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Definition (Cannon). An (n-1)-dimensional Sierpinski space 
is   

where {Di} dense collection of disjoint open disks,  
Sn\Di n-cell, diam(Di) → 0.

�n-1 = Sn \ ⋃ Dii=1

∞

Examples.

�0 = cantor set

Γ = π1 (          ),   ∂Γ ≃ �0
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∂Γ ≃ Sn-1 Γ = π1 (              ).
closed aspherical 

topological n-manifold⇒ 
• (Bartels-Lueck-Weinberger, 2010)

∂Γ ≃ �n-1 Γ = π1(                  ).⇒ aspherical topological  
(n+1)-manifold with boundary

• (Lafont-T, 2015) 
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1. Surgery theory.  

(Browder-Novikov-Sullivan-Wall, Ranicki)
2. Farrell-Jones conjecture for hyperbolic groups.  

(Bartels-Lueck, Bartels-Lueck-Reich)
3. Geometric group theory. (following Kapovich-Kleiner)

Thm: For Γ hyperbolic with ∂Γ ≃ �n-1 = Sn \ ⋃ Di
i=1

∞

• Λi := Stab(∂Di) quasi-convex (hence hyperbolic) 
• ∂Λi ≃ ∂Di ≃ Sn-1 
• {Λi} fall into finitely many conjugacy classes
• G= Γ*{Λi} Γ hyperbolic, ∂G ≃ Sn   

⇒ (Γ,{Λi}) is PD(n) pair



Thanks!


