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(Browder-Novikov-Sullivan-Wall, Ranicki)

2. Farrell-Jones conjecture for hyperbolic groups.

(Bartels-Lueck, Bartels-Lueck-Reich)
3. Geometric group theory. (following Kapovich-Kleiner)

Thm: For I hyperbolic with oI" = ™! = S\ U D;

e A;:= Stab(0D;) quasi-convex (hence hyperbolic)
e OA;= 0D; = S™!
e {A;} fall into finitely many conjugacy classes
o G= I'sfas I hyperbolic, 0G = S"
= (I',{A;}) is PD(n) pair



Thanks!



