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My research area is geometric topology. I primarily study manifolds, fiber
bundles, and group actions. My research also has ties to geometric group
theory and arithmetic groups. Below I focus on three aspects of my work.

1. Group actions on manifolds/Nielsen realization. A basic form
of the Nielsen realization problem asks, for a manifold M , when a group of
symmetries of π1(M) can be “realized” by a group of symmetries of M . Ver-
sions of this problem were originally posed by Nielsen and Thurston. Very
little is known for infinite groups, a problem that relates to flat connections
on bundles. My work is primarily focused on (1) finding new examples of
groups that are not realizable [Tsh15, ST16, GKT21] and (2) classifying spe-
cial families of realizations that do exist [BT23, CT22, BCT23, BKKT23].

2. Arithmetic groups and manifold bundles. Arithmetic groups (e.g.
SLn(Z)) arise in my work via the monodromy of manifold bundles. I have
used arithmetic groups to (1) understand geometric, and topological proper-
ties of bundles [Tsh15, GKT21, ST20] and (2) to produce new characteristic
classes of manifold bundles [Tsh21].

3. Aspherical manifolds and hyperbolic groups. The Wall conjec-
ture predicts that every finitely-presented Poincaré duality group G is the
fundamental group of a closed aspherical manifold π1(M) = G. In addi-
tion, if G is hyperbolic and 3-dimensional, the Cannon conjecture predicts
G ↪→ PSL2(C) is Kleinian. With collaborators, I have established new cases
of Wall’s conjecture for certain hyperbolic groups [LT19], and studied when
a relatively hyperbolic group is a relative Poincaré duality group, which
relates to a relative version of Cannon’s conjecture [TW20].

1. Group actions and Nielsen realization

For a manifold M , there is a natural surjection Homeo(M) � Mod(M)
from the homeomorphism group Homeo(M) to the mapping class group
Mod(M) := π0 Homeo(M). The Nielsen realization problem asks, for each
subgroup G < Mod(M), if there is a solution to the following lifting problem.

Homeo(M)
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When a lift exists, we say G < Mod(M) is realizable.

The optimist’s conjecture.

For a surface Sg, Nielsen originally asked if every finite G < Mod(Sg) is
realized by a group of isometries of Sg with respect to some hyperbolic
metric. This was proved by Kerckhoff [Ker83].

A finite-order homeomorphism is an example of a Nielsen–Thurston repre-
sentative, which are particularly simple elements in each isotopy class. We
propose the following conjecture that would generalize Kerckhoff’s theorem.

Conjecture 1 (optimist’s conjecture). If G < Mod(Sg) is realizable in
Homeo(Sg), then there is a realization by Nielsen–Thurston representatives.

Conjecture 1 holds for every realizable G < Mod(Sg) known to the author.
This includes finite groups, free groups, abelian groups, Veech groups, cer-
tain right-angled Artin groups, ... In each case, the relations in G are simple
enough that they can be satisfied by Nielsen–Thurston representatives.

For G = Mod(Sg), Conjecture 1 predicts that Homeo(Sg)→ Mod(Sg) does
not split for g ≥ 2. This was originally asked by Thurston in Kirby’s problem
list and proved by Markovic [Mar07].

Problem 2. Find new examples of infinite G < Mod(Sg) that are not
realizable.

For example, Salter and I [ST16] consider surface braid groups.

Theorem 3 (Realizing braid groups). Let Bn ∼= Mod(D2, n) denote the n-
stranded braid group. For n ≥ 5, the braid group Bn is not realizable by
diffeomorphisms. Furthermore, surface braid groups Bn(Sg) < Mod(Sg,n)
are not realizable by diffeomorphisms when n ≥ 6.

This has since been improved by L. Chen who shows Bn is not realizable
by homeomorphisms [Che19]. When g ≥ 2 and n ≥ 6, Theorem 3 gives an
alternative proof of a result of Bestvina–Church–Souto [BCS13].

There are many examples of Problem 2 to consider. Some that I find inter-
esting are (i) braid subgroups generated by a “chain” of Dehn twists, (ii) the
handle-dragging subgroup π1(USg) < Mod(Sg+1), (iii) the purely pseudo-
Anosov surface subgroups constructed by Kent–Leininger [KL24]. This is
an area where more techniques are needed.

3-manifolds.

For general 3-manifolds M3, it’s unclear how to formulate a version of Con-
jecture 1 even for finite G < Mod(M3).

Problem 4. Give a criterion, applying to all 3-manifolds M , that charac-
terizes when finite G < Mod(M) is realizable.
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Currently Problem 4 is only solved for special families of M . It would be
interesting to solve this problem for special G (e.g. cyclic) and arbitrary M .
L. Chen and I [CT22] solve Problem 4 for G generated by sphere twists (the
3D analogue of Dehn twists for surfaces) for any M .

Theorem 5 (Realizing sphere twists). Let M be a closed, oriented 3-manifold.
A subgroup G < Mod(M) generated by sphere twists is realizable if and only
if G is cyclic and M is a connected sum of lens spaces.

Combining Theorem 5 with older works, it should be possible to solve Prob-
lem 4.

Nielsen realization and the topology of bundles.

For G = π1(B), a homomorphism G → Diff(M) determines an M -bundle
E → B with a flat connection (a foliation with certain properties). Whether
or not a given bundle admits a flat connection is a poorly understood prob-
lem.

Problem 6. Give new examples of M -bundles that are not flat (i.e. have
no flat connection).

This can be approached with Nielsen realization: if G → Mod(M) is not
realizable in Diff(M), then no bundle with this monodromy is flat.

Morita [Mor87] gave the first examples of non-flat Sg-bundles. Giansiracusa–
Kupers and I [GKT21] apply similar ideas to the K3 4-manifold.

Theorem 7 (Non-flat K3 bundles). Let M4 be the K3 surface.

• Finite-index G < Mod(M) are not realizable by diffeomorphisms.
• The tautological M -bundle over the moduli space of Einstein metrics

on M is not flat.

It would be interesting to extend Morita’s argument to other 4-manifolds.

The following theorem from [Tsh15] also addresses Problem 6. It builds on
work of Bestvina–Church–Souto [BCS13] who solved the surface case.

Theorem 8. Let M = Γ\G/K be locally symmetric of noncompact type. If
Q-rank(Γ) ≥ 1 or M has a nonzero Pontryagin class, then

• The pointpushing group π1(M, ∗) < Mod(M, ∗) is not realizable in
Diff(M, ∗).
• The product bundle M ×M →M is not flat relative to the diagonal

∆ ⊂M ×M .

The theorem applies, for example, to compact complex-hyperbolic manifolds
Γ\CHn and finite manifold covers of SLn(Z)\ SLn(R)/ SO(n), n ≥ 3.
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Classifying realizations.

There are very few known examples of natural actions of mapping class
groups Mod(M) and outer automorphism groups Out(π1(M)) on manifolds.
Examples include:

(1) (Cheeger [Gro00]) Mod(Sg) acts on the unit tangent bundle USg.
(2) Out(Zn) ∼= GLn(Z) acts on the n-torus Tn.
(3) (Mostow rigidity) For hyperbolic Mn, n ≥ 3, Out(π1M) acts on M .

We view each of these as a rare gem and seek to prove rigidity results that
quantify this; see Conjectures 9 and 11.

Mod(Sg) acting on 3-manifolds. The lack of examples of actions of Mod(Sg)

on 3-manifolds leads us to the following conjecture.

Conjecture 9. If Mod(Sg) acts faithfully on a 3-manifold M3, then M =
USg and the action is conjugate to Cheeger’s construction.

Conjecture 9 appears to be out of reach in general, but it contains interest-
ing cases that are tractable. For example, the action Mod(Sg) y USg is
not smooth, so Conjecture 9 implies, in particular, that this action is not
homotopic to a smooth action. This was proved by Souto [Sou10] (for the
extended mapping class group).

As another special case of Conjecture 9, for a circle bundle M → Sg, the
natural surjection

Homeo(M)� Mod(M)� Mod(Sg)

should split only for M = USg. Evidence for this is provided by the following
theorem, proved in joint works with L. Chen and my student Alina al Beaini
[CT23, BCT23].

Theorem 10 (Realizing Mod(Sg) on circle bundles). Fix an oriented circle
bundle M → Sg and let e(M) ∈ H2(Sg;Z) ∼= Z be its Euler class/number.

(i) Mod(M)� Mod(Sg) splits ⇔ 2− 2g = χ(Sg) divides e(M).
(ii) Homeo(Sg × S1)� Mod(Sg) does not split for infinitely many g.

Actions of SLn(Z) on n-manifolds. Similar to Souto’s result [Sou10], for any

smooth structure T on Tn, we can ask whether the action GLn(Z) y Tn is
homotopic to a smooth action on T, i.e. whether one can split the map

(1) Diff(T)→ Out(π1T) ∼= GLn(Z).

Conjecture 11. The map (1) splits only for the standard torus T = Tn.

Conjecture 11 is implied by a conjecture of Fisher–Melnick [FM22] that pro-
poses a classification of actions SLn(Z) yMn (as part of Zimmer program).
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Bustamante–Krannich–Kupers and I [BKKT23] prove a partial result. Be-
low Σ is a smooth homotopy n-sphere and η(Σ) ∈ Θn+1 is a group-valued
invariant defined by Milnor–Munkres–Novikov.

Theorem 12 (Actions of SLn(Z) on homotopy tori). Let T = Tn#Σ, n ≥ 5.

(i) Mod(T)→ SLn(Z) splits if and only if η(Σ) is divisible by 2.
(ii) If η(Σ) is not divisible by 2, then Diff(T) → GLn(Z) does not split.

In addition, every homomorphism SLn(Z)→ Diff(T) is trivial.

Actions of Out(π1M) on hyperbolic manifolds. Let M be a smooth struc-
ture on a hyperbolic manifold M . We ask whether a finite group action
GyM is homotopic to a smooth action on M. This relates to splitting

Diff(M)→ Out(π1M) ∼= Out(π1M),

a problem posed for negatively-curved M by Schoen–Yau [SY79], generaliz-
ing Nielsen’s question. A negative answer was given by Farrell–Jones [FJ90]
with examples of the form M = M#Σ where Σ is a homotopy n-sphere.

Bustamante and I [BT23] (building on [BT22]) extend Farrell–Jones [FJ90]
(with a stronger conclusion) in dimension 7.

Theorem 13. Let M is a hyperbolic 7-manifold, and assume Isom(M) acts
freely on M . Let Σ be a homotopy 7-sphere.

(1) An action GyM is homotopic to a smooth action on M#Σ if and
only if Σ is divisible by |G| in Θn.

(2) Each action G y M#Σ is obtained from an action on M by equi-
variant connected sum.

2. Arithmetic groups, monodromy, and cohomology

Monodromy of holomorphic bundles.

A surface bundle Sg → E → B has a monodromy representation

ρ : π1(B)→ Mod(Sg)→ Sp2g(Z).

In general Image(ρ) < Sp2g(Z), called the monodromy group, can be any
subgroup, but if E → B is a holomorphic fibration, then Deligne [Del87]
proved that the Zariski closure of its monodromy group ΓE < Sp2g(Z) is
semi-simple, and Griffiths–Schmid [GS75] asked:

Question 14 (Griffiths–Schmid). When is the monodromy group of a holo-
morphic Sg-fibration an arithmetic group?

Both arithmetic and non-arithmetic monodromy groups occur [DM86, Ven14].

There is an instance of Question 14 for every cover Sg → Sh of surfaces
(possibly branched): there is a holomorphic Sg-bundle E → M′h, where
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M′h is a finite cover of the moduli space Mh of genus-h Riemann surfaces.
For these examples, when h ≥ 3, the arithmeticity question is related to
a conjecture of Putman–Wieland [PW13] that would imply that Mod(Sg)
does not virtually surject to Z.

My student Trent Lucas has studied Question 14 for all covers Sg → Sh with
g ≤ 3. His analysis includes 17 previously unstudied cases, and he finds that
the monodromy group is always arithmetic when g ≤ 3 [Luc24].

Salter and I [ST20] answer Question 14 for certain holomorphic Sg-bundles
constructed by Atiyah–Kodaira. As a topological consequence, we compute
the number of fiberings of these examples, a result motivated by Thurston’s
theory of fibering 3-manifolds.

Theorem 15 (Atiyah–Kodaira bundles). Let Sg → E → Sh be one of the
classical holomorphic families constructed by Atiyah and Kodaira. If h is
sufficiently large, then

(i) the image of the monodromy π1(Sh) → Mod(Sg) → Sp2g(Z) is an
arithmetic group;

(ii) the 4-manifold E fibers as a surface bundle in exactly two ways.

Unstable cohomology.

In studying M -bundles, a fundamental problem is to compute the ring of
characteristic classes H∗(BDiff(M)). When M2d

g = #g(S
d×Sd), this ring is

known in a range ∗ � g (Mumford’s conjecture) [GRW14, MW07, Mum83].
Little is known about H∗(BDiff(Mg)) when ∗ ≥ g, although there have
been recent important results [CGP18].

Problem 16. Give new constructions of characteristic classes, i.e. elements
in H∗(BDiff(M)).

In [Tsh21], I produce new classes in Hg(BDiff ′(M2d
g )) and for certain finite-

index “congruence” subgroups Diff ′(Mg) < Diff(Mg), when d � g is even.
This is related to arithmetic groups via the following theorem of [Tsh21].

Theorem 17 (New cohomology for lattices in SO(p, q)). Fix 1 ≤ p ≤ q
with p + q ≥ 3. Let Λ ⊂ Rp+q be a lattice with an integral bilinear form
of signature (p, q). There exists a finite-index subgroup Γ < SO(Λ) so that
dimHp(Γ;Q) 6= 0.

The cohomology in Theorem 17 comes from flat p-dimensional tori in the
associated locally symmetric manifolds. D. Studenmund and I [ST22] com-
pute lower bounds on the dimension of the subspace generated by these
classes. For example, for SLn+1 we show:

Theorem 18 (Cohomology growth, congruence subgroups of SLn+1(Z)).
Fix n ≥ 2, and let Γ(s) < SLn+1(Z) denote the level-s principal congruence
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subgroup. Then for each prime p,

dimHn(Γ(p`);Q) & | SLn+1(Z) : Γ(p`)|
n+1

n2+2n for `� 0.

The above approach for constructing characteristic classes suggests a way
to find new cohomology in finite-index subgroups of Mod(Sg). I plan to
explore this in future work.

Arithmetic mapping tori.

By a theorem of Margulis [Mar91], a lattice Γ in a semisimple Lie group
is arithmetic if and only if Γ has infinite index in its commensurator. In
contrast, no general arithmeticity characterization for lattices in solvable Lie
groups is known. In [Tsh22] for solvable lattices of the form Γ = ZnoA Z, I
provide an arithmeticity criterion in terms of the eigenvalues of A, building
in particular on work of Grunewald–Platonov [GP98].

Theorem 19 (Arithmeticity criterion). Fix A ∈ GLn(Z) hyperbolic and
semisimple. Then Zn oA Z is arithmetic if and only if log(µ) and log(ν)
are commensurable for any real monomials µ, ν in the eigenvalues of A and
their inverses.

It would be interesting to prove an analogous theorem that characterizes
arithmeticity for groups Γ = π1(Sg) oφ Z with φ ∈ Out(π1(Sg)) ∼= Mod(Sg)
pseudo-Anosov, in terms of some property φ.

3. Aspherical manifolds and hyperbolic groups

Wall and Cannon conjectures.

In the classification of aspherical manifolds, the basic existence and unique-
ness problems are as follows.

Conjecture 20. (1) (Wall) If G is a finitely-generated Poincaré dual-
ity group, then there exists a closed aspherical manifold M with
π1(M) ∼= G.

(2) (Borel) Two closed aspherical manifoldsM,M ′ with π1(M) ∼= π1(M
′)

are homeomorphic.

These conjectures hold for many groups/manifolds coming from geometry.
For example, Bartels–Lück–Weinberger [BLW10] prove the Wall conjecture
for hyperbolic groups with sphere boundary ∂G ∼= Sn, n ≥ 5. Lafont and I
[LT19] prove a relative version that extends [BLW10].

Theorem 21 (Wall conjecture, special case). Let G be a hyperbolic group
whose Gromov boundary is an (n−2)-dimensional Sierpinski space. If n ≥ 7,
then G ∼= π1(M) where M is a compact aspherical manifold with aspherical
boundary.
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The Cannon conjecture, a version of Wall’s conjecture in geometric group
theory and low-dimensional topology, predicts that a torsion-free hyperbolic
group G with boundary ∂G ∼= S2 the 2-sphere is the fundamental group of a
closed hyperbolic 3-manifold. Bestvina–Mess [BM91] showed that ∂G ∼= S2

implies that G is a Poincaré duality group (a necessary condition for G ∼=
π1(M

3)).

In connection to a relative version of Cannon’s conjecture, G. Walsh and I
[TW20] show the following result, also proved by Manning–Wang [MW20].

Theorem 22 (Duality for relatively hyperbolic groups). Let (G,P) be a
relatively hyperbolic group. Then (G,P) is a 3-dimensional Poincaré duality
pair if and only if the Bowditch boundary ∂(G,P) is the 2-sphere.

Hyperbolization of groups.

Thurston’s geometrization implies that a closed aspherical 3-manifold is hy-
perbolic if its fundamental group does not contain Z2. Gromov proposed a
group-theoretical analogue: a group G (with a finite K(G, 1)) that contains
no Baumslag–Solitar subgroup is necessarily hyperbolic. A counterexample
has been found [IMM23] via a construction of hyperbolic 5-manifolds, but
Gromov’s conjecture might be correct for e.g. surface group extensions

(2) 1→ π1(Sg)→ G→ Γ→ 1.

For such G, Gromov’s conjecture specializes to a conjecture of Farb–Mosher
[FM02].

Conjecture 23 (Farb–Mosher). If Γ < Mod(Sg) and every nontrivial ele-
ment of Mod(Sg) is pseudo-Anosov, then G is convex cocompact in Mod(Sg)
(and therefore the extension group G in (2) is hyperbolic).

New examples of [KL24] could (as of this writing) be counterexamples to
Conjecture 23, but the conjecture is known for many classes of groups, e.g.
[KLS09, DKL14, KMT17]. In [Tsh24], I verify Conjecture 23 for subgroups
of the genus-2 Goeritz group G, the subgroup of Mod(S2) of mapping classes
that extend to the genus-2 Heegaard splitting of S3. In the process, I also
characterize reducible elements in G.

Theorem 24 (Pseudo-Anosovs in the Goeritz group). Let G < Mod(S2) be
the genus-2 Goeritz group.

(i) Conjecture 23 is true for subgroups of G.
(ii) An element of G is reducible if and only if it stabilizes one of the

following: (a) a primitive multi-disk, (b) a reducing sphere, or (c)
an embedding of the figure-8 knot on S ⊂ S3.

Combined with a known presentation for G, (ii) gives an effective way to
test if an element of G is pseudo-Anosov and to construct explicit purely
pseudo-Anosov subgroups.
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