Homework 6

Math 25a

Due October 18, 2017

Topics covered: Matrices, polynomials, eigenvectors, eigenvalues, invariant subspaces Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from the 3rd edition of Axler's book. I've indicated this next to the problems. For example, Axler 1.B.4 means problem 4 from the exercises to Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure you do the problem as listed in the assignment.

1 For Charlie

Problem 1. A matrix $A \in M_n(F)$ is invertible if there exists a matrix B so that AB = BA = I. Prove that if $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(F)$ and $ad - bc \neq 0$, then A is invertible. Find the inverse of A. (Write $B = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$ and set up a system of equations to solve for the coefficients of B.)

 \Box

Problem 2. Let $F = \mathbb{Z}/2\mathbb{Z}$.

- (a) Write down all the invertible matrices in $M_2(F)$.
- (b) Find an invertible matrix $A \in M_2(F)$ so that $A^2 \neq I$, but $A^3 = I$.

 \Box

- **Problem 3** (Axler 4.5). (a) Suppose $z_1, \ldots, z_{m+1} \in F$ are distinct and $w_1, \ldots, w_{m+1} \in F$ are arbitrary. Prove that there exists a unique polynomial $p \in \operatorname{Poly}_m(F)$ such that $p(z_j) = w_j$. (Define a linear map that helps you study this problem.)
 - (b) For m=2 and $F=\mathbb{Z}/5\mathbb{Z}$, give a polynomial such that p(1)=2, p(2)=-1, and p(-1)=4.

 \square

2 For Ellen

Problem 4 (Axler 4.6). Let $p \in \operatorname{Poly}_m(F)$. Let $D : \operatorname{Poly}(F) \to \operatorname{Poly}(F)$. Show that p has m distinct roots if and only if D(p) and p have no common roots. (You may use the "product rule" D(pq) = D(p)q + pD(q).)

Solution.		

Problem 5 (Axler 4.10). For a complex number z = a + bi, the <u>complex conjugate</u>, denoted \bar{z} , is the complex number $\bar{z} = a - bi$. A complex number is called <u>real</u> if $z = \bar{z}$ (i.e. z has the form z = a + 0i for some $a \in \mathbb{R}$).

- (a) For $p = a_n x^n + \cdots + a_1 x + a_0 \in \text{Poly}(\mathbb{C})$, denote $\bar{p} = \bar{a}_n x^n + \cdots + \bar{a}_1 x + \bar{a}_0$ (the polynomial whose coefficients are the complex conjugates of the coefficients of p). Show that p has real coefficients if and only if $p = \bar{p}$.
- (b) Suppose $p \in \operatorname{Poly}_m(\mathbb{C})$ and there exists $x_0, x_1, \ldots, x_m \in \mathbb{R}$ such that $p(x_i) \in \mathbb{R}$ for each i. Show that p has real coefficients. (Hint: It may help you to use one of the previous problems on this assignment.)

 \Box

Problem 6 (Axler 4.11). Let $V = \operatorname{Poly}(F)$. Suppose $p \in V$ is nonzero. Let $U = \{pq : q \in V\}$. Find a basis for V/U and show that $\dim V/U = \deg p$.

Solution. \Box

Solution.

3 For Natalia

Definition. Let $T \in L(V)$ be a linear operator. A subspace $U \subset V$ is said to be <u>invariant under T</u> if whenever $u \in U$ then also $Tu \in U$.

Problem 7 (Axler 5.A.2-3). Let $S, T \in L(V)$ and suppose that ST = TS (in this case we say T and S <u>commute</u>). Prove that ker S and Im S are both invariant under T.

Solution. $\ \square$ Problem 8 (Axler 5.A.6). Prove or give a counterexample: if V is finite dimensional and U is a subspace of V that is invariant under every operator on V, then $U = \{0\}$ or U = V.

Solution. \square Problem 9 (Axler 5.A.7). Consider $T \in L(\mathbb{R}^2)$ defined by T(x,y) = (-3y,x). Find the eigenvalues of T.

Solution.

4 For Michele

Problem 10 (Axler 5.A.24). Let $A \in M_n(F)$. Let $T \in L(F^n)$ be the linear operator given by Tx = Ax.

- (a) Suppose the sum of the entries in each row of A equals 1. Prove that 1 is an eigenvalue of T.
- (b) Suppose the sum of the entries in each column of A equals 1. Prove that 1 is an eigenvalue of T.

Solution. \square Problem 11 (Axler 5.A.20). Find all eigenvalues and eigenvectors of the operator $T \in L(F^{\infty})$ defined by $T(x_1, x_2, \ldots) = (x_2, x_3, \ldots)$.

Solution. \square Problem 12 (Axler 5.A.23). Suppose V is finite dimensional and $S, T \in L(V)$. Prove that ST and TS have the same eigenvalues. (Hint: You will need to use the assumption that V is finite dimensional!)