Homework 10

Math 25a

Due November 29, 2017

Topics covered: inner product spaces, spectral theorem, positive operators, isometries, singular values, determinants

Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from the 3rd edition of Axler's book. I've indicated this next to the problems. For example, Axler 1.B.4 means problem 4 from the exercises to Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure you do the problem as listed in the assignment.

1 For Ellen

Problem 1 (Axler 7.B.14). Let U be a finite dimensional real vector space and fix $T \in L(U)$. Prove that the following are equivalent.

- (a) There exists a basis $u_1, \ldots, u_n \in U$ of eigenvectors of T.
- (b) There exists an inner product on U such that T is self-adjoint with respect to this inner product.

Solution. \Box

Problem 2 (Axler 7.C.13). Let V be a finite-dimensional inner product space and $S \in L(V)$. For each statement, prove or give a counterexample:

- (a) If S is an isometry, then there exists an orthonormal basis $e_1, \ldots, e_n \in V$ such that $||Se_j|| = 1$ for every j.
- (b) If there exists an orthonormal basis $e_1, \ldots, e_n \in V$ such that $||Se_j|| = 1$ for every j, then S is an isometry.

 \square

Problem 3. Consider $V = \mathbb{R}^3$ with the standard inner product. Show that if $S \in L(V)$ is an isometry, then there exists $x \in V$ such that $S^2x = x$. (It might first help to show that S has an eigenvector.)

Solution. \Box

Solution.

2 For Charlie

Problem 4 (Axler 7.C.9). Prove or disprove: the identity $I: \mathbb{R}^2 \to \mathbb{R}^2$ has infinitely many square roots.

Solution.

Problem 5 (Axler 7.C.7). Let V be a finite dimensional real inner product space. Assume $T \in L(V)$ is positive. Show that T is invertible if and only if $\langle Tv, v \rangle > 0$ for every $v \in V \setminus \{0\}$.

Solution.

Problem 6 (Axler 7.D.7). Define $T \in L(\mathbb{R}^3)$ by $T(x_1, x_2, x_3) = (x_3, 2x_1, 3x_2)$. Find (explicitly) an isometry $S \in L(\mathbb{R}^3)$ such that $T = S\sqrt{T^*T}$. Write you final answer in the form $S(x_1, x_2, x_3) = (\cdots)$.

3 For Michele

Problem 7 (Axler 7.D.12). Prove or give a counterexample: if $T \in L(V)$, then the sin of T^2 equal the squares of the singular values of T .	$igular\ values$
Solution.	
Problem 8 (Axler 7.D.13). Suppose $T \in L(V)$. Prove that T is invertible if and only singular value of T .	if 0 is not a
Solution.	
Problem 9 (Axler 7.D.15). Suppose $S \in L(V)$. Prove that S is an isometry if and o singular values of S equal 1.	nly if all the
Solution.	

Solution.

4 For Natalia

Problem 10 (Axler 10.B.1). Let V be a real inner product space. Show that if $T \in L(V)$ has reigenvalues, then $\det T$ is positive.	ю
Solution.	
Problem 11 (Axler 10.B.5). Prove or give a counterexample: if $S, T \in L(V)$, then $\det(S + T) \det S + \det T$.	=
Solution.	
Problem 12 (Axler 10.B.4). Suppose $T \in L(V)$ and $c \in F$. Prove that $\det(cT) = c^{\dim V} \det G$. How can you understand this geometrically?	Γ.