Wall conjecture and hyperbolic groups

Spring Topology and Dynamics Conference March 11, 2017 Bena Tshishiku

Joint with Jean Lafont

## Part 1: Wall conjecture

## $\Gamma$ looks like the fundamental group of a closed hyperbolic 3-manifold

# $\Gamma$ looks like the fundamental group of a closed hyperbolic 3-manifold



# $\Gamma$ looks like the fundamental group of a closed hyperbolic 3-manifold



 $\Gamma$  is.



### $\Gamma$ torsion free, hyperbolic, $\partial\Gamma\simeq \mathrm{S}^2$



#### $\Gamma$ torsion free, hyperbolic, $\partial \Gamma \simeq S^2$

$$\Gamma = \pi_1 \left( \text{closed hyperbolic 3-manifold} \right)$$

 $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ .

 $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ .

A. Is 
$$\Gamma = \pi_1 \left( \text{ hyperbolic } n\text{-manifold } \right)$$
?

 $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ .

A. Is 
$$\Gamma = \pi_1 \left( \text{ hyperbolic } n\text{-manifold } \right)$$
?

No. complex hyperbolic manifolds, or Gromov-Thurston branched covers

 $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ .

 $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ .

B. Is 
$$\Gamma = \pi_1 \left( M^n$$
 Riemannian  $K < 0 \right)$ ?

 $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ .

B. Is 
$$\Gamma = \pi_1 \left( M^n$$
 Riemannian  $K < 0 \right)$ ?

## No. Charney-Davis, Davis-Januszkiewicz hyperbolization

 $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ .

 $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ .

C. Is 
$$\Gamma = \pi_1 \left( \text{smooth aspherical } n\text{-manifold} \right)$$
?

 $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ .

C. Is 
$$\Gamma = \pi_1 \left( \text{smooth aspherical } n\text{-manifold} \right)$$
?

## No. Charney-Davis, Davis-Januszkiewicz hyperbolization

 $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ .

Question. Higher dimensional version?  $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ . A. Is  $\Gamma = \pi_1 \Big($  hyperbolic *n*-manifold  $\Big)$ ? Question. Higher dimensional version?  $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \approx S^{n-1}$ . A. Is  $\Gamma = \pi_1 \Big($  hyperbolic *n*-manifold $\Big)$ ? B. Is  $\Gamma = \pi_1 \Big( M^n \colon K < 0 \Big)$ ?

<u>Question</u>. Higher dimensional version?  $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ . A. Is  $\Gamma = \pi_1 \Big( \text{hyperbolic } n\text{-manifold} \Big)$ ? B. Is  $\Gamma = \pi_1 \left( M^n : K < 0 \right)$ ? C. Is  $\Gamma = \pi_1$  (smooth aspherical *n*-manifold)?

<u>Question</u>. Higher dimensional version?  $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ . A. Is  $\Gamma = \pi_1$  (hyperbolic *n*-manifold)? Not necessarily. B. Is  $\Gamma = \pi_1 \left( M^n : K < 0 \right)$ ? C. Is  $\Gamma = \pi_1$  (smooth aspherical *n*-manifold)?

<u>Question</u>. Higher dimensional version?  $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ . A. Is  $\Gamma = \pi_1 \Big( \text{hyperbolic } n\text{-manifold} \Big)$ ? Not necessarily. B. Is  $\Gamma = \pi_1 \left( M^n : K < 0 \right)$ ? Not necessarily. C. Is  $\Gamma = \pi_1$  (smooth aspherical *n*-manifold)?

<u>Question</u>. Higher dimensional version?  $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ . A. Is  $\Gamma = \pi_1$  (hyperbolic *n*-manifold)? Not necessarily. B. Is  $\Gamma = \pi_1 \left( M^n : K < 0 \right)$ ? Not necessarily. C. Is  $\Gamma = \pi_1$  (smooth aspherical *n*-manifold)? Not necessarily.

<u>Question</u>. Higher dimensional version?  $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ . A. Is  $\Gamma = \pi_1$  (hyperbolic *n*-manifold)? Not necessarily. B. Is  $\Gamma = \pi_1 \left( M^n : K < 0 \right)$ ? Not necessarily. C. Is  $\Gamma = \pi_1$  (smooth aspherical *n*-manifold)? Not necessarily.

E. Is 
$$\Gamma = \pi_1 \left( \begin{array}{c} \text{finite} \\ \text{aspherical PD}(n)\text{-complex} \end{array} \right)$$
?

 $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ .

E. Is 
$$\Gamma = \pi_1 \left( \text{aspherical PD}(n) \text{-complex} \right)$$
?

 $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ .

E. Is 
$$\Gamma = \pi_1 \left( \text{aspherical PD}(n) \text{-complex} \right)$$
?

<u>Theorem</u> (Bestvina-Mess).  $\Gamma$  hyperbolic.

 $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ .

E. Is 
$$\Gamma = \pi_1 \left( \text{aspherical PD}(n) \text{-complex} \right)$$
?

<u>Theorem</u> (Bestvina-Mess).  $\Gamma$  hyperbolic.

 $\Gamma \text{ is } PD(n) \quad \leftrightarrow \quad H^*(\partial\Gamma) \simeq H^*(S^{n-1})$ 

<u>Question</u>. Higher dimensional version?  $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ . A. Is  $\Gamma = \pi_1$  (hyperbolic *n*-manifold)? Not necessarily. B. Is  $\Gamma = \pi_1 \left( M^n : K < 0 \right)$ ? Not necessarily. C. Is  $\Gamma = \pi_1$  (smooth aspherical *n*-manifold)? Not necessarily.

E. Is  $\Gamma = \pi_1 \left( \begin{array}{c} \text{finite} \\ \text{aspherical PD}(n)\text{-complex} \end{array} \right)$ ?

<u>Question</u>. Higher dimensional version?  $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ . A. Is  $\Gamma = \pi_1 \Big( \text{hyperbolic } n\text{-manifold} \Big)$ ? Not necessarily. B. Is  $\Gamma = \pi_1 \left( M^n : K < 0 \right)$ ? Not necessarily. C. Is  $\Gamma = \pi_1$  (smooth aspherical *n*-manifold)? Not necessarily.

E. Is 
$$\Gamma = \pi_1 \left( \begin{array}{c} \text{finite} \\ \text{aspherical PD}(n)\text{-complex} \end{array} \right)$$
? Yes.

<u>Question</u>. Higher dimensional version?  $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ . A. Is  $\Gamma = \pi_1$  (hyperbolic *n*-manifold)? Not necessarily. B. Is  $\Gamma = \pi_1 \left( M^n : K < 0 \right)$ ? Not necessarily. C. Is  $\Gamma = \pi_1$  (smooth aspherical *n*-manifold)? Not necessarily. D. Is  $\Gamma = \pi_1$  (topological aspherical *n*-manifold)? E. Is  $\Gamma = \pi_1 \left( \begin{array}{c} \text{finite} \\ \text{aspherical PD}(n)\text{-complex} \end{array} \right)$ ? Yes.

<u>Question</u>. Higher dimensional version?  $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ . A. Is  $\Gamma = \pi_1$  (hyperbolic *n*-manifold)? Not necessarily. B. Is  $\Gamma = \pi_1 \left( M^n : K < 0 \right)$ ? Not necessarily. C. Is  $\Gamma = \pi_1$  (smooth aspherical *n*-manifold)? Not necessarily. D. Is  $\Gamma = \pi_1$  (topological aspherical *n*-manifold)? ??? E. Is  $\Gamma = \pi_1 \left( \begin{array}{c} \text{finite} \\ \text{aspherical PD}(n)\text{-complex} \end{array} \right)$ ? Yes.

## $\Gamma$ is PD(n) group

## $\Rightarrow$

 $\Gamma = \pi_1 \left( \begin{array}{c} \text{closed aspherical} \\ \text{topological } n\text{-manifold} \end{array} \right)$ 

<u>Problem</u> D. (Wall conjecture for hyperbolic groups)

Show if  $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ , then

 $\Gamma = \pi_1 \left( \begin{array}{c} \text{closed aspherical} \\ \text{topological } n\text{-manifold} \end{array} \right).$ 

<u>Problem</u> D. (Wall conjecture for hyperbolic groups)

Show if  $\Gamma$  torsion-free hyperbolic group,  $\partial \Gamma \simeq S^{n-1}$ , then

$$\Gamma = \pi_1 \left( \begin{array}{c} \text{closed aspherical} \\ \text{topological } n\text{-manifold} \end{array} \right)$$

#### <u>Problem</u> D'. (relative version)

Show if  $\Gamma$  torsion-free hyperbolic group,  $\pmb{\partial}\Gamma\simeq\mathcal{S}^{n\text{-}1}$  Sierpinski space, then

$$\Gamma = \pi_1 \left( \begin{array}{c} {\rm aspherical \ topological} \ (n+1) {
m -manifold \ with \ boundary} \end{array} 
ight)$$

where  $\{D_i\}$  dense collection of disjoint open disks, S<sup>n</sup>\ $D_i$  *n*-cell, diam $(D_i) \rightarrow 0$ .

where  $\{D_i\}$  dense collection of disjoint open disks,  $S^n \setminus D_i \ n$ -cell,  $diam(D_i) \to 0$ .

Examples.

where  $\{D_i\}$  dense collection of disjoint open disks,  $S^n \setminus D_i \ n$ -cell,  $diam(D_i) \to 0$ .

#### Examples.

 $S^1 = \text{Sierpinski carpet}$ 

where  $\{D_i\}$  dense collection of disjoint open disks,  $S^n \setminus D_i \ n$ -cell,  $diam(D_i) \to 0$ .

#### Examples.

 $S^1 = \text{Sierpinski carpet}$ 



where  $\{D_i\}$  dense collection of disjoint open disks,  $S^n \setminus D_i \ n$ -cell,  $diam(D_i) \to 0$ .

#### Examples.

 $S^1 = \text{Sierpinski carpet}$ 

 $S^0 = \text{cantor set}$ 



where  $\{D_i\}$  dense collection of disjoint open disks,  $S^n \setminus D_i \ n$ -cell,  $diam(D_i) \to 0$ .

#### Examples.

 $S^1 = \text{Sierpinski carpet}$ 

$$S^0 = \text{cantor set}$$

$$\Gamma = \pi_1 ( \bigcirc), \quad \partial \Gamma \simeq S^0$$



## Part 2: Main Theorem

#### <u>Theorem</u>. n $\geq$ 6. $\Gamma$ torsion-free hyperbolic group

<u>Theorem</u>. n $\geq$ 6.  $\Gamma$  torsion-free hyperbolic group

• (Bartels-Lueck-Weinberger, 2010)

 $\partial \Gamma \simeq S^{n-1} \implies \Gamma = \pi_1 \left( \begin{array}{c} \text{closed aspherical} \\ \text{topological } n\text{-manifold} \end{array} \right).$ 

<u>Theorem</u>. n $\geq$ 6.  $\Gamma$  torsion-free hyperbolic group

• (Bartels-Lueck-Weinberger, 2010)

 $\partial \Gamma \simeq S^{n-1} \implies \Gamma = \pi_1 \left( \begin{array}{c} \text{closed aspherical} \\ \text{topological } n\text{-manifold} \end{array} \right).$ 

• (Lafont-T, 2015)

 $\partial \Gamma \simeq S^{n-1} \implies \Gamma = \pi_1 \left( \begin{array}{c} \text{aspherical topological} \\ (n+1) \text{-manifold with boundary} \end{array} \right).$ 

1. Surgery theory.

(Browder-Novikov-Sullivan-Wall, Ranicki)

- Surgery theory.
   (Browder-Novikov-Sullivan-Wall, Ranicki)
- Farrell-Jones conjecture for hyperbolic groups.
   (Bartels-Lueck, Bartels-Lueck-Reich)

- Surgery theory.
   (Browder-Novikov-Sullivan-Wall, Ranicki)
- Farrell-Jones conjecture for hyperbolic groups.
   (Bartels-Lueck, Bartels-Lueck-Reich)
- 3. Geometric group theory. (following Kapovich-Kleiner)

- Surgery theory.
   (Browder-Novikov-Sullivan-Wall, Ranicki)
- Farrell-Jones conjecture for hyperbolic groups.
   (Bartels-Lueck, Bartels-Lueck-Reich)
- 3. Geometric group theory. (following Kapovich-Kleiner)

<u>Thm</u>: For  $\Gamma$  hyperbolic with  $\partial \Gamma \simeq S^{n-1} = S^n \setminus \bigcup_{i=1}^{\infty} D_i$ 

- Surgery theory.
   (Browder-Novikov-Sullivan-Wall, Ranicki)
- Farrell-Jones conjecture for hyperbolic groups.
   (Bartels-Lueck, Bartels-Lueck-Reich)
- 3. Geometric group theory. (following Kapovich-Kleiner)

<u>Thm</u>: For  $\Gamma$  hyperbolic with  $\partial \Gamma \simeq S^{n-1} = S^n \setminus \bigcup_{i=1}^{\infty} D_i$ 

•  $\Lambda_i := \operatorname{Stab}(\partial D_i)$  quasi-convex (hence hyperbolic)

- Surgery theory.
   (Browder-Novikov-Sullivan-Wall, Ranicki)
- Farrell-Jones conjecture for hyperbolic groups.
   (Bartels-Lueck, Bartels-Lueck-Reich)
- 3. Geometric group theory. (following Kapovich-Kleiner)

<u>Thm</u>: For  $\Gamma$  hyperbolic with  $\partial \Gamma \simeq S^{n-1} = S^n \setminus \bigcup_{i=1}^{\infty} D_i$ 

•  $\Lambda_i := \operatorname{Stab}(\partial D_i)$  quasi-convex (hence hyperbolic)

• 
$$\partial \Lambda_i \simeq \partial D_i \simeq S^{n-1}$$

- Surgery theory.
   (Browder-Novikov-Sullivan-Wall, Ranicki)
- Farrell-Jones conjecture for hyperbolic groups.
   (Bartels-Lueck, Bartels-Lueck-Reich)
- 3. Geometric group theory. (following Kapovich-Kleiner)

<u>Thm</u>: For  $\Gamma$  hyperbolic with  $\partial \Gamma \simeq S^{n-1} = S^n \setminus \bigcup_{i=1}^{\infty} D_i$ 

- $\Lambda_i := \operatorname{Stab}(\partial D_i)$  quasi-convex (hence hyperbolic)
- $\partial \Lambda_i \simeq \partial D_i \simeq S^{n-1}$
- $\{\Lambda_i\}$  fall into finitely many conjugacy classes

- Surgery theory.
   (Browder-Novikov-Sullivan-Wall, Ranicki)
- Farrell-Jones conjecture for hyperbolic groups.
   (Bartels-Lueck, Bartels-Lueck-Reich)
- 3. Geometric group theory. (following Kapovich-Kleiner)

<u>Thm</u>: For  $\Gamma$  hyperbolic with  $\partial \Gamma \simeq S^{n-1} = S^n \setminus \bigcup_{i=1}^{\infty} D_i$ 

- $\Lambda_i := \operatorname{Stab}(\partial D_i)$  quasi-convex (hence hyperbolic)
- $\partial \Lambda_i \simeq \partial D_i \simeq S^{n-1}$
- $\{\Lambda_i\}$  fall into finitely many conjugacy classes
- $G = \Gamma_{\{\Lambda i\}} \Gamma$  hyperbolic,  $\partial G \simeq S^n$  $\Rightarrow (\Gamma, \{\Lambda_i\})$  is PD(n) pair

## Thanks!