
Homework 10

Math 25b

Due April 25, 2018

Topics covered: differential forms, chains, Stokes’ theorem

Instructions:

• The homework is divided into one part for each CA. You will submit each part to the corre-
sponding CA’s mailbox on the second floor of the science center.

• If your submission to any one CA takes multiple pages, then staple them together. A stapler
is available in the Cabot library in the science center.

• If you collaborate with other students, please mention this near the corresponding problems.

• Most problems from this assignment come from Spivak’s Calculus or Spivak’s Calculus on
manifolds or Munkres’ Analysis on manifolds. I’ve indicated this next to the problems (e.g.
Spivak, CoM 1-2 means problem 2 of chapter 1 from Calculus on Manifolds).

• Any result that we proved in class can be freely used on the homework. If there’s a result
that we haven’t stated in class that you want to use, then you have to prove it. If there’s a
result that we stated in class, but haven’t proven, it’s best to ask for clarification.
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Your Name Math 25b, Homework 10

1 For Ellen

Notation. In the problems 1-4, we’ll use the following notation.

• A = R2 \{0} and B = A \X+, where X+ is the positive x-axis.

• ω = −y
x2+y2

dx+ x
x2+y2

dy and φ : B → R is the function from HW9#9 such that ω = dφ on B.

• cR,n : [0, 1]→ A is the 1-cube defined by cR,n(t) = (R cos 2πnt,R sin 2πnt).

Problem 1 (Spivak, CoM 4-26). Compute
∫
cR,n

ω = 2πn and use Stokes’ theorem to conclude that

cR,n 6= ∂c for any 2-chain c on A.

Solution.

Problem 2 (Spivak, CoM 4-24). Let c is a singular 1-cube in A with c(0) = c(1). In this problem,
you show that there is an integer n such that c− c1,n = ∂b for some 2-cube b. 1

(a) Show that
∫
c ω = 2πn for some integer n. For simplicity, assume that c(0) = c(1) is on the

x-axis and that there are numbers 0 = t1 < t2 < · · · < tm = 1 so that c(ti) ∈ X+ for each i,
and c(t) ∈ B for t /∈ {t1, . . . , tm}. Hint: use that ω = dφ on B and use FTC.

(b) Take n as in (a). Find a 2-cube b : [0, 1]2 → A so that ∂b = c − c1,n. Hint: one approach

is to define functions r(t) = |c(t)| and θ(t) =
∫ t
0 c

∗ω and to do a “straight-line interpolation”
between r(t) and 1 and between θ(t) and 2πnt.

Solution.

Problem 3 (Spivak, CoM 4-27). Show that the integer n of problem 4-24 is unique. This integer
is called the winding number of c around 0. Hint: use the previous two problems.

Solution.

1Call a 1-cube whose endpoints are equal a loop. In essence this problem says that “up to deformation” (as
encoded by the boundary map), there is a single invariant of a loop in A: the winding number (defined in Problem
3). This is a basic and important result about the topology of A.
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2 For Natalia

Problem 4 (Spivak, CoM 4-30). 2Suppose η is any 1-form on A such that dη = 0. Prove

η = λ ω + dg

for some λ ∈ R and g : R2 \0 → R. Hint: First find λ. Use 4-29 (problem 5) to write c∗R,1(η) =
2πλR dt + d(gR) for some λR and gR with gR(0) = gR(1), and show that all numbers λR have the
same value λ (using HW 9#10). Then use 4-32 (problem 8) to show that η − λω is exact (see the
footnote to that problem). For this last part you’ll probably also want to use 4-24 (problem 2). 3

Solution.

Notation. In the following problems ω is back to denoting an arbitrary form.

Problem 5 (Spivak, CoM 4-29). Let ω = f(x) dx be a 1-form on [0, 1].

(a) Is ω necessarily closed? exact? Explain your answer.

(b) Assume f(0) = f(1). Show that there is a unique number λ such that ω−λdx = dg for some
function g with g(0) = g(1). Hint: integrate ω − λ dx = dg on [0, 1] to find λ.

Solution.

Problem 6 (Spivak, CoM 4-31). Fix an open set U ⊂ Rn and fix a k-form ω ∈ Ωk(U).

(a) Show that if ω 6= 0 then there is a chain c such that
∫
c ω 6= 0.

(b) Use (a), Stokes’ theorem, and ∂2 = 0 to prove d2ω = 0.

Solution.

2Before approaching this problem, you should first solve Problems 5 and 8.
3As a consequence of this problem, you’ve computed the 1-dimensional de Rham cohomology vector space of A,

often denoted H1
dR(A). This vector space is defined as the quotient of the vector space of closed 1-forms by the

subspace of exact 1-forms. The fact that H1
dR(A) 6= 0 is indicative of the fact that A has nontrivial topology. For

k ≥ 0 and U ⊂ Rn open, the De Rham cohomology Hk
dR(U) (defined similarly as closed k-forms modulo exact

k-forms) gives a precise measure of the extent to which the Fundamental Theorem of Calculus fails to extend to
k-forms on U .
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3 For Michele

Problem 7 (Spivak, CoM 2-21 and 3-34). Let g1, g2 : R2 → R be C1. Define f(x, y) : R2 → R by

f(x, y) =

∫ x

0
g1(t, 0) dt+

∫ y

0
g2(x, t)dt.

(a) Show that D2f(x, y) = g2(x, y).

(b) Assume now that D1g2 = D2g1, and show that D1f(x, y) = g1(x, y). Hint: You may use
Munkres Theorem 39.1, which concerns differentiating “under the integral”.

Solution.

Problem 8 (Spivak, CoM 4-32). Let c1, c2 be 1-cubes in R2 with c1(0) = c2(0) and c1(1) = c2(1)
(in other words, viewing c1 and c2 as curves in the plane, they have the same endpoints).

(a) Show that there is a 2-cube c such that ∂c = c1− c2 + c3− c4, where c3 and c4 are degenerate,
meaning c3([0, 1]) and c4([0, 1]) are points.

(b) Conclude that
∫
c1
ω =

∫
c2
ω if ω is exact. Give a counterexample on R2 \0 if ω is merely

closed.

(c) Prove the converse of (b): If ω is a 1-form on a subset of R2 and
∫
c1
ω =

∫
c2
ω for all c1 and

c2 with c1(0) = c2(0) and c1(1) = c2(1), then ω is exact. Hint: use problem 7. 4

Solution.

Problem 9. True or False. Explain your answer.

(a) If α ∈ Λ1(R3), then α ∧ α = 0.

(b) If β ∈ Λ2(R4), then β ∧ β = 0.

(c) There exists ω ∈ Ω1(R3) so that ω ∧ dω = 0.

(d) There exists ω ∈ Ω1(R3) so that ω ∧ dω 6= 0.

Solution.

4Remark: The condition
∫
c1

ω =
∫
c2

ω for every pair c1, c2 with the same endpoints is equivalent to saying that∫
c
ω = 0 for every 1-cube with c(0) = c(1). This alternate formulation is useful for problem 4.
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4 For Charlie

Problem 10. Fix 0 < a < b and define c(r, θ) = (r cos θ, r sin θ) for a ≤ r ≤ b and 0 ≤ θ ≤ 2π.
(What is the image of c?) Put ω = x3 dy and compute both∫

c
dω and

∫
∂c
ω

to verify that they are equal.

Solution.

Problem 11 (Munkres, 31-2,4). Munkres Theorem 31.1 has the following commutative diagram
for an open set A ⊂ Rn.

Scalar fields on A Ω0(A)

Vector fields on A Ω1(A)

//
α0

��

grad

��

d

//
α1

Vector fields on A Ωn−1(A)

Scalar fields on A Ωn(A)

//
βn−1

��

div

��

d

//
βn

5Saying this diagram “commutes” means that d ◦α0 = α1 ◦ grad and d ◦β0 = β1 ◦ div (i.e. following
the arrows around from top-left to bottom-right in either direction give the same function). We
discussed maps like this in the special case n = 3.

(a) Note that in the case n = 2, Theorem 31.1 gives two maps α1, β1 from vector fields to 1-forms.
Compare them.

For R4, there is a way of translating theorems about forms into more familiar language if one allows
oneself to use “matrix fields” as well as vector fields and scalar fields. You’ll explore this here. The
complications may help understand why the language of forms was invented to deal with Rn in
general.

A matrix B ∈ Mn(R) is called skew-symmetric if Bt = −B. Let S(R4) be the set of smooth
functions H : R4 → M4(R) so that H(x) is skew-symmetric for each x ∈ R4. Denoting the (i, j)
entry of H(x) by hij(x), define γ2 : S(R4)→ Ω2(A) by

γ2(H) =
∑
i<j

hij dxi ∧ dxj .

(b) Show that γ2 is a linear isomorphism.

5A scalar field is another term for a function f : A→ R.
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(c) Let α0, α1, β3, β4 be defined as in Theorem 31.1 (see previous problem). Your job in this part
is to define operators “twist” and “spin” as in the diagram

Vector fields on R4 Ω1(R4)

S(R4) Ω2(R4)

Vector fields on R4 Ω3(R4)

//
α1

��

twist

��

d

//
γ2

��

spin

//
β3 ��

d

so that d ◦ α1 = γ2 ◦ twist and d ◦ γ2 = β3 ◦ spin. (These operators are facetious analogues in
R4 of the operator “curl” in R3.)

Solution.

? You’ve made it to the end. Woohoo! ?
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