

• cat and mouse alternate moves, like king on chess board

- cat and mouse alternate moves, like king on chess board
- cat wins if catches mouse

- cat and mouse alternate moves, like king on chess board
- cat wins if catches mouse
- mouse wins if can evade forever

- cat and mouse alternate moves, like king on chess board
- cat wins if catches mouse
- mouse wins if can evade forever

Main Question. Who has a winning strategy?

- cat and mouse alternate moves, like king on chess board
- cat wins if catches mouse
- mouse wins if can evade forever

Main Question. Who has a winning strategy?

Variation. Game begins by cat and mouse each choosing their starting position.

	\mathbf{C}
\mathbf{M}	

Cat and mouse play on vertices of the graph, moving to adjacent vertices.

Question. For these graphs, does either the cat or mouse have a winning strategy?

Question. For these graphs, does either the cat or mouse have a winning strategy?

How generally to tell if a graph is cat win?

Game theory: mathematical theory that analyzes strategy and decision making.

Game theory: mathematical theory that analyzes strategy and decision making.

Applications to economics, political science, biology, computer science ...

Game theory: mathematical theory that analyzes

strategy and decision making.

Applications to economics, political science, biology, computer science ...

John Nash Russell Crowe

Game theory: mathematical theory that analyzes

strategy and decision making.

Applications to economics, political science, biology, computer science ...

John Nash Russell Crowe

Zermelo's theorem. In any* finite 2-player game without chance (e.g. chess, nim, cat-mouse) one player has a winning strategy.

Game theory: mathematical theory that analyzes

strategy and decision making.

Applications to economics, political science, biology, computer science ...

John Nash Russell Crowe

Zermelo's theorem. In any* finite 2-player game without chance (e.g. chess, nim, cat-mouse) one player has a winning strategy.

Proof is non-constructive!

Observation. If the cat wins...

Observation. If the cat wins...

there exist vertices v and w so that

Observation. If the cat wins...

there exist vertices v and w so that $\{\text{neighbors of } v\} \subset \{\text{neighbors of } w\}.$

Observation. If the cat wins...

there exist vertices v and w so that $\{\text{neighbors of } v\} \subset \{\text{neighbors of } w\}.$

Definition. In this case we say that v is dominated by w.

Observation. If the cat wins...

there exist vertices v and w so that $\{\text{neighbors of } v\} \subset \{\text{neighbors of } w\}.$

Definition. In this case we say that v is dominated by w.

Observation. If the cat wins...

there exist vertices v and w so that $\{\text{neighbors of } v\} \subset \{\text{neighbors of } w\}.$

Definition. In this case we say that v is

 $\underline{\text{dominated}}$ by w.

Remark. Having a dominated vertex is a local property of a graph.

Fact. G graph. Assume v is dominated. If cat wins on $G \setminus v$, then cat wins on G.

Fact. G graph. Assume v is dominated. If cat wins on $G \setminus v$, then cat wins on G.

Fact. G graph. Assume v is dominated. If cat wins on $G \setminus v$, then cat wins on G.

Fact. G graph. Assume v is dominated. If cat wins on $G \setminus v$, then cat wins on G.

Fact. G graph. Assume v is dominated. If cat wins on $G \setminus v$, then cat wins on G.

Fact. G graph. Assume v is dominated. If cat wins on $G \setminus v$, then cat wins on G.

Fact. G graph. Assume v is dominated. If cat wins on $G \setminus v$, then cat wins on G.

Fact. G graph. Assume v is dominated. If cat wins on $G \setminus v$, then cat wins on G.

Understanding the game

Fact. G graph. Assume v is dominated. If cat wins on $G \setminus v$, then cat wins on G.

Using this, we have an inductive procedure to show cat has winning strategy.

Understanding the game

Fact. G graph. Assume v is dominated. If cat wins on $G \setminus v$, then cat wins on G.

Using this, we have an inductive procedure to show cat has winning strategy.

Theorem. G finite graph.

Theorem. G finite graph.

Cat has winning strategy on G if and only if

Theorem. G finite graph.

Cat has winning strategy on G if and only if can order vertices $v_1, ..., v_n$ so that v_i is dominated by one of $v_{i+1}, ..., v_n$ for each i = 1, ..., n-1.

Theorem. G finite graph.

Cat has winning strategy on G if and only if can order vertices $v_1, ..., v_n$ so that v_i is dominated by one of $v_{i+1}, ..., v_n$ for each i = 1, ..., n-1.

If G has no dominated vertex, then the mouse has winning strategy.

Variation: More cats!

How many cats are needed to ensure the cats win?

Variation: More cats!

How many cats are needed to ensure the cats win?

Variation: More cats!

How many cats are needed to ensure the cats win?

Variation: More cats!

How many cats are needed to ensure the cats win?

Conjecture (Meyniel, 1985). In a graph with n vertices, don't need more than \sqrt{n} cats to catch a mouse.

Variation: More cats!

How many cats are needed to ensure the cats win?

Conjecture (Meyniel, 1985). In a graph with n vertices, don't need more than \sqrt{n} cats to catch a mouse. More precisely the maximum cat number among n-vertex graphs is $O(\sqrt{n})$.

