark. If f is differentiable at a, then all of the directional derivatives Dvf(a) exist for all
v ∈ Rn. However, the converse is false. Even if the directional derivatives exist for all v, it is not
guaranteed that f is differentiable.

Examples

• Consider the function f : R2 → R defined by

f(x, y) =

{
x2y
x2+y2

(x, y) 6= 0

0 (x, y) = 0

However, it is possible to remedy this issue. We’ll prove the following result next time.

Theorem (Continuous Partials theorem). Let A ⊂ Rn be open and f : A → R be a function. If
Dif(x) exists for all i and each Dif(x) is continuous as a function from A to R (given by taking
x ∈ A to Dif(x)), then f is differentiable at all points in A.

Note that we take A ⊂ Rn to be open. We can only make sense of differentiation for functions
defined on open subsets of Rn. This is because to take the limit as h approaches 0, we are evaluating
f on some open ball around a. To do this, we need to know that the domain of f is open.

Lemma. If f : Rn → Rm is differentiable, then f is continuous.

Proof. To show that f is continuous, we want that

lim
h→0
|f(a+ h)− f(a)| = 0

Using the definition of differentiability and the function R as defined above, we have that

|f(a+ h)− f(a)| = |Df(a)(h) +R(h)|
≤ |Df(a)(h)|+ |R(h)|

As h goes to zero, the first term will go to zero becauseDf(a) is a linear map (and hence continuous).
By assumption, we know that R(h)/|h| goes to zero, so R(h) individually certainly must go to zero.
This proves that |f(a+ h)− f(a)| goes to zero, so f is continuous.
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Proposition. If f : Rn → Rm and g : Rm → Rp are differentiable and c ∈ R is a constant, then

1. D(f + cg) = D(f) + cD(g). Namely, the action of taking the derivative itself is linear (this
is distinct from the idea that Df(a) is a linear map).

2. D(g ◦ f) = Dg ◦Df . This is the chain rule.

3. D(fg) = (Df) · g + f · (Dg). This is the Leibniz product rule.

Proving linearity is easy, and the product rule is on the homework. We’ll prove the chain rule.

Proof. We have the diagram

Rn Rm Rp

a b c

f g

We want to show that g ◦ f is differentiable and Dg(b) ◦ Df(a) = D(g ◦ f)(a). Let b = f(a),
A = Df(a), c = g(b), and B = Dg(b). Then

f(a+ h) = b+A(h) +Rf (h)

g(b+ k) = c+B(k) +Rg(k)

Consider the expression

Rg◦f (h) = g(f(a+ h))− g(f(a))−B(A(h))

If we can show that

lim
h→0

Rg◦f (h)

|h|
= 0

this would imply that the map g ◦ f is differentiable and the map BA is indeed the derivative of
g ◦ f . Plug in our above expression for f(a+ h) to yield

Rg◦f (h) = g(b+A(h) +Rf (h))− g(f(a))−BA(h)

= g(b+ k(h))− g(f(a))−BA(h)

= c+B(A(h) +Rf (h)) +Rg(k(h))− c−BA(h)

= BRf (h) +Rg(k(h))

where we are defining k(h) = A(h) +Rf (h). We also used the linearity of B to cancel terms in the
third line. If we can show that

lim
h→0

|BRf (h)|
|h|

= 0 (1)

lim
h→0

|Rg(k(h))|
|h|

= 0 (2)

then we will have proven the claim. Since B is a linear map, we can bound it for

|BRf (h)| ≤MB|Rf (h)|

We know that Rf (h)/|h| goes to zero as h goes to zero, since f is differentiable. This implies that
Rf (h) itself goes to zero, so the product |BRf (h)| goes to zero, which shows the first desired limit
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statement (1).

For the second limit statement, there are two cases. If k(h) = 0, then Rg(k(h)) = 0. Other-
wise, we have

Rg(k(h))

|h|
=
Rg(k(h))

|k(h)|
· |k(h)|
|h|

Recall k(h) = A(h) + Rf (h), so as h goes to zero k also goes to zero (these are all continuous
functions). So we can apply the differentiability of g to conclude that the first term in the product
goes to zero. We can bound the second term in the product by

|k(h)|
|h|

≤ |A(h)|
|h|

+
|Rf (h)|
|h|

We can bound |A(h)| ≤ MA|h|, so |A(h)|/|h| goes to zero, while |Rf (h)|/|h| goes to zero because
f is differentiable. Hence the second term from above is bounded, so we have proven the second
limit statement (2). This completes the proof.

Examples

• Let A,B ⊂ Rn be open sets and f : A→ B and g : B → A be differentiable functions. If
g ◦ f = idA, then we can compute the derivative for x ∈ A by

I = D(idA)(x) = D(g ◦ f)(x) = Dg(f(x)) ◦Df(x)

Hence we have
Dg(f(x))−1 = Df(x)

• Let f : R2 → R be defined by

f(x, y) = x− 7y + 3xy2

Then compute the partial derivatives, taking one variable to be constant and differenti-
ating with respect to the other.

D1f(x, y) = 1 + 3y2

D2f(x, y) = −7 + 6xy

Then by the continuous partials theorem we have(
1 + 3y2 −7 + 6xy

)
If we want to know how f changes in the direction (1, 2) at the point (−2,−1), we should
compute

Df(−2,−1) · (1, 2) = (4, 5) · (1, 2) = 14

The dot product notation is the same as multiplying the matrix for Df(−2,−1) given
by (4, 5) with the column vector (4, 5).
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3/27/2019 - Continuous partials theorem, multivariable MVT,
higher derivatives

Recall that say a function f : Rn → Rm is differentiable at a ∈ Rn if there exists a linear map (the
derivative) Df(a) : Rn → Rm such that

lim
h→0

f(a+ h)− f(a)−Df(a)(h)

|h|
= 0

If f : Rn → R is differentiable at a ∈ Rn, then we have

Df(a) =
(
D1f(a) D2f(a) . . . Dnf(a)

)
where

Dif(a) = lim
t→0

f(a+ tei)− f(a)

t
is the ith partial derivative.

Geometrically, we should understand the derivative as the best linear approximation to f at a
point. For example, in the one-dimensional case, the function

P1(x) = f(a) + f ′(a)(x− a)

is the tangent line best approximating f at a. In the higher dimensional case, the hyperplane

P1(x) = f(a) +Df(a)(x− a)

is the tangent plane best approximating f at a.

Continuous partials theorem

Today we will prove the following result.

Theorem (Continuous Partials theorem). Let A ⊂ Rn be open. Let f : A→ R be a function, and
suppose Dif(a) exists for all a ∈ A and all i. Further suppose that the functions

Dif : A→ R
a 7→ Dif(a)

are continuous for all i. Then f is differentiable on all of A.

Examples

• Consider the function f : R2 → R defined by

f(x, y) = x− 7y + 3xy2

The partial derivatives

D1f(x, y) = 1 + 3y2

D2f(x, y) = −7 + 6xy
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exist and are continuous. By the continuous partials theorem, f is differentiable and

Df(a) =
(
D1f(a) D2f(a)

)
• To see why the continuity of the partial derivatives is an essential assumption, consider

the function g : R2 → R defined by

g(x, y) =

{
x2y
x4+y2

(x, y) 6= 0

0 (x, y) = 0

To compute the directional derivative at (0, 0) in direction (v1, v2), observe that we have

Dvg(0, 0) = lim
t→0

g(tv)− g(0)

t

= lim
t→0

t3v21v2
t4v41−t2v22

t

= lim
t→0

v2
1v2

t2v4
1 + v2

2

=

{
v21
v2

v2 6= 0

0 v2 = 0

However, g is not differentiable at (0, 0). For if g were differentiable at (0, 0), then we
would have

Dg(0, 0) =
(
D1g(0, 0) D2g(0, 0)

)
=
(

0 0
)

This implies
Dvg(0, 0) = Dg(0, 0)(v) = 0

which contradicts the above computation of the directional derivatives.

The upshot is that if f : R2 → R is differentiable at (a, b), then

Df(a, b) : R2 → R
v 7→ Df(a, b)(v)

should be a linear map. In the first example, we have

Df(a, b) : (v1, v2) 7→ (1 + 3b2)v1 + (−7 + 6ab)v2

which is linear. But in the second example, we have

Dg(a, b) : (v1, v2) 7→

{
v21
v2

v2 6= 0

0 v2 = 0

which is not linear.

Multivariable mean value theorem

To prove the continuous partials theorem, we will need a multivariable generalizationo of the mean
value theorem.
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Theorem (Multivariable Mean Value theorem). Let f : Rn → R be differentiable and let a, a+h ∈
Rn. Then there exists a point c = a+ sh, with s ∈ (0, 1), such that

f(a+ h)− f(a) = Df(c)(h)

The idea of the proof will be to reduce to the one-dimensional case.

Proof. Consider the function
g(t) = a+ th

Then define H = f ◦ g : [0, 1]→ R. Since f and g are differentiable and H is a function from R to
R, we can apply the one-dimensional mean value theorem to H. So there exists s ∈ (0, 1) such that

H(1)−H(0) = H ′(s) · 1

The left side is
f(g(1))− f(g(0)) = f(a+ h)− f(a)

By the chain rule, the right side is

(f ◦ g)′(s) = Df(g(s)) ◦Dg(s)

Take c = g(s) = a+ sh. Dg(s) is just h, so this yields

f(a+ h)− f(a) = Df(c)(h)

Remark

• The multivariable mean value theorem does not hold if we switch the domain and
codomain. For example, consider the function f : R→ R2 defined by

f(t) = (cos t, sin t)

f traces out a circle in the plane. On the interval [0, π], we are looking for c ∈ (0, π) such
that

(−2, 0) = f(π)− f(0) = f ′(c)(π − 0) = π(− sin c, cos c)

But this is impossible, as the norm of the left side is 2 while the norm of the right side
is always π.

Continuous partials theorem

We can now prove the continuous partials theorem.

Proof. Fix a ∈ A. Then examine the matrix

T =
(
D1f(a) . . . Dnf(a)

)
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To show f is differentiable, we want to prove

lim
t→0

f(a+ h)− f(a)− T (h)

|h|
= 0

For concreteness, we will work when n = 3, but the generalized proof is identitical. Define

R(h) = f(a+ h)− f(a)− T (h)

Write5

h = h1e1 + h2e2 + h3e3

p0 = a

p1 = p0 + h1e1

p2 = p1 + h2e2

p3 = p2 + h3e3

Then we have

f(a+ h)− f(a) = f(p3)− f(p0) =
3∑
i=1

f(pi)− f(pi−1)

Hence

R(h) = f(a+ h)− f(a)− T (h)

=

( 3∑
i=1

f(pi)− f(pi−1)

)
−
(
D1f(a) D2f(a) D3f(a)

) h1

h2

h3


=

3∑
i=1

(
f(pi)− f(pi−1)−Dif(a)hi

)
Since pi = pi−1 + hiei, by the single variable mean value theorem applied to f composed with the
map t 7→ pi−1 + tiei there exists ti ∈ (0, hi) such that

f(pi)− f(pi−1) = Df(pi−1 + tiei)(hiei)

5We have the following diagram, where v is used in place of h and p in place of a.
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hiei is the vector with hi in the ith coordinate, so multiplication picks out the ith coordinate of
Df(pi−1 + tiei) for

f(pi)− f(pi−1) = Dif(pi−1 + tiei)hi

Let the quantity pi−1 + tiei be labelled qi. Replacing this equality in the above expression for R(h)
yields

R(h) =

3∑
i=1

(
Dif(qi)−Dif(a)

)
hi

R(h)

|h|
=

3∑
i=1

(
Dif(qi)−Dif(a)

)
︸ ︷︷ ︸

continuity

hi
|h|︸︷︷︸
≤1

But as h goes to zero, the continuity of the partials implies that the first term goes to zero, while
we know that the second term is always bounded by 1. This shows that

lim
h→0

R(h)

|h|
= 0

So f is differentiable at a.

Definition. A function f with continuous partials is called continuously differentiable or C1.

We have shown the inclusions

{C1 functions} ( {differentiable functions} ( {functions with partial derivatives}

The strictness of the first inclusion is on the homework, while the strictness of the second inclusion
was demonstrated earlier today with the function g.

Higher derivatives

Te function f : R2 → R defined by

f(x, y) = x sin y + exy

has partial derivatives

D1f(x, y) = sin y + yexy

D2f(x, y) = x cos y + xexy

However, the partial derivatives themselves are again differentiable, with partial derivatives

D1D1f(x, y) = y2exy

D2D1f(x, y) = cos y + exy + xyexy

D1D2f(x, y) = cos y + exy + xyexy

D2D2f(x, y) = −x sin y + x2exy

The derivatives of the partials of f are again differentiable. In such a case, f is a C2 function.
Observe that D1D2f and D2D1f are the same. This holds in general.
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Theorem (Clairaut’s theorem). If f : Rn → R is C2, then DiDjf(p) = DjDif(p) for all p ∈ Rn
and for all i, j.

You will prove this on the homework later with Fubini’s and Stokes’ theorem. We can restate this
by introducing the notion of a Hessian.

Definition. For a C2 function f : Rn → R, the Hessian matrix for f is the n × n matrix
H(f) = (DjDif).

Theorem (Clairaut’s theorem). If f : Rn → R is C2, then H(f) is symmetric.

Just like a single-variable functions, a function f : R2 → R has Taylor polynomials defined at
(a, b) ∈ R2. For p = (0, 0), the 2nd order approximation for f at p is

P2(x, y) = f(0) + (D1f(0)x+D2f(0)y) +
1

2

(
D2

1f(0)x2 + 2D1D2f(0)xy +D2
2f(0)y2

)
There is similarly an analogue for the 2nd derivative test. If Df(0) = 0, then use the fact that
H(f) is symmetric. Since H(f) is symmetric, it is diagonalizable. Then up to a change of basis,
the 2nd order Taylor polynomial can be written

P2(u, v) = f(0) +Au2 +Bv2

where A and B are constants that depend on the second order partials of f (as the non-diagonal
terms will disappear with the appropriate basis change).

If A and B are both positive, then locally f is an upwards facing surface, in which case (0, 0)
is a local minimum. If A and B are both negative, then locally f is a downwards facing surface, in
which case (0, 0) is a local maximum. If the signs of A and B differ, then (0, 0) is a saddle point.
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4/1/2019 - Implicit function theorem

Today we will discuss three applications of the multivariable derivative. Before that, let’s review
some important concepts.

Let f : Rn → R be a C1 function. Then the derivative of f at p is a linear map Df(p) : Rn → R.
We can interpret

Df(p)(v) = Dvf(p)

as the directional derivative of f in the direction v. It measures how the function f changes along
the line v in the domain.

We can also write

Df(p)(v) =
(
D1f(p) . . . Dnf(p)

) v1

. . .
vn


=

 D1f(p)
. . .

Dnf(p)


︸ ︷︷ ︸

f(p)

·

 v1

. . .
vn



where ∇f(p) is the gradient of f and · is the dot product.

Question: For which v with |v| = 1 is Dvf(p) the largest? The smallest?

Answer: By examining the above expression for Dvf(p) = Df(p)(v), we can see that the
dot product is maximized when v is parallel to ∇f(p). It is minimized when v is perpendicular
to ∇f(p).

So ∇f(p) is the vector that represents the direction in which f is changing the fastest.

The above remark should illustrate that the gradient is orthogonal to the level sets of f . We can
see this with an example.

82



Examples

• Consider the function f : R2 → R defined by f(x, y) = xy. If we consider the level set
given by f(x, y) = 1, then we have the graph

The gradient vector at each point is perpendicular to the graph, as Df(x, y) =
(
y x

)
.

Implicit function theorem

The implicit function theorem is about solving nonlinear equations.

Examples

• If we have the equation
x2 − 5xy + y3 = 8

we would like to separate values, namely by writing y in terms of x or x in terms of
y. However, nonlinearity makes this difficult. We can find some solutions explicitly (for
example if x = 0 then y3 = 8, so (0, 2) is a solution).

We can then ask if there is a solution near a point we know to be a solution. The approach will be
to view the set of solutions as the level set of some function.

Definition. Given a function f : R2 → R and c ∈ R, the level set of f is

χc = {(x, y) : f(x, y) = c}

The level set consists of solutions to the equation f(x, y) = c.

Suppose χc is the graph of a function, namely that there exists a function g : R→ R such that

χc = graph(g) = {(x, g(x)) : x ∈ R}

Then we can find all of the solutions. For each x, we know f(x, g(x)) = c, and furthermore all
solutions have this form.

If we can write the level set as the graph of a function, then we know how to understand the
solutions. However, in general this is too much to ask for.
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Examples

• The 8−level set of the function x2 − 5xy + y3 is

This is not given as the graph of any function.

However, the key idea is that at certain points the level set may look like the graph of a function
locally (for example, when x is negative in the above example). The problem occurs when the
gradient vector is parallel to the x-axis, namely when D2f(p) = 0.

Theorem (Implicit Function theorem). Let f : Rn → R be a C1 function. Let p ∈ Rn and c = f(p).
If Dnf(p) 6= 0, then there exists a neighborhood U × V ⊂ Rn−1 × R of p and a unique function
g : U → V so that

χc ∩ (U × V ) = graph(g)

Moreover, g is C1.

Examples

• The function f(x, y) = x2 + y2 has level sets given by circles.

Its derivative is
Df(x, y) =

(
2x 2y

)
Then D2f(x, y) 6= 0 if and only if y 6= 0. Indeed, for any point (x, y) on the circle with
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y 6= 0, the circle is given locally as the graph of the function

g(x) =
√
c− x2

(or the negative square root).

• Consider the function f(x, y) = xy. The level set at 0 is

χ0 = {(x, y) : xy = 0}

is given as the union of the x and y axes. For what points is χ0 locally the graph of a
function? Every point (x, y) with either x 6= 0 or y 6= 0 is locally the graph of a function,
as the derivative of f is

Df(x, y) =
(
y x

)
Note that the implicit function theorem guarantees the existence of such a function g even when
we cannot find the function explicitly.

We can also consider when a level set is locally the graph of a function of y. In general, the implicit
function theorem tells you when the level set is the graph of a function of the first (n−1) variables.
We can choose any particular variable and write the level set as a function of the remaining ones.

Inverse function theorem

When does a C1 function f : Rn → Rm have a C1 inverse? When does such a function have an
inverse at least locally?

Theorem (Inverse Function theorem). Let f : (a, b) → R be a C1 function. If f ′(x) 6= 0 for all
x ∈ (a, b), then f is injective and the inverse of f : (a, b)→ f((a, b)) is also C1.

You will prove this one-dimensional version of the theorem on the homework. The main obstruction
to invertibility is injectivity, but if f ′(x) 6= 0 we know that f is injective.

Examples

• Consider the function f : (−π, π) → R defined by f(x) = 2x + sinx. Then f ′(x) =
2 + cosx, which is always strictly greater than 0. Then the inverse of f is a C1 function

g : (−2π, 2π)→ (−π, π)

However, there is no easy formula for g.

• f(x) = x2 has no global inverse, but it has local inverses given by
√
x and −

√
x.

If f has an inverse g that is differentiable, then if f is C1 we know g is C1 as well. This follows
from the chain rule. We know y = f(g(y)), and differentiating this yields

1 = f ′(g(y))g′(y)
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g′(y) =
1

f ′(g(y))

We know f ′ is continuous by assumption, so we have expressed g′ as the composition of continuous
functions.

We have an analogous result in the higher dimensional setting.

Theorem (Inverse Function theorem). Let f : Rn → R be a C1 function. If Df(p) is invertible,
then there exists a neighborhood U of p such that f |U : U → f(U) is bijective with a C1 inverse.

Examples

• Consider the function f : R2 → R2 defined by f(x, y) = (xy, y2 − x2). The inverse
function theorem says that if we want to know if f has a local inverse we can examine
the derivative

Df(x, y) =

(
y x
−2x 2y

)
Df(x, y) is invertible when

det(Df(x, y)) = 2y2 + 2x2

is nonzero. This is true whenever (x, y) 6= (0, 0).

Hence f is locally invertible around any point (x, y) 6= (0, 0). However, note that
f(1, 1) = f(−1,−1), so the neighborhood U of (1, 1) cannot contain the point (−1,−1).
We only have inverses locally.

In fact, since f(x, y) = f(−x,−y) we know that f is not invertible around the origin,
since any neighborhood of (0, 0) will contain a pair of these antipodal points. Although
the inverse function theorem is not a biconditional result (an ‘if and only if’), this shows
that f does not have an inverse around (0, 0).

• The function f(x) = x3 is a bijection of R with inverse g(x) = 3
√
x. f is C1, but g is not.

In fact, g′(0) does not even exist.

This doesn’t contradict the above remark because g is not differentiable at 0. It doesn’t
contradict the theorem, because f ′(0) = 0. The existence of a derivative does not imply
that the derivative is differentiable.
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Lagrange multipliers

We would like to find the maximum or minimum of a function6 φ : Rn → R subject to the constraint
f(x) = c, where f : Rn → R.

Examples

• What is the point on the parabola y = (x − 2)2 + 2 closest to the origin? We are
looking to minimize the function φ(x, y) =

√
x2 + y2 with the constraint that f(x, y) =

(x− 2)2 + 2− y = 0.

Note that without the constraint, we know what to do. Find the critical points of the function that
satisfy Df(p) = 0, and then use the second derivative test to determine whether the point p is a
minimum or maximum.

Theorem. Let φ, f : Rn → R be C1 functions, and let c ∈ R be our constraint. Then if p ∈ Rn is
a maximum or a minimum of the restriction φ|f=c, then

∇φ(p) = λ∇f(p)

λ is called the Lagrange multiplier.

Instead of looking for maxima and minima of φ, the theorem says that we can look for solutions
to the above equation. Practically, the theorem will result in finitely many points, at which point
you can manually check if they are minima or maxima.

Examples

• Consider the above example. In practice, its usually easier to work with the distance
function squared. Local extrema of the distance function squared are also local extrema
of the distance function. We have

Dφ(x, y) =
(

2x 2y
)
Df(x, y) =

(
2(x− 2) −1

)
So solving the system 

2λx = 2(x− 2)

2λy = −1

y = (x− 2)2 + 2

yields our candidates for minima and maxima.

6We discussed the linear version of this problem last semester. Given a subspace W ⊂ Rn and p ∈ Rn, which
point of W is closest to p? We saw that the orthogonal projection of p onto W is the closest such point. Lagrange
multipliers are a nonlinear version of this problem.
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4/3/2019 - Implicit and inverse function theorems

Implicit function theorem

We will work in a slightly more general situation than last time today. Let f : Rn ×Rk → Rk be a
C1 function, and let p ∈ Rn × Rk with c = f(p). We have the level set

χc = {(x, y) ∈ Rn × Rk : f(x, y) = c}

We would like to express χc near p as the graph of a function g : Rn → Rk. The implicit function
theorem will provide the conditions necessary to guarantee that this is possible.

Let ∂f
∂x (p) ∈Mk×n(R) be the matrix with entries ∂f

∂x (p)ij = ∂fi
∂xj

(p). Similarly let ∂f
∂y (p) ∈Mk×k(R)

be the matrix with entries ∂f
∂y (p)ij = ∂fi

∂yj
(p). Then altogether we have

Df(p) =
(

∂f
∂x (p) ∂f

∂y (p)
)

We can now state a more general version of the implicit function theorem.

Theorem (Implicit Function theorem). Let f and ∂f
∂x ,

∂f
∂y be defined as above, and let p ∈ Rn×Rk.

Then if the square matrix ∂f
∂y (p) is invertible, there exists an open neighborhood U × V ⊂ Rn × Rk

of p and a unique C1 function g : U → V such that

χc ∩ (U × V ) = graph(g)

Last time we stated the implicit theorem in the case where k = 1. Then the condition that ∂f
∂y (p)

is invertible just means that the single partial derivative ∂f
∂y (p) is nonzero.

Examples

• Let f : R3 → R2 be the function defined by

f(x, y1, y2) = (x2(y1 + y2), y1 cos(x− 1)− y2)

Then for the point p = (1, 1, 1) and c = f(p) = (2, 0), we have

Df(x, y1, y2) =

 2x(y1 + y2) x2 x2

−y1 sin(x− 1)︸ ︷︷ ︸
∂f
∂x

cos(x− 1) −1


Then

∂f

∂y
(p) =

(
1 1
1 −1

)
This matrix is invertible, so this implicit function theorem implies that we can solve the
system {

x2(y1 + y2) = 2

y1 cos(x− 1)− y2 = 0
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to express y1, y2 as functions of x. In this case, we can explicit solve for{
y1 = 2

x2(cos(x−1)+1

y2 = 2 cos(x−1)
x2(cos(x−1)+1)

We have the function

g(x) =

(
2

x2(cos(x− 1) + 1
,

2 cos(x− 1)

x2(cos(x− 1) + 1)

)
Near the point p, the level set χc is given as the graph of g.

• Let f : R2 → R be the function defined by f(x, y) = x2−y3. Then for the point p = (0, 0)
and c = f(p) = 0, we have

Df(p) =
(

0 0
)

The implicit function theorem does not apply, but the equation x2 − y3 = 0 means
y = x2/3. So the level set of f is expressible as the graph of the function g(x) = x2/3,
but g is not differentiable.

• Let f : R2 → R be the function defined by y2 − x4. Then for the point p = (0, 0) and
c = f(p) = 0, we have

Df(p) =
(

0 0
)

The implicit function theorem does not apply, but the equation y2 − x4 = 0 means
y = ±x2. For the function g(x) = x2, we indeed have f(x, g(x)) = 0 for all x, but
χ0 6= graph(g) around (0, 0) (we are missing half of the solutions).

Inverse function theorem

We can use the implicit function theorem to prove the inverse function theorem.
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Theorem (Inverse function theorem). Let f : Rn → Rn be a C1 function, and let p ∈ Rn. If
Df(p) is invertible, then there exists an open neighborhood U ⊂ Rn of p such that f |U : U → f(U)
is injective and the inverse g : f(U)→ U is C1.

Before proving this, we will introduce some additional terminology.

Definition. A function f : U → V between open subsets of Rn is a diffeomorphism if f is
bijective, C1, and its inverse is C1.

A diffeomorphism is the analogue of an isomorphism, but for open subsets of Rn. We’ll now prove
the inverse function theorem assuming the implicit function theorem, which we will prove next
time.

Proof. Let q = f(p), and consider the function

F : Rn × Rn → Rn

(x, y) 7→ f(x)− y

F is 0 precisely when f(x) = y. In particular, note that F (p, q) = 0. We have

DF (x, y) =
(
Df(x) −I

)
DF (p, q) =

(
Df(p) −I

)
where −I is the n×n identity matrix times −1. By assumption, Df(p) is invertible, so the implicit
function theorem implies that there is an open neighborhood U×V ⊂ Rn×Rn and a map g : V → U
so that F is the graph of g. In other words, we have

0 = F (g(y), y) = f(g(y))− y

for all y. This shows f ◦ g is the identity on V . However, g still may not be a bijection, as it may
not map to all of U . But we can fix this by taking U1 = f−1(V ) ∩ U .

Then g : V → U1 is inverse to f . The image of g is indeed contained in U1, as for y ∈ V we
have f(g(y)) = y, which implies g(y) ∈ f−1(V ) ∩ U = U1. We know that g is a right-inverse to
f , but we must also show g ◦ f is the identity on U1. Let x ∈ U1. By definition of g, we know
F (g(f(x)), f(x)) = 0. However, F (x, f(x)) = 0 as well. g is the unique by the implicit function
theorem, which means that g(f(x)) is the unique point such that F (g(f(x)), f(x)) = 0. This yields
g(f(x)) = x.

The main idea of the proof is to use the implicit function theorem to come up with a function g
and then verify that g is indeed a local inverse to f .

Application of the inverse function theorem

Recall that if T : Rn+m → Rn is a surjective linear map, then there exists an invertible linear
S : Rn+m → Rn+m such that T ◦ S : Rm × Rn → Rn is the projection given by sending (x, y)
to y. The rank theorem is a nonlinear version of this result.
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Theorem (Rank theorem). If f : Rn+m → Rn is a C1 function, and at the point p ∈ Rn+m

Df(p) is surjective, then there exists a diffeomorphism

G : Rn+m ⊃ V → U 3 p

such that f ◦G : Rm × Rn → Rn is the projection given by sending (x, y) to y.

In other words, if the derivative of a map f at a point is surjective, then up to a change of
coordinates the map looks like a projection onto Rn.

Proof. Viewing Rm × Rn, we have

Df(p) =
(

∂f
∂x (p) ∂f

∂y (p)
)

Since surjectivity means that the columns of the matrix span Rn, by reordering the columns
we can assume ∂f

∂y (p) is surjective and hence invertible. Now consider

F : Rm × Rn → Rm × Rn

(x, y) 7→ (x, f(x, y))

Then the derivative of F is

DF (p) =

(
∂F1
∂x (p) ∂F1

∂y (p)
∂F2
∂x (p) ∂F2

∂y (p)

)

=

(
I 0

∂f
∂x (p) ∂f

∂y (p)

)

Then DF (p) is invertible, since ∂f
∂y (p) is an invertible (n× n)-submatrix.

The inverse function theorem implies that there is a neighborhood U ⊂ Rm × Rn of p such
that F : U → F (U) has inverse G : F (U) → U . Since F (x, y) = (x, f(x, y)) is the identity in
the first coordinate, this implies that G is also the identity in the first coordinate, namely that
G(x, y) = (x, g(x, y)) for some function g : Rm×Rn → Rn. We know that F ◦G is the identity,
so this yields

(x, y) = F ◦G(x, y)

= F (x, g(x, y))

= (x, f(x, g(x, y))

Hence y = f(x, g(x, y)), so
f ◦G(x, y) = f(x, g(y)) = y

So G is the desired diffeomorphism that makes f look like the projection onto the second
coordinate.
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4/8/2019 - Manifolds and Lagrange multipliers

Implicit and inverse function theorems

Recall the inverse function theorem, which says that if F : Rn → Rn is a C1 function such that
DF (p) is invertible, then F is invertible near p with a C1 inverse.

Also recall the implicit function theorem, which says that given a C1 function f : Rn×Rk → Rk
and a point p ∈ Rn × Rk with c = f(p), if when we write

Df(p) =
(

∂f
∂x (p) ∂f

∂y (p)
)

the submatrix ∂f
∂y (p) is invertible, then there exists an open neighborhood U × V ⊂ Rn × Rk

and a C1 map g : U → V such that f(x, g(x)) = c for all x ∈ U .

We had the rank theorem as well, which states that given a C1 function f : Rn × Rk → Rk
with Df(p) surjective, there exists a diffeomorphism H : V → U , where U, V ⊂ Rk are open
sets with p ∈ U , such that

V U Rk

(x, y) y

H f

We proved the second two of the above theorems using the implicit function theorem. We’ll now
return to prove the implicit function theorem.

Proof. Consider the function

F : Rn × Rk → Rn × Rk

(x, y) 7→ (x, f(x))

F has derivative

DF (p) =

(
I 0

∂f
∂x (p) ∂f

∂y (p)

)
By assumption, ∂y

∂y (p) is invertible, so DF (p) is also invertible.

Then the inverse function theorem implies there exists an open neighborhood U ⊂ Rn×Rk of p such
that F |U : U → F (U) is invertible with a C1 inverse H : F (U) → U . Since F (x, y) = (x, f(x, y)),
necessarily H(x, y) = (x, h(x, y)) for some function h : F (U)→ U ∩ ({0} × Rk) (as if F leaves the
first coordinate unchanged, its inverse H also leaves the first coordinate unchanged).

Write p = (a, b) ∈ Rn × Rk. Then F (p) = (a, c). Since F ◦H is the identity, we have

(x, c) = F ◦H(x, c)

= F (x, h(x, c))

=
(
x, f(x, h(x, c))

)
Hence this implies f(x, h(x, c)) = c for all x near a, which completes the proof.

92



Note that we used the implicit function theorem to prove the inverse function theorem. So we
have shown that these two theorems imply each other. In fact, the same argument proves the rank
theorem as well, where H from the above proof is the diffeomorphism we are looking for. This is
because for all d near c, we have

f ◦H(x, d) = f(x, h(x, d)) = d

which means H is the diffeomorphism that makes f into a projection.

Note that the rank theorem gives a complete picture of f near p. The idea is that if Df(p) is
surjective, then the level sets of f near p look like a stack of planes orthogonal to the gradient
vector.

Lagrange multipliers

These theorems have a very useful application.

Theorem (Lagrange multipliers theorem). Let φ, f : Rn → R be C1 functions. Fix c ∈ R, and
let X = f−1(c). Assume Df(x) 6= 0 for all x ∈ X. If p is a local maximum or minimum of the
restriction φ|X , then

∇φ(p) = λ∇f(p)

for some λ ∈ R.

Examples

• We can use Lagrange multipliers to find the maximum or minimum distance to the origin
on the curve X = f−1(9), where

f(x, y) = x14 + 35xy2 + 2x6y + 20x5y5 + 10x2y + y12

In this case, φ is the function given by taking the distance to the origin. We are looking
for a local minimum or maximum of φ restricted to the level set X.

The above example suggests why the converse of the Lagrange multipliers theorem is false.
Just consider the function φ : R2 → R defined by φ(x, y) = y restricted to the 0-level set of the
function f(x, y) = x3.

We will first need an important lemma.

Lemma. Let f : Rn → R be C1. Fix c ∈ R, and define X = f−1(c). Take a C1 function
γ : (−1, 1)→ X. Then if p = γ(0), the vectors ∇f(p) and γ′(0) are orthogonal.

In other words, the lemma is saying that the level set of a function is orthogonal to the gradient.
The function γ is just a curve on the level set.
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Examples

• Let f(x, y, z) = x2 + y2 + z2. Then the level set X = f−1(1) is the unit sphere. The
derivative of any curve γ that lies on the surface of the sphere will always be orthogonal
to the gradient of f , which points radially outwards.

Proof. The proof follows immediately from the chain rule. Since the image of γ is always in the
level set, we know c = f ◦ γ(t) for all t ∈ (−1, 1). Then differentiation yields

0 = D(f ◦ γ)(t)

= Df(γ(t)) · γ′(t)
0 = Df(p) · γ′(0)

taking t = p. Where · is the dot product on Rn, as the matrices are just row/column vectors (so
matrix multiplication/composition is just given by taking the dot product).

We can now prove the Lagrange multipliers theorem.

Proof. Suppose p ∈ X is a local minimum or maximum. If Dφ(p) = 0, then take λ = 0, and we
are done.

Assume Dφ(p) 6= 0. We also know Df(p) 6= 0 by assumption. Suppose for contradiction that
∇φ(p) and ∇f(p) are not proportional. The rank theorem says that the level sets of φ look like a
stack of planes orthogonal to ∇f(p). The idea is that if these two vectors are not parallel, then by
moving along X around p we can find a larger or smaller value. So p is not a local extrema, which
is a contradiction.7

On the next homework you will prove the spectral theorem8 using Lagrange multipliers.

Manifolds

Definition. Informally, a k-dimensional manifold in Rn is a subset M ⊂ Rn that is locally the
graph of a function from Rk to Rn−k.

Examples

• The circle M = {(x, y) : x2 + y2 = 1} ⊂ R2 is a 1-dimensional manifold. Any point on
M lies on the graph of one of the functions

y = ±
√

1− x2

x = ±
√

1− y2

7This proof relies heavily on relevant diagrams and illustrations. Email me if you are confused and including some
illustrations would help.

8If A ∈Mn(R) is a symmetric matrix, then there exists an orthonormal basis u1, . . . , un ∈ Rn of eigenvectors such
that Aui = λiui.
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We can give a more formal definition in the case of 1-dimensional manifolds.

Definition. A 1-dimensional manifold in R2 is a subset M ⊂ R2 such that for all p ∈ M ,
there exists an open rectangle Q = (a, b) × (c, d) around p and a C1 function h : (a, b) → R or
h : (c, d)→ R such that

M ∩Q = graph(h)

In general, we can ask when the level set of a function f : Rn → Rn−k is a manifold. We can answer
this question using some of the theorems we have been discussing.

Theorem (Manifold Recognition theorem). Let f : Rn → Rn−k be a C1 function, and fix c ∈ Rn−k.
If Df(p) is surjective for all p ∈ f−1(c), then the level set f−1(c) is a k-dimensional manifold in
Rn.

The proof of this theorem is just the implicit function theorem.

Examples

• The configuration space of a collection of linked rods is a manifold. We can describe the
collection of possible positions of each rod. Let r1 and r2 be the lengths of the two rods.
We are fixing one end of the first rod to the origin, and fixing one end of the second rod
to the other end of the first rod.

Let (x1, y1) be the end of the first rod/beginning of the second rod and let (x2, y2)
be the end of the second rod. (x1, y1) always lies on the circle of radius r1 centered at
the origin, so we have

f1(p) = x2
1 + y2

1 = r2
1

(x2, y2) always lies a distance of r2 from (x1, y1), so we have

f2(p) = (x2 − x1)2 + (y2 − y1)2 = r2
2

If we define the function

f : R4 → R2

p 7→ (f1(p), f2(p))

Then the preimage f−1(r2
1, r

2
2) consists of all the possible configurations of the linked

rods. It’s not too hard to see that Df(p) is surjective at each p ∈M , which means that
the configuration space is a 2-dimensional manifold in R4.

Given some thought, one can see M ' S1 × S1 (which is the torus!).
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4/10/2019 - Stokes theorem, Linear and differential forms

Forms on vector spaces

Today we will start a new topic. The goal is to cover Stokes’ theorem, which is a vast generalization
of the fundamental theorem of calculus with many applications. The theorem is encapsulated in
the equation ∫

c
dω =

∫
∂c
ω

It will take us some time to understand all the parts of this equation. ω is a differential k-form, dω
is the exterior derivative of ω, c is a k-cube in Rn, and ∂c is the boundary of c.

In the case when k = 1, this equation becomes∫
[0,1]

f ′ = f(1)− f(0)

We will speak about differential forms today. Recall that the determinant

det : Rk × . . .× Rk → R

is the unique, multilinear,9 alternating10 function on (Rk)k such that

det(e1, . . . , ek) = 1

We can view the determinant as a function det : Mn(R)→ R of the rows of a matrix. In this con-
text, the determinant should be understood as a measure of the signed area of the parallelogram
spanned by the rows of a matrix.

k-forms on Rn will give us a notion of k-dimensional volume in Rn, for k ≤ n.

Definition. A k-form on Rn is a multilinear, alternating function

φ : Rn × . . .× Rn︸ ︷︷ ︸
k times

→ R

Denote the set of all k-forms on Rn by

Λk(Rn) = {k-forms on Rn}

Then Λk(Rn) is a real vector space in the obvious way.11

9Multilinear means that if we fix k − 1 of the entries, the resulting function from Rk to R is linear.
10Alternating means that the determinant changes signs if you swap two entries, namely that

det(e1, . . . , ei, . . . , ej , . . . , ek) = −det(e1, . . . , ej , . . . , ei, . . . , ek)

11Meaning with pointwise addition and scalar multiplication, given by

(φ+ ψ)(v1, . . . , vk) = φ(v1, . . . , vk) + ψ(v1, . . . , vk)

(aφ)(v1, . . . , vk) = aφ(v1, . . . , vk)
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Examples

• A 1-form on Rn is a linear map φ : Rn → R. Hence

Λ1(Rn) = L(Rn,R)

Elementary k-forms

Fix indices 1 ≤ i1, . . . , ik ≤ n. Define a k-form on Rn with the following procedure.

Given vectors v1, . . . , vk ∈ Rn, form the matrix v11 . . . vk1

. . . . . .
v1n . . . vkn


This is an n× k matrix. Use the above indices to choose the following submatrix

M(v1, . . . , vk) =

 v1i1 . . . vk,i1
. . . . . .
v1,ik . . . vk,ik


Then the map

φ(v1, . . . , vk) = det(M(v1, . . . , vk))

is alternating and multilinear because the determinant is. Denote this k-form by

dxi1 ∧ . . . ∧ dxik

Examples

• On the vector space R4, the 1-form dxi acts by

dxi


v1

v2

v3

v4

 = vi

• On the vector space R4, the 2-form dx1 ∧ dx3 acts by

dx1 ∧ dx3


1 5
2 6
3 7
4 8
5 9

 = det

(
1 5
3 7

)
= −8
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• On the vector space R4, the 3-form dx3 ∧ dx1 ∧ dx4 acts by

dx3 ∧ dx1 ∧ dx4


1 5 9
2 6 10
3 7 11
4 8 12
5 9 13

 = det

 3 7 11
1 5 9
4 8 12



• On the vector space R4, the 4-form dx1 ∧ dx2 ∧ dx3 ∧ dx4 is simply the determinant.

k-forms give a measure of k-dimensional volumes in Rn. For example, the form dx ∧ dy ∈ Λ2(R3)
acts by

dx ∧ dy

 v1 w1

v2 w2

v3 w3

 = det

(
v1 w1

v2 w2

)
The two vectors (v1, v2, v3) and (w1, w2, w3) span a parallelogram in R3. The form dx ∧ dy is the
signed area of the projection of this parallelogram onto the xy-plane in R3.

For 3-dimensional volume on R3, the determinant is the only multilinear, alternating map (up
to normalization). But for measuring 2-dimensional volume, there are many different elements
of Λ2(R3). For example dy ∧ dz is also a 2-form. Λ2(R3) is a vector space, so we have the sum
dx ∧ dy + dy ∧ dz as well.

The algebra of k-forms

Since det is alternating, we have relations introduced between forms in Λk(Rn). For example,

dx1 ∧ dx3 = −dx3 ∧ dx1

dx1 ∧ dx2 ∧ dx1 = 0

dx2 ∧ dx3 ∧ dx1 = dx1 ∧ dx2 ∧ dx3

The second equation holds because the determinant vanishes if two rows are identical.

Definition. If 1 ≤ i1 < . . . < ik ≤ n is a sequence of strictly increasing indices, then

dxi1 ∧ . . . ∧ dxik

is an elementary k-form.

Theorem. The elementary k-forms are a basis of Λk(Rn).

Examples

• Λ1(R3) is spanned by the elementary forms dx, dy, and dz.

• Λ2(R3) is spanned by the elementary forms dx ∧ dy, dy ∧ dz, and dx ∧ dz.
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Corollary. The dimension of the vector space Λk(Rn) is(
n

k

)
=

n!

k!(n− k)!

Proof. The size of the basis is the number of ways to pick a strictly increasing sequence of indices
between 1 and n, which is the number of ways to pick k distinct numbers between 1 and n, where
the order doesn’t matter.

Definition. The wedge product is an operation

∧ : Λk(Rn)× Λ`(Rn)→ λk+`(Rn)

It is defined by extending the obvious multiplication on elementary forms, forcing distributivity and
associativity.

Examples

• We have

(8 dx1 ∧ dx2 − 2 dx1 ∧ dx3)(4 dx1 + 3 dx2) = 24 dx1 ∧ dx2 ∧ dx3

It follows from the theorem that Λk(Rn) = {0} if k > n, since it is impossible to pick a strictly
increasing sequence of n+ 1 indices between 1 and n.

Note that the wedge product is not commutative (we saw this already with elementary forms).
The wedge product is called graded-commutative, since

φ ∧ ψ = (−1)k`ψ ∧ φ

where φ and ψ are k- and `-forms, respectively.12

Some properties

• For every φ ∈ Λ1(R3), φ ∧ φ = 0. To see this, write

φ = a dx+ b dy + c dz

Then
(a dx+ b dy + c dz)(a dx+ b dy + c dz) = 0

since the terms cancel in pairs.

• For every φ ∈ Λ2(R3), φ ∧ φ = 0. This follows from a similar example as above, but one
can also argue more directly. φ ∧ φ is a 4-form on R3, but since Λ4(R3) = {0} by the
above remark, we have φ ∧ φ = 0.

12The exponent of k` comes from the fact that to rearrange φ∧ψ to ψ ∧ φ, we have to move k terms past ` terms,
which requires k` swaps.
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However, it is not always true that φ ∧ φ = 0. For the form φ = dx1 ∧ dx2 + dx3 ∧ dx4 in Λ2(R4),
we have φ ∧ φ = 2 dx1 ∧ dx2 ∧ dx3 ∧ dx4.

Differential forms

Definition. Let U ⊂ Rn be open. A differential k-form on U is a smooth function

ω : U → Λk(Rn)

Denote the set of all differential k-forms on U by

Ωk(U) = {differential k-forms on U}

Examples

• By convention, Λ0(Rn) = R. So

Ω0(Rn) = {smooth functions U → R}

• Since Λk(Rn) is spanned by the elementary forms, we can write any ω ∈ Ω2(R3) as

ω(p) = f(p) dx ∧ dy + g(p) dx ∧ dz + h(p) dy ∧ dz

where f, g, h : R3 → R are smooth and unique.

Note that a k-form takes k vectors in Rn and yields a real number. A differential k-form takes a
point p ∈ Rn, k vectors in Rn, and yields a real number

ω(p)(v1, . . . , vk)

as ω(p) is a k-form.

Examples

• Take ω = dx and η = xdy in Ω1(R2). For the points p = (0, 0) and q = (2, 2) and vectors
u = (0, 1) and v = (2, 3), we have

η(q)(u) = 2 dy

(
0
1

)
= 2

η(p)(u) = 0 dy

(
0
1

)
= 0

ω(q)(v) = dx

(
2
3

)
= 2

ω(p)(v) = dx

(
2
3

)
= 2
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Viewing the derivative as a 1-form

Given a smooth function f : Rn → R, for p ∈ Rn the linear map Df(p) : Rn → R is an element
of Λ1(Rn). Then we can define the 1-form

df : Rn → Λ1(Rn)

p 7→ Df(p)

If we look at df with explicit coordinates, then

df(p) =
n∑
i=1

Dif(p) dxi

1-forms and vector fields

Any ω ∈ Ω1(Rn) can be written

ω(p) =
n∑
i=1

Fi(p) dxi

where Fi : Rn → R is a smooth function. If we define

F : Rn → Rn

p 7→ (F1(p), . . . , Fn(p))

then

ω(p)(v) =

( n∑
i=1

Fi dxi

) v1

. . .
vn


=
∑

Fi(p) dxi

= F (p) · v

where · is the dot product.

Examples

• Consider the 1-form

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy

in Ω1(R2 \ {0}) (as this form is not defined at the origin). Here

F (x, y) =

(
−y

x2 + y2
,

x

x2 + y2

)
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This is the vector field

Given c : [0, 1]→ R2 \ {0}, we can compute∫ 1

0
F (c(t)) · c′(t) dt

For example, if c(t) = (1 + t, 0) we have c′(t) = (1, 0) and F (c(t)) = (0, 1/(1 + t)). Then
F (c(t)) · c′(t) = 0 always so the integral over c is 0.

In contrast, if c(t) = (cos(2πt), sin(2πt)), then the integral of ω over c is 2π.

Hence we can see that this form has a nice geometric interpretation. It is the wind-
ing number, and it measures how many times a curve in R2 \ {0} wraps around the
origin.
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4/15/2019 - Integration of differential forms

Linear forms on Rn

We are working towards Stokes’ theorem, which says that if ω is a differential k-form and c :
[0, 1]k+1 → Rn is a cube, then ∫

∂c
ω =

∫
c
dω

Last time we defined differential forms, and today we will define what it means to integrate over a
differential form.

Recall that a linear k-form on Rn is a multilinear, alternating function

φ : Rn × . . .× Rn︸ ︷︷ ︸
k times

→ R

We will denote Rn × . . .× Rn by (Rn)×k. We defined the elementary k-form

dxJ = dxj1 ∧ . . . ∧ dxjk

given a collection of strictly increasing indices J = (j1, . . . , jk) with 1 ≤ j1 < j2 < . . . < jk ≤ n.
This a function on (Rn)×k. It takes a k vectors (v1, . . . , vk), each expressed in terms of a basis

vi = vi1e1 + . . .+ vin

and yields

dxJ(v1, . . . , vk) = det

 v1,j1 . . . vk,j1
. . . . . .
v1,jk . . . vk,jk


We packaged all of the linear k-forms on Rn into the vector space Λk(Rn). We are particularly
interested in the elementary k-forms because they form a basis for the vector space Λk(Rn).

Examples

• Given any 1-form φ ∈ Λ1(Rn) = L(Rn,R), we have

φ(v) = φ

( n∑
i=1

viei

)

=
n∑
i=1

viφ(ei)

=
n∑
i=1

φ(ei) dxi(v)

where dxi is the 1-form on Rn that simply picks out the ith row of the vector v. This
demonstrates that every 1-form is in the span of the elementary 1-forms. Furthermore,
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writing

w =

 φ(e1)
. . .
φ(en)


shows that the form φ is given by the standard inner product

φ(v) = v · w

Theorem. The elementary k-forms are a basis for Λk(Rn).

Proof. For concreteness, we’ll consider the case when k = 2 and n = 3. The general case differs
only in the notation. We want to show that Λ2(R3) has basis

dx12 = dx1 ∧ dx2

dx13 = dx1 ∧ dx3

dx23 = dx2 ∧ dx3

We’ll show that these vectors span and are linearly independent. Let φ ∈ Λ2(R3) be an arbitrary
2-form on R3. We have

φ(v, w) = φ

( 3∑
i=1

viee,
3∑
j=1

wjej

)
=

∑
1≤i,j≤3

viwjφ(ei, ej)

using the multilinearity of φ. Some of these terms will be zero and φ(ei, ej) = −φ(ej , ei), so we can
adjust indices for

φ(v, w) =
∑

1≤i<j≤3

(viwj − vjwi)φ(ei, ej)

=
∑

1≤i<j≤3

φ(ei, ej) dxij(v, w)

= φ(e1, e2) dx12 + φ(e1, e3) dx13 + φ(e2, e3) dx23

The second line is justified by definition13 of the elementary form dxij .

To show these elementary 2-forms are linearly independent, suppose

a dx12 + b dx13 + c dx23 = 0

Evaluating this form on (e1, e2) yields a = 0. Similarly, b = c = 0, so the elementary 2-forms are
linearly independent.

13For example,

dx23

  v1
v2
v3

 w1

w2

w3

  = det

(
v2 w2

v3 w3

)
= v2w3 − v3w2
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Integration of differential k-forms

Let U ⊂ Rn be an open set. Recall that a differential k-form is a smooth function

ω : U → Λk(Rn)

We denote the collection of differential k-forms by Ωk(U). For each p ∈ U , we have that ω(p) ∈
Λk(Rn). Since the vector space Λk(Rn) is spanned by the elementary k-forms, we can write

ω(p) =
∑

J=(j1,...,jk)

fJ(p) dxJ

where each fJ : U → R is a smooth function. We can motivate integration by examining the case
of 1-forms.

Integration of 1-forms

Let ω ∈ Ω1(Rn). We can write
= f1 dx1 + . . .+ fn dxn

Package the fi : Rn → R functions together for a smooth vector field

F : Rn → Rn

p 7→ (f1(p), . . . , fn(p))

Then we have

ω(p)(v) =

n∑
i=1

fi(p) dxi

 v1

. . .
vn


=
∑
i=1

fi(p)vi

= F (p) · v

Definition. Given a smooth function c : [0, 1]→ Rn, the line integral of ω over c is defined∫
c
ω =

∫ 1

0
ω(c(t))(c′(t)) dt

Examples

• Consider the case when n = 2, and write dx, dy instead of dx1, dx2. Let ω = dx =
1 dx+ 0 dy, the constant differential form. Then

F (x, y) =

(
1
0

)
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Given a smooth function c : [0, 1]→ R2, we have

c(t) =

(
c1(t)
c2(t)

)
c′(t) =

(
c′1(t)
c′2(t)

)
Then ∫

c
dx =

∫ 1

0

(
1
0

)
·
(
c′1(t)
c′2(t)

)
dt

=

∫ 1

0
c′1(t) dt

= c1(1)− c1(0)

So integrating dx along c yields the net x-variation of c.

• More generally, integrating an arbitrary 1-form over c looks like∫
c
f dx+ g dy

This measures the net ‘weighted x- and y-variation’ along a curve.

• Last time, we saw that the form

ω =
1

x2 + y2

(
− y dx+ x dy

)
measures the net winding of c around 0. At a general point, the vector field for ω points
along the circles centered at the origin:

F (x, y) =

(
−y

x2 + y2
,

x

x2 + y2

)
For example, the curve

c : [0, 1]→ R2 \ {0}
t 7→ (cos(2πt), sin(2πt))

Concretely, we can compute∫
c
ω =

∫ 1

0

(
− sin(2πt)
cos(2πt)

)
·
(
−2π sin(2πt)
2π cos(2πt)

)
=

∫ 1

0
2π(sin2(2πt) + cos2(2πt)) dt

= 2π
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The fundamental theorem of line integrals

Given a smooth function f : Rn → R, we have the differential 1-from

df = D1f dx1 + . . .+Dnf dxn

The vector field of df is  D1f
. . .
Dnf

 = ∇f

Note that
df(p)(v) = Df(p)(v)

Integration of df over some curve c : [0, 1]→ Rn is∫
c
df =

∫ 1

0
∇f(c(t))c′(t) dt

=

∫ 1

0
Df(c(t))c′(t) dt

=

∫ 1

0
(f ◦ c)′(t) dt

= f(c(1))− f(c(0))

by the chain rule and the fundamental theorem of calculus, since f ◦ c is a function from R to
R. This is in fact a special case of Stokes’ theorem.

Theorem (Fundamental theorem of line integrals). If ω ∈ Ω1(Rn) is given by ω = df for some
smooth f : Rn → R, then ∫

c
ω = f(c(1))− f(c(0))

for any smooth curve c : [0, 1]→ Rn.

In other words, the integral of a differential 1-form that arises as the derivative of a smooth
function depends only on the endpoints of the curve.

Examples

• Let ω ∈ Ω1(R2) be defined ω = y dx. Consider the curves

c(t) = (cos(πt), sin(πt))

d(t) = (cos(πt),− sin(πt))

e(t) = (1− 2t, 0)

Recall that we have ∫
c
ω =

∫ 1

0
F (c(t)) · c′(t) dt
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where F is the vector field corresponding to ω. This vector field is given by F (x, y) =
(y, 0).

The integrals over the above curves are given by the dot product of the vector field with
the derivative of the curve at each point. Then we have∫

c
ω︸︷︷︸

<0

<

∫
e
ω︸︷︷︸

=0

<

∫
d
ω︸︷︷︸

>0

Note that even though the the endpoints of these curves are equal, their integrals differ.
This is because ω 6= df for all f .

We can define the integral over a differential k-form more generally.

Definition. Let ω ∈ Ωk(Rn) and c : Ik → Rn be a smooth map of the k-cube Ik = [0, 1]k. Write

ω =
∑

J=(j1,...,jk)

fJ dxJ

The integral of ω over c is defined∫
c
ω =

∑
J

∫
Ik

(fJ ◦ c) dxJ(Dc)

Examples

• Consider the case when k = 2 and n = 3, and take a differential form

ω = f12 dx12 + f13 dx13 + f23 dx23

Given a map

c : I2 → R3

(s, t) 7→ (c1(s, t), c2(s, t), c3(s, t))
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We have

Dc =


∂c1
∂s

∂c1
∂t

∂c2
∂s

∂c2
∂t

∂c3
∂s

∂c3
∂t


Denote

∂cij
∂(s, t)

=

 ∂ci
∂s

∂ci
∂t

∂cj
∂s

∂cj
∂t


Then

dxij(Dc) = det

(
∂cij
∂(s, t)

)
Then ∫

c
ω =

∑
i<j

∫
I2
fij(c(s, t)) det

(
∂cij
∂(s, t)

)
If ω = dx1∧dx2, then

∫
c ω measures the net area of the projection of c to the x1x2-plane.
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4/17/2019 - Exterior derivatives and pullbacks

Exterior derivatives

The next ingredient we need for Stokes’ theorem is the exterior derivative. Recall that a differential
k-form ω ∈ Ωk(Rn) is a smooth map

ω : Rn → Λk(Rn)

We can write ω as the linear combination of elementary k-forms for

ω =
∑
J

fJ dxJ

where J = (j1, . . . , jk) ranges over strictly increases sequences of indices 1 ≤ j1 < . . . < jk ≤ n. We
can also understand a differential form ω as a map from k-cubes to R for

ω : {k-cubes c : Ik → Rn} → R(
c : Ik → Rn

)
7→
∫
c
ω

The integral is given by ∫
c
ω =

∫
t∈Ik

ω(c(t))(Dc(t))

=
∑
J

∫
Ik
fJ(c(t)) dxJ(D1c(t), . . . , Dkc(t))

With this perspective, the differential form ω is a functional. Hence we have two ways of viewing
a differential form ω ∈ Ωk(U) as a function of sorts. The first is that ω is a smooth function from
U to Λk(Rn). The second is that ω is a map from the set of k-cubes to R.

Examples

• The integral
∫
c ω recovers our previous notion of the integral

∫
Q f of a function f over a

closed rectangle Q. Given f : Q→ R where Q ⊂ Rn is a closed rectangle, let the n-cube
c : Q→ Rn be the inclusion map. Also let ω = f dx1 ∧ . . . ∧ dxn. Then∫

c
ω =

∫
t∈Q

ω(t)(I)

=

∫
t∈Q

f(t) dx1 ∧ . . . ∧ dxn(e1, . . . , en)

=

∫
Q
f

since the derivative of the inclusion map c is always the identity matrix I.

• Let ω ∈ Ω2(R3) be given by

ω = f12 dx12 + f13 dx13 + f23 dx23
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Then we have a vector field F : R3 → R3 defined by F = (f23,−f13, f12). Observe that

ω(p)(u, v) = F (p) · (u× v)

where · is the dot product and × is the cross product. Then for a 2-cube c : I2 → R3,
we have ∫

c
ω =

∫
I2
ω(c(t))(D1c(t), D2c(t))

=

∫
I2
F (c(t)) · (D1c(t)×D2c(t))

This is sometimes called the flux integral, as the cross product D1c(t) ×D2c(t) yields a
vector normal to the surface that is the image of c. Then the integral is a measure of the
extent to which the vector field is ‘flowing through’ the surface defined by c.

Today we will discuss differentiating differential k-forms.

Definition. Let U ⊂ Rn be an open subset. The exterior derivative is a map

d : Ωk(U)→ Ωk+1(U)

If ω ∈ Ωk(U), write

ω =
∑
J

fJ dxJ

Then d is given by

dω =
∑
J

n∑
i=1

DifJ dxi ∧ dxJ

When k = 0, note that we have the following familiar properties.

1. d acts on f ∈ Ω0(U) by
df = D1f dx1 + . . .+Dnf dxn

2. d is linear, namely

d(f + g) =

n∑
i=1

Di(f + g) dxi = df + dg

3. d satisfies the product rule, namely

d(fg) = (df)g + f(dg)

Examples

• We have
d(yz dx) = z dy ∧ dx+ y dz ∧ dx

• We have
d(x dx) = dx ∧ dx = 0
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• We have
d(x dx ∧ dz + z2 dx ∧ dy) = 2z dz ∧ dx ∧ dy

• We have
d(f(x, y, z) dx ∧ dy ∧ dz) = 0

Proposition. d satisfies the following properties.14

1. d : Ωk(U)→ Ωk+1(U) is linear.

2. d satisfies the product rule, namely

d(ω ∧ η) = dω ∧ η + (−1)aω ∧ dη

where ω is a differential a-form.

3. The composition d ◦ d : Ωk(U)→ Ωk+2(U) is identically zero.

Proof. The first property is easy and left for you to check. To see the second, write

ω =
∑
J

fJ dxJ

η =
∑
J

gJ dxJ

Then

ω ∧ η =

(∑
J

fJ dxJ

)
∧
(∑

J

gJ dxJ

)
=
∑
J,L

fJgL dxJ ∧ dxL

Now take the exterior derivative for

d(ω ∧ η) =
∑
J,L

n∑
i=1

Di(fJgL) dxi ∧ dxJ ∧ dxL

=
∑
I,J

n∑
i=1

[(DifJ)gL + fJ(DigL)] dxi ∧ dxJ ∧ dxL

=

(∑
J

n∑
i=1

DifJ dxi ∧ dxJ
)
∧
(∑

L

gL dxL

)

+ (−1)a
(∑

J

fJ dxJ

)
∧
(∑

L

n∑
i=1

DigL dxi ∧ dxL
)

The negative signs are introduced since moving dxi ∧ dxJ ∧ dxL to dxJ ∧ dxi ∧ dxL takes precisely
a swaps, since we must move the dxi term passed a terms in dxJ .

14d is in fact uniquely characterized by these properties, along with our definition of df for a smooth function
f ∈ Ω0(U).
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To show the third property, observe that we have

d(dω) = d

(∑
J

n∑
i=1

DifJ dxi ∧ dxJ
)

=
∑
J

n∑
i,j=1

DjDifJ dxj ∧ dxi ∧ dxJ

=
∑
J

∑
1≤i<j≤n

(
DjDifJ −DiDjfJ

)
dxj ∧ dxi ∧ dxJ

= 0

The negative sign is introduced by swapping dxi ∧ dxj to dxj ∧ dxi, and the second order partials
are equal by Clauraut’s theorem (on the midterm!).

Definition. A differential form ω ∈ Ωk(U) is closed if dω = 0.

Definition. A differential form ω ∈ Ωk(U) is exact if ω = dη for some η ∈ Ωk−1(U).

Examples

• Consider the case of differential 1-forms on R2. Let ω ∈ Ω1(R2), and write

ω = f dx+ g dy

Then we have

dω = D2f dy ∧ dx+D1g dx ∧ dy = (D1g −D2f) dx ∧ dy

Hence ω is closed precisely when f and g satisfy the relationship D1g = D2f .

Suppose ω is exact. Then there exists some smooth h : R2 → R such that

f dx+ g dy = dh = D1h dx+D2h dy

ω is exact precisely when f = D1h and g = D2h for some smooth h : R2 → R.

One way to understand Stokes’ theorem is that there is another way to compute the integral of an
exact form, namely ∫

c
ω =

∫
c
dη =

∫
∂c
η

We saw this for 1-forms last time. If ω = dh is a 1-form and c : I → Rn is a 1-cube, then∫
c
ω = h(c(1))− h(c(0))

Note that if ω ∈ Ωk(U) is exact, then it is also closed, since

dω = d(dη) = 0

113



On the homework, you will show that every closed 1-form ω ∈ Ω1(R2) is exact. This is a special
case of Poincaré’s lemma, which says that in general closed forms on Rn are exact. This is a fact
special to Rn, however.

Examples

• The 1-form ω ∈ Ω1(R2 \ {0}) given by

ω(x, y) =
−y

x2 + y2
dx+

x

x2 + y2
dy

is closed, but not exact.

• The 1-form dx ∈ Ω1(R2) is exact. It is the exterior derivative of the function f(x, y) = x.

Differential forms detect nontrivial topology of subsets of Rn. For example, the subset R2 \ {0} is
not the ‘same’ topologically as R2 (meaning they are not homeomorphic or diffeomorphic). You can
see this because a loop that travels around the hole in R2 \ {0} cannot be deformed continuously
to R2. These ideas are made precise with de Rham cohomology.15

Pullbacks

Definition. Given open subsets V ⊂ Rm and U ⊂ Rn, a differential form ω ∈ Ωk(U), and a smooth
map g : V → U . The pullback of ω along g is the k-form denoted g∗ω ∈ Ωk(V ). It is defined

(g∗ω)(q)(u1, . . . , uk) = ω(g(q))
(
Dg(q)(u1), . . . , Dg(q)(uk)

)
The pullback is a way to take forms on the codomain and transfer them to forms on the domain.
Note that when k = 0, there are no vectors involved, so the pullback is just given by precomposition.
Namely if f ∈ Ω0(U) is a 0-form then g∗f = f ◦ g.

Proposition. The pullback satisfies the following properties.

1. g∗ : Ωk(U)→ Ωk(V ) is linear

2. If n = m, then
g∗(dx1 ∧ . . . ∧ dxn) = detDg dx1 ∧ . . . ∧ dxn

3. g respects wedge products, namely

g∗(ω ∧ η) = g∗ω ∧ g∗η

4. g commutes with the exterior derivative, namely

g∗(dω) = d(g∗ω)

15Come speak to me or take Math 132 if you’re interested!
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Examples

• Let ω ∈ Ω2(R2) be given by
ω = dx ∧ dy

Define the function

f : (0,∞)× (0, 2π)→ R2

(r, θ) 7→ (r cos θ, r sin θ)

Using the above properties, we have

f∗ω = f∗(dx ∧ dy)

= f∗(dx) ∧ f∗(dy)

= d(f∗x) ∧ d(f∗y)

= d(x ◦ f) ∧ d(y ◦ f)

= d(r cos θ) ∧ d(r sin θ)

=
(

cos θ dr + r(− sin θ) dθ
)
∧
(

sin θ dr + r cos θ dθ
)

= r dr ∧ dθ

This explains ∫ ∫
f(x, y) dx ∧ dy =

∫ ∫
f(r cos θ, r sin θ) r dr dθ

When we perform a change of coordinates, we are actually taking a pullback, and the
pullback of dx ∧ dy is r dr ∧ dθ.
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4/22/2019 - Chains and boundaries

Integration and pullbacks

We defined the pullback last class. Usually, this construction is used in the following setting: Let
c : Ik → Rn be a k-cube and ω ∈ Ωk(Rn). The pullback c∗ω ∈ Ωk(Ik) is given by

(c∗ω)(t)(u1, . . . , uk) = ω(c(t))
(
Dc(t)(u1), . . . , Dc(t)(uk)

)
Note that c∗ω is a map

c∗ω : Ik → Λk(Rk) = span(dt1 ∧ . . . ∧ dtk) ' R

Hence we can write c∗ω = f dt1 ∧ . . .∧ dtk for some smooth f : Ik → R. To determine this function
f , we can evaluate c∗ω = f dt1 ∧ . . . ∧ dtk on the standard basis e1, . . . , ek for

f(t) = (f dt1 ∧ . . . ∧ dtk)(t)(e1 ∧ . . . ∧ ek)
= (c∗ω)(t)(e1, . . . , ek)

= ω(c(t))
(
Dc(t)(e1), . . . , Dc(t)(ek)

)
= ω(c(t))(Dc(t))

since Dc(t)(ei) is just the ith column of the matrix Dc(t). This should look familiar, as we defined∫
c
ω =

∫
t∈Ik

ω(c(t))(Dc(t))

If we write c∗ω = f dt1 ∧ . . . dtk, then ∫
c
ω =

∫
Ik
f

Examples

• This fact is useful for computation. Let’s revisit a previous calculation from this new
perspective. Let ω be the winding number form

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy

and let c(t) = (cos t, sin t) be the curve that winds around the origin once, defined on
[0, 2π]. By the properties of the pullback from last time, we have

c∗ω =
− sin t

(cos t)2 + (sin t)2
d(cos t)︸ ︷︷ ︸
(− sin t) dt

+
cos t

(cos t)2 + (sin t)2
d(sin t)︸ ︷︷ ︸
cos t dt

= dt

Hence ∫
c
ω =

∫ 2π

0
1 dt = 2π

From a geometric perspective, the vector field associated with ω is always ‘parallel’ to
the curve and therefore yields dot product 1.
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• Let

c : [0, 1]× [0, 2π]→ R2

(r, θ) 7→ (r cos θ, r sin θ)

We computed the pullback of dx ∧ dy last time to be r dr ∧ dθ, so we have∫
c
dx ∧ dx =

∫ 1

r=0

∫ 2π

θ=0
r dr dθ

= π

which is the area of the unit circle parameterized by the 2-cube c.

Chains and boundaries

Definition. A (singular) k-cube in Rn is a smooth map c : Ik → Rn.

Examples

• A point is a 0-cube.

• A curve, a circle, and a knot are all 1-cubes.

• A disc, a square, a sphere, and a torus are all 2-cubes.

• The standard k-cube in Rn is given by the inclusion

i : Ik = [0, 1]k ↪→ Rn

• There is no condition that these maps be injective, so the constant map c(t) = p is a
k-cube.

• The map c : I2 → R3 that parameterizes the sphere is a k-cube. It is defined

c(θ, φ) =
(

sin(πφ) cos(2πθ), sin(πφ) sin(2πθ), cos(πφ)
)

using spherical coordinates.

• The map

c : [0, 1]→ R2

t 7→ ((2t− 1)3, (2t− 1)2)
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is a 1-cube called the cuspidal cubic.

c is smooth, as its coordinates are given by polynomials. This illustrates that the image
of a k-cube need not be a (smooth) manifold. This explains the term singular.

• c(t) = (t, t) and c(t2, t2) defined on [0, 1] are two distinct 1-cubes in R2, even though they
have the same image.

Two k-cubes are considered equal when they are equal as maps, not just if they have the same image.

Given a k-cube c : Ik → Rn, we can restrict to a face of the cube Ik to yield a (k − 1)-cube.
The boundary map records these restrictions.

Definition. Let c : Ik → Rn be a a k-cube in Rn. For i = 1, . . . , k, define

c(i,0)(t1, . . . , tk−1) = (t1, . . . , ti−1, 0, ti, . . . , tk−1)

c(i,1)(t1, . . . , tk−1) = c(t1, . . . , ti−1, 1, ti, . . . , tk−1)

These are (k − 1)-cubes.

To obtain c(i,α), insert α in the ith position of c. A given k-cube has 2k possible faces to which we
can restrict. These are combined in an object called the boundary of c.

Definition. Let c : Ik → Rn be a k-cube. The boundary of c is given by

∂c =

k∑
i=1

∑
α=0,1

(−1)i+αc(i,α)

We regard ∂c as a formal linear combination of (k−1)-cubes. This just means that we aren’t adding
these maps c(i,α) pointwise (we are not viewing ∂c as a map). We can make this more precise with
the following definition.

Definition. Let Ck(Rn) be the infinite-dimensional vector space with a basis given by all of the
k-cubes on Rn. A vector in Ck(Rn) is a formal, finite sum of k-cubes with coefficients in R. A
k-chain is an element of Ck(Rn).
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With this language, the boundary

∂ : Ck(Rn)→ Ck−1(Rn)

is a linear map from the k-chains to the (k − 1)-chains. To justify this, note that we have defined
∂ on the basis for Ck(Rn), so we can just extend ∂ linearly to the entire vector space Ck(Rn).

Examples

• For our parameterization of the sphere from above, we have

c(1,0)(t) = (sin(πt), 0, cos(πt))

c(1,1)(t) = (sin(πt), 0, cos(πt)

c(2,0)(t) = (0, 0, 1)

c(2,1)(t) = (0, 0,−1)

Then
∂c = [(0, 0, 1)]− [(0, 0,−1)]

where [(0, 0, a)] is the constant cube.

The signs on the formal linear combination in the definition of the boundary are designed to ensure
the following result.

Proposition. For any k-cube c, we have

∂(∂c)) = 0

Proof. The proof follows directly from the definitions. The main idea is that

∂(∂c)) = ∂

( k∑
i=1

∑
α=0,1

(−1)i+αc(i,α)

)

=
k∑
i=1

∑
α=0,1

(−1)i+α
k−1∑
j=1

∑
β=0,1

(−1)j+β(c(i,α))(j,β)

by the linearity of ∂. The key observation is that each of these terms appears twice, with opposite
signs. The (k − 2)-cubes in the sum have form

(c(i,α))(j,β) : (t1, . . . , tk−2) 7→ c(t1, . . . , ti−1, α, ti, . . . , tj−1, β, tj , . . . , tk−2)

This map appears twice is the resulting sum, as (c(i,α))(j,β) and (c(j+1,β))(i,α). Then the signs of

these two terms will be (−1)i+j+α+β and (−1)i+j+α+β+1, respectively. Intuitively, this happens
because there are two possible orders in which we can restrict to an edge of Ik (as there are two
faces adjacent to every edge of a cube).

Stokes’ theorem

We can now finally make sense of Stokes’ theorem.
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Theorem (Stokes’ theorem). Let η ∈ Ωk(Rn) and c : Ik → Rn be a k-cube. If η = dω for some
ω ∈ Ωk−1(Rn), then ∫

c
η =

∫
∂c
ω

Note that ∂c is some linear combination of k-cubes:

∂c =
∑̀
i=1

aidi

Then we are just extending the integral linearly and defining∫
∂c
ω =

∫
∑`
i=1 aidi

ω =
∑̀
i=1

∫
di

ω

Examples

• Consider the case when k = n = 1. Let η ∈ Ω1(R), and let c : I → R be the standard
1-cube. You’ll show on the homework that there exists some smooth function g ∈ Ω0(R)
such that η = dg. Then Stokes’ theorem says∫

c
η =

∫
∂c
g

We know η = f dx for some f , and dg = g′ dx, so f = g′. Then we have∫
c
η =

∫ 1

0
f

=

∫ 1

0
g′

=

∫
∂c
g

= g(1)− g(0)

which is just the fundamental theorem of calculus.

• Let η = dx dy be the area form on R2, and let c : I2 → R2 be the standard 2-cube. Note
that η = dω for ω = x dy. Stokes’ theorem yields∫

c
dx dy =

∫
∂c
x dy

The left-hand side is ∫
c
dx dy =

∫
I2

1 = 1
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The right-hand side is∫
∂c
ω =

∫
c(1,1)

ω −
∫
c(1,0)

ω +

∫
c(2,0)

ω −
∫
c(2,1)

ω︸ ︷︷ ︸
0

Each of these terms is a line integral over the vector field given by F (x, y) = (0, x). The
last three terms vanish. The middle two trace out paths perpendicular to the vector field
F , and F is zero the along the first path.

More generally, this demonstrates how we can use Stokes’ theorem to compute areas
in R2 as line integrals along the boundaries. This is Green’s theorem.

• Let

η1 =
x

x2 + y2
dx+

y

x2 + y2
dy

η2 =
−y

x2 + y2
dx+

x

x2 + y2
dy

be 1-forms defined on R2 \ {0}. You’ll show on the homework that there exists a smooth
function g ∈ Ω0(R2 \ {0}) such that η1 = dg. Then Stokes’ implies∫

c
η1 = g(c(1))− g(c(0))

However, there is not such a function g for η2, so Stokes’ theorem says nothing about
this case.
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4/24/2019 - Stokes’ theorem proof

Chains and boundaries

Recall that we defined the vector space of k-chains to be

Ck(Rn) =

{ m∑
i=1

aici : ai ∈ R, ci : Ik → Rn
}

By definition, Ck(Rn) is spanned linearly independently by k-cubes.

Examples

• Consider the 1-cubes defined by

ck(t) =
(
k cos(2πt), k sin(2πt)

)
for k = 1, 2, 3. These are concentric circles with radius k. The linear combination

7c1 − 2c2 +
√

3c3

is a 1-chain on R2. Note that c3(t)− c2(t) = c1(t) for all t ∈ [0, 1]. However, c3 − c2 6= c1

in the vector space C1(R2), because this would result in a nontrivial linear relation
c1 + c2 − c3 = 0. A sum of k cubes is not a function itself, but rather just a formal
expression.

• You will show on homework that there exists a 2-cube c : I2 → R2 such that ∂c = c2−c1.
The intuition is that the boundary map encodes information about deformations. If we
imagine the images of c1 and c2 as being stretchy, we can deform c1 to c2 by expanding
the circle. There exists a family of 1-cubes that interpolate between c1 and c2. This
family is given by the 2-cube c.

• You will show on the homework that there is no 2-cube c : I2 → R2 \ {(1.5, 0)} such that
∂c = c2− c1. Again, the intuition is that c1 cannot be deformed into c2 in R2 \ {(1.5, 0)}.

Lemma. Fix a 1-cube c : I → R2 with c(0) = c(1). Then there exists a 2-cube d : I2 → R3 such
that ∂d = c− [0], where [0](t) = 0. Intuitively, every loop in R3 can be deformed to a point.

Proof. Define the 2-cube d : I2 → R3 by d(s, t) = sc(t). Then

d(0, t) = 0

d(1, t) = c(t)

d(s, 0) = c(0)

d(s, 1) = c(1)

Since c(0) = c(1) we have ∂d = c − [0]. Intuitively, we are interpolating between a point and our
loop c.
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The lemma does not hold for any open set of R3, however. For example, if we replace R3 with
R3 \ {z-axis}, then the loop that wraps once around the z-axis cannot be deformed into a point.
In short, we can use cubes and boundaries to probe the topology of a space.16

Stokes’ theorem

So far, for an open set U ⊂ Rn we have defined

• a differential form
ω =

∑
J

fJ dxJ ∈ Ωk(U)

• the exterior derivative

dω =
∑
J

k∑
i=1

DifJ dxi ∧ dxJ ∈ Ωk+1(U)

• a k-cube c : Ik → U , and a k-chain
∑
aici

• the boundary

∂c =
k∑
i=1

∑
α=0,1

(−1)i+αc(i,α)

• the integral over a cube ∫
c
ω =

∫
t∈Ik

ω(c(t))(Dc(t)) dt

and over a chain ∫
∑
aici

ω =
∑

ai

∫
ci

ω

Theorem (Stokes’ theorem). Let ω ∈ Ωk−1(U) and z ∈ Ck(U). Then∫
z
dω =

∫
∂z
ω

Proof. To prove the theorem, it suffices to consider the case when ω = fJ dxJ and z = c : Ik → U .
Since the derivative, the boundary, and the integral are all linear we can reduce the general case to
this form.17

16This is the idea behind homology, which measures the extent to which there are chains with no boundary that
do not arise as the boundary of some other chain.

17Since we have ∫
∑
aici

d

(∑
J

fJ dxJ

)
=
∑

ai
∑
J

∫
ci

d(fJ dxJ)∫
∂
(∑

aici

)∑
J

fJ dxJ =
∑

ai
∑
J

∫
∂ci

fJ dxJ
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For concreteness, we will consider the case when U = R3 and k = 2. The general case just
involves more notation, but the idea is the same. Further suppose ω = f dx1 ∧ dx2 and c : I3 → R2

is the standard 3-cube.

We’ll compute the two sides of the above equation. Note that

dω = D3f dx1 ∧ dx2 ∧ dx3

c∗(dω) = dω

since the pullback along the standard cube is the same form. Then∫
c
dω =

∫
I3
D3ff

=

∫ 1

x1=0

∫ 1

x2=0

∫ 1

x3=0
D3f(x1, x2, x3) dx3 dx2 dx1

=

∫ 1

x1=0

∫ 1

x2=0
f(x1, x2, 1)− f(x1, x2, 0) dx2 dx1

To evaluate the second half of the equation, note we have

∂c =
3∑
i=1

∑
α=0,1

(−1)i+αc(i,α)

where

c(1,α)(x1, x2) = (α, x1, x2)

c(2,α)(x1, x2) = (x1, α, x2)

c(3,α)(x1, x2) = (x1, x2, α)

Then ∫
∂c

=

3∑
i=1

∑
α=0,1

(−1)i+α
∫
c(i,α)

ω

So we want to evaluate these integrals. Since ω = f dx1 ∧ dx2, we have

c∗(1,α)ω = f ◦ c(1,α) dα ∧ dx1 = 0∫
c(1,α)

ω = 0

as dα = 0, since α is constant. We similarly have∫
c(2,α)

ω = 0

However, on the other hand
c∗(3,α)ω = f ◦ c(3,α) dx1 ∧ dx2

So therefore ∫
∂c
ω =

∫
c(3,1)

ω −
∫
c(3,0)

ω

=

∫
I2
f(x1, x2, 1)−

∫
I2
f(x1, x2, 0)

which proves that the two sides of the equation are equal.
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The proof is not particularly challenging, but this is because we were careful to define the different
constructions properly. It also has many applications.

Vector calculus on R3

On R3, we have the correspondence

0-forms
f

functions f : R3 → R

1-forms
f1 dx1 + f2 dx2 + f3 dx3

vector fields F = (f1, f2, f3) : R3 → R3

2-forms
f1 dx2 ∧ dx3 + f2 dx3 ∧ dx1 + f3 dx1 ∧ dx2

vector fields F = (f1, f2, f3) : R3 → R3

3-forms
f dx1 ∧ dx2 ∧ dx3

functions f : R3 → R

d ∇

d curl (infinitesimal rotation)

d div (infinitesimal expansion)

There is a version of Stokes’ theorem for each of these cases: the fundamental theorem of line
integrals, Green’s theorem, and the divergence theorem. Stokes’ theorem is an abstraction of
all of these cases to one theorem.

Applications of Stokes’ theorem

We will first examine a fixed point theorem. Let

D2 = {x ∈ R2 : |x| ≤ 1}

denote the closed unit disk and
S1 = {x ∈ R2 : |x| = 1}

be the circle.

Theorem (Brouwer’s fixed point theorem). Any continuous map f : D2 → D2 has a fixed point,
namely there exists x ∈ D2 such that f(x) = x.

The proof follows from the following theorem.

Theorem. There is no continuous function g : D2 → S1 such that g(x) = x for all x ∈ S1.

We’ll now prove the fixed point theorem using this result.
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Proof. Suppose for a contradiction that there exists a map f : D2 → D2 that doesn’t fix any point.
Define the function g : D2 → S1 by examining the ray that begins at f(x) and travels through x.

(g is labeled F in the above diagram.) g is continuous, since f is continuous. Since f has no
fixed point, this function g is always well-defined. This is a contradiction, so f must have a fixed
point.

We’ll now prove the second theorem in the special case in which g is C1.

Proof. Suppose for contradiction there exists a C1 function g : D2 → S1 such that g(x) = x for all
x ∈ S1. Consider

i : [0, 2π]→ R2

θ 7→ (cos θ, sin θ)

c : [0, 1]× [0, 2π]→ R2

(r, θ) 7→ (r cos θ, r sin θ)

Note that ∂c = [0] − i, where [0] is the constant 1-cube that maps everything to 0. Consider the
form ω = −y dx+ x dy. On the one hand, ∫

i
ω = 2π

which is the length of S1. On the other hand, since g restricted to S1 is the identity we know
g∗ω = ω on S1. Then

−
∫
i
ω =

∫
[0]
g∗ω −

∫
i
g∗ω =

∫
∂c
g∗ω

=

∫
c
d(g∗ω) =

∫
c
g∗(dω)

We know dω = 2 dx ∧ dy, so
g∗(dω) = 2 det(Dg) dx ∧ dy
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But det(Dg) = 0 always.18 Then

−
∫
i
ω =

∫
c
g∗(dω) =

∫
I2

2 det(Dg) = 0

which is a contradiction.

18This is because Dg(a) : R2 → R2 is a linear map to a 1-dimensional subspace given by the line tangent to the
circle at g(a). Then it cannot be surjective. Email me for more details.
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4/29/2019 - Stokes applications: Greens theorem, FTA

Winding numbers

Definition. A closed curve is a 1-cube c : I → Rn such that c(0) = c(1).

Denote
A = R2 \ {0}

B = R2 \ {nonnegative x-axis}

ω =
1

x2 + y2

(
− y dx+ x dy

)
∈ Ω1(A)

We know that

• ω is closed, namely dω = 0.

• ω is exact on B, with ω = dθ where θ(x, y) is the angle defined by

(x, y) =
(
r cos θ(x, y), r sin(θ(x, y))

)
• ω is not exact on A, so there does not exista a function f : A→ R such that df = ω.

aAs the integral ‘around the circle’ is nonzero, even though the endpoints are equal.

Definition. For a closed curve c : I → A, the winding number of c is

wind(c) =
1

2π

∫
c
ω

If we view ω as dθ, the winding number measures the net angular change of a closed curve around
the origin.
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Examples

• For the closed curve cr,n(t) = (r cos(2πnt), r sin(2πnt)), we have wind(cr,n) = n. This is
because cr,n is just the curve that winds around the origin n times.

Lemma. For a closed curve c, wind(c) is an integer.

Proof. The proof rests on two key observations:

1. If c1, c2 are two closed curves and there exists a 2-cube b : I2 → A such that ∂b = c2 − c1,
then wind(c1) = wind(c2).

Recall that the boundary map encodes information about deformations, so the condition
∂b = c2− c1 means that it is possible to deform c1 into c2 without passing through the origin.
This follows from Stokes’s theorem, as we have∫

c2

ω −
∫
c1

ω =

∫
c2−c1

ω

=

∫
∂b
ω

=

∫
b
dω

= 0

since ω is closed.

2. For any closed curve c, there exists n ∈ Z and a 2-cube b such that ∂b = c − c1,n. In other
words, every closed curve in A is deformation equivalent to some standard curve that wraps
around the origin n times. You’ll prove this on the homework.

By these two observations, given any c we can find a 2-cube b and integer n such that ∂b = c− c1,n.
This implies wind(c) = wind(c1,n) = n, which is an integer.

Remark. If c is a closed form in B, then wind(c) = 0.

This is reasonable, since if we remove the nonnegative x-axis it is impossible for any curve to wind
around the origin completely. We can prove this again with Stokes’s theorem, as∫

c
ω =

∫
c
dθ

=

∫
∂c
θ

=

∫
c(1)−c(0)

θ

= θ(c(1))− θ(c(0))

since ω = dθ is exact on B. We previously called this version of Stokes’s theorem the fundamental
theorem of line integrals.
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We see that the fact that ω is closed but not exact is crucial to our definition of the winding
number. We can use winding numbers to prove some important results.

The fundamental theorem of algebra

We have the following important theorem.

Theorem. Let p = zn + an−1z
n−1 + . . . + a0 ∈ Poly(C) be a nonconstant polynomial with

complex coefficients. Then p has a root, namely there exists z ∈ C such that p(z) = 0.

We used this last semester to prove the existence of eigenvectors for linear operators T : Cn →
Cn. In this proof

Proof. We’ll present a sketch of the proof today. Suppose for contradiction that p has no roots,
namely that p(z) 6= 0 for all z ∈ C.

On the one hand, if we choose r > 0 to be very small, then p ◦ cr,1 is a closed curve with
image near p(0). This is because the image of the curve cr,1 is very close to 0, so the continu-
itya of p implies that the loop cr,1 will be sent to a loop closely wrapping around p(0). Then
wind(p ◦ cr,1) = 0, since this loop doesn’t wind around the origin.

On the other hand, if we choose R > 1 to be very large, the map p behaves like the high-
est order term zn. More precisely, if |z| > R, then p(z) ≈ zn. Then p ◦ cR,1 ≈ cRn,n, as the
imageb of cR,1 under zn is cRn,n. p ◦ cR,1 won’t be exactly a circle, but it will wrap around the
origin n times.c Then wind(p ◦ cR,1) = n.

However, if d is a 2-cube such that ∂d = cR,1− cr,1, then ∂(p ◦ d) = p ◦ cR,1− p ◦ cr,1 simply by
definition of the boundary. Note that we need p ◦ d to be a 2-cube in A, so we are using the
assumption that p has no roots. By the lemma

n = wind(p ◦ cR,1) = wind(p ◦ cr,1) = 0

which is a contradiction. So p has a root.

aWe know p(0) is some nonzero point, so take ε to be small enough so that the ball of radius ε around p(0)
doesn’t contain 0. Then if we take r to be smaller than the associated δ, we can use the fact that the image of
p ◦ cr,1 is in B to conclude that this closed curve has winding number 0.

bWe are viewing C as the plane R2 under the identification of a+ bi with the point (a, b). We see that

c1,1(t)n = (cos(2πt), sin(2πt))n =
(

cos(2πt) + i sin(2πt)
)n

= (e2πit)n

= e2πint = (cos(2πnt), sin(2πnt)) = c1,n(t)

cThis is the part of the argument that requires some more work.
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Green’s theorem and areas

Previously, given a set B ⊂ Q ⊂ Rn, where Q is a closed rectangle, we defined

vol(B) =

∫
Q
χB

We can also use differential forms to describe volumes in Rn.

Proposition. Fix B ⊂ Rn, and suppose c : Q → Rn is an n-cube such that c(Q) = B and the
restriction c|int(Q) is a diffeomorphism onto its image. Then

vol(B) = ±
∫
c
dx1 ∧ . . . ∧ dxn

Note that the proposition says volume can be computed using any parameterization. This follows
from the change of variables theorem.

Theorem (Change of variables theorem). Fix an open set U ⊂ Rn, and suppose c : Q→ U is an n-
cube such that the restriction c|int(Q) is a diffeomorphism onto its image. Then for any f : U → R,
we have ∫

c(Q)
f =

∫
Q

(f ◦ c) · | detDc|

The proposition follows quickly from the theorem:

Proof. We’ll apply the theorem to the constant function f = 1. The left hand side in the above
theorem in this case is ∫

c(Q)
1 =

∫
χc(Q) = vol(c(Q)) = vol(B)

The right hand side in the above theorem in this case is∫
Q
|detDc| =

∫
c
dx1 ∧ . . . ∧ dxn

because19

c∗(dx1 ∧ . . . ∧ dxn) = det(Dc) dx1 ∧ . . . ∧ dxn

Examples

• We can now revisit volumes of revolution. Fix functions f, g : [a, b] → R such that
0 ≤ f ≤ g. Then we can consider the set

S =
{

(x, z) : f(x) ≤ z ≤ g(x) for x ∈ [a, b]
}

Let B be the three-dimension figure obtained by revolving S about the z-axis. We can

19Note that the real function | detDc| : Q→ R is given by the composition

Q Mn(R) RDc det
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parameterize B as

c : [a, b]× [0, 2π]× [0, 1]→ R3

(r, θ, t) 7→
(
r cos θ, r sin θ, f(r) + t(g(r)− f(r))

)
Compute

Dc =

 cos θ −r sin t 0
sin θ r cos θ 0

g(r)− f(r)


detDc = r(g(r)− f(r))

where we are leaving the entries of Dc which are irrelevant when computing the deter-
minant blank for convenience. Then

vol(B) =

∫ b

r=a

∫ 2π

θ=0

∫ 1

t=0
r(g(r)− f(r))

=

∫ b

r=a
2πr(g(r)− f(r))

as expected.

We have the following classical result:

Theorem. Let c be a 2-cube, and let f, g : R2 → R be functions. Then∫
∂c
f dx+ g dy =

∫
c

(
D1g −D2f

)
dx ∧ dy

It should be clear that this is simply an application of Stokes’s theorem. We’ll focus on the case
when (

D1g −D2f
)
dx ∧ dy = dx ∧ dy

In this case we are computing the area of some 2-cube c in the plane, as remarked above. Then
Green’s theorem says that it suffices to take the line integral along the boundary of c of some
appropriate form f dx+ g dy. It remains to find f and g that satisfy the above conditions on their
partial derivatives. One useful such pair of functions is f(x, y) = −y and g(x, y) = x.

Examples

• Consider the area bounded by the curves c1(θ) = (θ cos θ, θ sin θ) and c2(t) = (1 − t, θ).
We have

vol(B) =

∫
c1+c2

1

2

(
− y dx+ x dy

)
Compute

c∗1ω =
1

2
θ2 dθ
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Then we have

vol(B) =

∫ 2π

0

1

2
θ2 =

4

3
π3
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5/1/2019 - Stokes applications: FTA, planimeters, coconuts

Green’s theorem and planimeters

Recall we have the following corollary to Stokes’s theorem:

Theorem (Green’s theorem). Let B ⊂ R2 be open such that (C) is a closed curve c. Then

area(B) =

∫
c
x dy

This follows from Stokes’s, since

area(B) =

∫
B
dx ∧ dy

Also note that we can replace xdy with any 1-form η that satisfies dη = dx∧dy. There is a physical
tool that implements Green’s theorem called a planimeter.20

We’ll first consider a different example. Consider a rod moving through the plane. When the
rod is moving in a direction orthogonal to its length, it traces out the most area. When it is mov-
ing parallel to its length, it doesn’t trace out any area. We can use Green’s theorem to compute
the area traced out by such rod moving through the plane.

Fix a point p on the rod, and let c : [0, 1] → R2 be the path traced out by this point. Define
n : [0, 1]→ R2 to be the normal vector to the rod at time t. Infinitesimally, the area swept out by
the rod at time t is given by n(t) · c′(t). Then the total area swept out by the rod is

A =

∫ 1

0
n(t) · c′(t) dt

Lemma. If the endpoints of the rod trace closed curves c1, c2 bound regions B1 and B2, then

A = area(B1)− area(B2)

Proof. This is evident after drawing the paths c1 and c2 as well as the areas they bound.

Corollary. Given a region B bounded by a closed curve c, if we move the rod such that one end
traces out c and the other endpoint traces out a curve that encloses no area, then we can compute
(B).

For example, if one endpoint is fixed and the other endpoint traces out the boundary of B, we have
satisfied the conditions of the corollary.

We can now turn to the planimeter.The idea is that we can fix one end of the rod to the cir-
cle of a given radius and allow the other end to move freely. Then the endpoint fixed to the circle
doesn’t trace out any area, so by measuring how much the wheel turns as the other endpoint traces

20See the Wikipedia article for how this tool works. The basic idea is that by measuring a turning wheel, we can
capture the integral of the form x dy along the boundary of some area in the plane.
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out an area we can compute the area of a given region.

This idea is closely related to Green’s theorem. Define a vector field n : R2 → R2 given by
the unit normal direction to the tracer arm at a given position. Write n = (n1, n2) : R2 → R× R,
and define the 1-form

ω = n1 dx+ n2 dy

The claim is that dω = Kdx∧dy for some constant K. Then given a region B bounded by a closed
curve c, we have

area(B) =

∫
B
dx ∧ dy

=
1

K

∫
c
ω

=

∫ 1

0
n(c(t)) · c′(t) dt

which is the total turning of the wheel. The key fact is that the 1-form ω, which is associated to
the physical setup of our system, actually satisfies dω = K dx ∧ dy.

Fundamental theorem of algebra

We gave a sketch of the proof of the fundamental theorem of algebra, but we’ll return to in more
detail now.

Theorem (Fundamental theorem of algebra). Let p = zn + a1z
n−1 + . . . + an ∈ Poly(C) be a

complex polynomial with degree greater than or equal to 1. Then there exists z ∈ C with p(z) = 0.

We define
A = R2 \ {0}

For a closed curve c : [0, 1]→ A, we have

wind(c) =
1

2π

∫
c

1

x2 + y2
(−y dx+ x dy)

Lemma. We have the following key ideas.

1. If z = r(cos θ + i sin θ), then zn = rn(cos(nθ) + i sin(nθ)).

2. For q ∈ Polyn(C), there exists R > 0 such that if |z| > R, then |q(z)| > 100.

3. For closed cubes c1, c2 in A, if there exists a 2-cube b in A such that ∂b = c1 − c2, then
wind(c1) = wind(c2).

Proof. The first fact follows from basic trigonometric identities (see the footnote from last class).
The second fact says that we can get far enough from the origin so that q is at least some constant
away from the origin, and it was on the first midterm. The third fact was proved last time, and it
follows from Stokes’s theorem and the fact that the winding number form is closed.

We can now prove the theorem.
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Proof. The idea is to show that, assuming p has no root, wind(p ◦ c) is both n and z. We will
proceed in several steps.

1. There exists r > 0 and a 2-cube b : I2 → A such that ∂b = crn,n − p ◦ cr,1, where
cr,n(t) = (r cos(2πnt), r sin(2πnt)). This implies wind(p ◦ cr,1) = n.

To show this, consider the straight-line interpolation

b : I2 → A

b(s, t) 7→ scrn,n(t) + (1− s)(p ◦ cr,1)(t)

We have the boundary terms

b(0, t) = (p ◦ cr,1)(t)

b(1, t) = crn,n(t)

b(s, 0) = s(rn, 0) + (1− s)p(r, 0)

b(s, 1) = s(rn, 0) + (1− s)p(r, 0)

So
∂b = p ◦ cr,1 − crn,n

However, there is a problem. b should be a 2-cube in A, and right now we don’t know that
the image of b is contained in A. If the two points p ◦ cr,1(t) and crn,n(t) are antipodal, then
the interpolation will pass through the origin.

To fix this, we should take r to be large. Write zt = cr,1(t), which is the loop of radius
r that wraps around once. Then znt = crn,n(t). Then we can write

b(s, t) = sznt + (1− s)p(zt)
= sznt + (1− s)(znt + a1z

n−1
t + . . .+ an)

= znt + (1− s)(a1z
n−1
t + . . .+ an)

We want to show that b(s, t) is never zero. But this is easy, since b(s, t) is a polynomial
evaluated at zt. Then by the lemma, we can ensure that this is true by taking |zt| to be large
enough. We have |zt| = r, so choose r large enough so that |b(s, t)| 6= 0.

Then wind(p ◦ cr,1) = wind(crn,n) = n.

2. Suppose that p has no root, and fix r as in the above step. We’ll show wind(p ◦ cr,1) = 0.
Consider the 2-cube p ◦ d, where

d : I2 → R2

(r, t) 7→
(
r cos(2πt), r sin(2πt)

)
is the 2-cube that parameterizes the disk. Note that p ◦ d is actually a 2-cube in A because
we are assuming that p doesn’t have any roots. Then

(p ◦ d)(r, 0) = (p ◦ d)(r, 1)

(p ◦ d)(0, t) = p(0)

(p ◦ d)(1, t) = (p ◦ cr,1)(t)
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So
∂(p ◦ d) = p ◦ cr,1 − p(0)

This implies that wind(p ◦ cr,1) = wind(p(0)) = 0, which is a contradiction.

Thanks for a great year!
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