Point-pushing and Nielsen realization

> Bena Tshishiku August 25, 2014

Point-pushing diffeomorphisms

- (M,*) manifold with basepoint
- Diff(M,*) group of
 diffeomorphisms fixing *
- γ loop based at *

• $\operatorname{Push}(\gamma) \in \operatorname{Diff}(M,*)$ defined by "Pushing * around γ "

The Push homomorphism

- $Mod(M,*):=\pi_0 Diff(M,*)$ isotopy classes of diffeomorphisms
- Point-pushing homomorphism

Push : $\pi_1(M,*) \to Mod(M,*)$ $[\gamma] \to [Push(\gamma)]$

Nielsen realization problem for point-pushes

Does there exist $\varphi : \pi_1(M,*) \to \text{Diff}(M,*)$ making the following diagram commute?

If φ exists, we say Push is realized by diffeomorphisms.

Locally symmetric manifolds

- $M = \Gamma \setminus G/K$ is a locally symmetric manifold.
- G real semisimple Lie group without compact factors (e.g. $Isom(H^n)$, $SL_n(R)$, $E_{8(8)}$)
- $K \subset G$ maximal compact subgroup
- $\Gamma \subset G$ torsion-free lattice
- Example: $G = \mathrm{PSL}_2(\mathbb{R}), \ K = \mathrm{SO}(2), \ \Gamma \cong \pi_1(S_g)$ $M = \mathrm{hyperbolic} \ \mathrm{surface}$

Theorem 1. (Bestvina-Church-Souto, 2009) Let $M = S_g$ be a closed surface of genus $g \ge 2$. Then Push : $\pi_1(M,*) \to Mod(M,*)$ is not realized by diffeomorphisms.

<u>Theorem 2.</u> (T-, 2014)

Let M be a locally symmetric manifold such that (***). Then Push : $\pi_1(M,*) \to Mod(M,*)$ is not realized by diffeomorphisms.

Nielsen realization problems

<u>Theorem.</u> (Kerckhoff, 1983) Fix $g \ge 2$. Any finite subgroup $\Lambda \subset Mod(S_g)$ is realized by diffeomorphisms.

Theorem. (Morita, 1987; Franks-Handel, 2009) Fix $g \ge 3$. Then $\Lambda = Mod(S_g)$ is not realized by diffeomorphisms.

• <u>Handle-pushing subgroups</u>

 $\pi_1(S_g) \subset \mathrm{Mod}(S_g,*)$

• <u>Handle-pushing subgroups</u>

 $\pi_1(S_g) \subset \operatorname{Mod}(S_g,*)$

 $\pi_1(\mathrm{U}S_g) \subset \mathrm{Mod}(S_g, D)$

• <u>Handle-pushing subgroups</u>

 $\pi_1(S_g) \subset \operatorname{Mod}(S_g, *)$

 $\pi_1(\mathrm{U}S_g) \subset \mathrm{Mod}(S_g,D)$

• <u>Handle-pushing subgroups</u>

 $\pi_1(S_g) \subset \operatorname{Mod}(S_g,*)$

 $\pi_1(\mathrm{U}S_g) \subset \mathrm{Mod}(S_g,D) \subset \mathrm{Mod}(S_{g+1})$

• <u>Handle-pushing subgroups</u>

 $\pi_1(S_g) \subset \operatorname{Mod}(S_g, *)$

 $\pi_1(\mathrm{U}S_g) \subset \mathrm{Mod}(S_g, D) \subset \mathrm{Mod}(S_{g+1})$

Question. Is $\pi_1(US_g) \subset Mod(S_{g+1})$ realized by diffeomorphisms?

Geometry and flat bundles

- F, M^n manifolds
- F bundle $E \to M$

Trivial bundle $E = M \times F$

- F, M^n manifolds
- F bundle $E \to M$

Trivial bundle $E = M \times F$

- F, M^n manifolds
- F bundle $E \to M$ FTrivial bundle $E = M \times F$

 $M \times F$

- F, M^n manifolds
- F bundle $E \to M$ FTrivial bundle $E = M \times F$

 $M \times F$

• F, M^n manifolds

Definition. An F bundle $E \to M$ admits a *flat connection* if E has a foliation whose leaves are *n*-dimensional and transverse to the fibers of p.

Flat surface bundles

<u>Theorem.</u> (Morita, 1987) For $g \ge 18$ there exists an S_g bundle $E \to M^6$ that does not admit a flat connection.

<u>**Remark.**</u> Every S_g bundle $E \to S^1$ admits a flat connection.

<u>Open Question.</u> Does every S_g bundle $E \to S_h$ admit a flat connection?

A Basic Question

- *M* manifold with $\pi_1(M) \neq \{e\}$.
- $M \times M \to M$ projection onto the first factor
- $\Delta: M \to M \times M$ diagonal section.

Question. Does $M \times M \to M$ admit a flat connection for which the diagonal is parallel?

Monodromy and flat connections

F bundle $E \to M$

monodromy $\mu: \pi_1(M) \to \operatorname{Mod}(F)$

 $E \to M$ admits a flat connection

$$\begin{array}{c} \varphi & \text{Diff}(F) \\ \varphi & \varphi & \varphi \\ \vdots & \varphi & \varphi \\ \vdots & \varphi & \varphi \\ \pi_1(M) \xrightarrow{\mu} \operatorname{Mod}(F) \end{array}$$

$$M \times M \to M$$
$$\Delta : M \to M \times M$$

monodromyPush : $\pi_1(M,*) \to Mod(M,*)$

Monodromy and flat connections

F bundle $E \to M$

monodromy $\mu: \pi_1(M) \to \operatorname{Mod}(F)$

 $M \times M \rightarrow M$ admits flat connection where diagonal is parallel.

 $M \times M \to M$ $\Delta : M \to M \times M$

monodromyPush : $\pi_1(M,*) \to Mod(M,*)$ Corollary to Theorems 1 & 2.

Let M be a locally symmetric manifold as in Theorems 1 and 2.

Then $M \times M \to M$ does not admit a flat connection for which the diagonal is parallel.

Cohomology and flat bundles

Characteristic classes

- Fix F.
- A characteristic class c

$$\begin{cases} \text{Isomorphism classes of} \\ F \text{ bundles } E \to M \end{cases} \xrightarrow{c} H^*(M) \\ E \to M \qquad \longmapsto \qquad c(E) \end{cases}$$

- Examples: Euler, Chern, Pontryagin, MMM
- Characteristic classes of flat bundles are often restricted.

Characteristic classes of flat bundles

Example 1. M^n manifold

- $E \to M \operatorname{rank-} n$ vector bundle
- $p_i(E) \in H^{4i}(M)$ the *i*-th Pontryagin class
- Chern-Weil theory: If $E \to M$ admits a flat connection, then $p_i(E)=0$ for all i > 0.
- Example. $M = CP^2$, tangent bundle $TM \to M$. $p_1(TM) \neq 0$, so $TM \to M$ does not admit a flat connection.

Characteristic classes of flat bundles

Example 2. $M = S_g$ closed surface, $g \ge 1$.

- $E \to M \operatorname{rank-2}$ vector bundle
- $e(E) \in H^2(M)$ the Euler class

• Milnor-Wood inequality (1958): If $E \to M$ admits a flat connection, then

$$1-g \leq \langle e(E), [M] \rangle \leq g-1$$

• Example. E = TM, $\langle e(TM), [M] \rangle = \chi(M) = 2-2g$, so if $g \ge 2$, $TM \to M$ does not admit a flat connection.

Characteristic classes of flat bundles

Example 3. $F = S_g, g \ge 2.$

- $E \to M$ surface bundle
- $e_i(E) \in H^{2i}(M)$ the *i*-th MMM class
- Bott Vanishing Theorem (1970) \Rightarrow If $E \rightarrow M$ admits a flat connection, then $e_i(E)=0$ for $i \geq 3$.
- Example. (Morita) To show $E \to M^6$ does not admit a flat connection, show $e_3(E) \neq 0$.

Main Theorem

<u>Goal.</u> Show that for any locally symmetric manifold $M = \Gamma \setminus G/K$, Push : $\pi_1(M,*) \to Mod(M,*)$ is not realized by diffeomorphisms.

- $M = \Gamma ackslash G/K$
- $p_i(M) \in H^{4i}(M; \mathbb{R})$ *i*-th Pontryagin class of TM

Theorem 2. (T-, 2014) Suppose one of the following holds i) M is a product of surfaces of genus ≥ 2 . ii) $p_i(M) \neq 0$ for some i > 0. iii) rank $G \geq 2$ and every $\Gamma \rightarrow U(n)$ has finite image. Then Push : $\pi_1(M,*) \rightarrow Mod(M,*)$ is not realized by diffeomorphisms.

Elements of the proof

- (i) Euler class and Milnor-Wood inequalities
- (ii) Pontryagin classes, Chern-Weil theory, and classifying spaces of Lie groups
- (iii) Margulis Superrigidity and representation theory of Lie algebras

Today. Explain (ii). Show if $p_i(M) \neq 0$ for some i > 0, then Push : $\pi_1(M,*) \to Mod(M,*)$ is not realized by diffeomorphisms.

Geometry of symmetric spaces

- $M = \Gamma \backslash G / K$
- $\widetilde{M} \cong G/K$

- $\partial(G/K)$ visual boundary
- G acts on $\partial(G/K) \cong S^{n-1}$ by homeomorphisms

Tangent bundle of a locally symmetric manifold

• $\Gamma \to G \to \operatorname{Homeo}(\partial(G/K)) \cong \operatorname{Homeo}(S^{n-1})$ induces an S^{n-1} bundle

$$\frac{G/K \times S^{n-1}}{\Gamma} \longrightarrow \Gamma \backslash G/K$$

isomorphic to the unit tangent bundle of $\Gamma \setminus G/K$.

Classifying spaces

• BHomeo (S^{n-1}) classifying space

 $\left\{ \begin{array}{l} \text{Isomorphism classes} \\ S^{n-1} \text{ bundles } E \to M \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \text{Homotopy classes} \\ M \to \text{BHomeo}(S^{n-1}) \end{array} \right\}$

• For $G \subset \operatorname{Homeo}(S^{n-1})$

 $\left\{ \begin{array}{l} \text{isomorphism classes} \\ S^{n-1} \text{ bundles } E \to M \\ \text{structure group } G \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \text{homotopy classes} \\ M \to BG \end{array} \right\}$

• G^{δ} denotes G with discrete topology. B G^{δ} classifies flat S^{n-1} bundles with holonomy in G $M = \Gamma ackslash G/K$

<u>Problem.</u> Show $\varphi : \pi_1(M,*) \to \text{Diff}(M,*)$ does not exist.

<u>Step 1.</u> Suppose φ exists. Produce a commutative diagram:

<u>Step 2.</u> Find $\alpha \in H^*(BHomeo(S^{n-1}))$ so that $s \cdot t(\alpha) \neq u \cdot v(\alpha)$. →←

Step 1a. The two actions.

Suppose $\varphi : \pi_1(M,*) \to \text{Diff}(M,*)$ exists.

 $\pi_1(M,*) \curvearrowright (M,*)$

Suppose $\varphi : \pi_1(M,*) \to \text{Diff}(M,*)$ exists.

 $\pi_1(M,*) \curvearrowright (M,*)$

induces $\pi_1(M,*) \curvearrowright (\widetilde{M},\widetilde{*})$

<u>Step 1a.</u> The two actions. Suppose $\varphi : \pi_1(M,*) \to \text{Diff}(M,*)$ exists.

 $\pi_1(M,*) \curvearrowright (M,*)$

induces $\pi_1(M,*) \curvearrowright (\widetilde{M},\widetilde{*})$

<u>Action 1.</u> $\pi_1(M,*) \hookrightarrow P(T_{\widetilde{*}}\widetilde{M}) \cong S^{n-1}$ <u>Action 2.</u> $\pi_1(M,*) \hookrightarrow \partial \widetilde{M} \cong S^{n-1}$

Step 1b. The diagram. $M = \Gamma \setminus G/K$

Proposition. This diagram commutes.

Saturday, August 23, 2014

Step 2. Characteristic classes.

Step 2. Characteristic classes. $\mathrm{H}^*(\mathrm{B}G^{\delta}) \quad \longleftarrow \quad \mathrm{H}^*(\mathrm{B}G)$ $H^*(BHomeo(S^{n-1}))$ $\mathrm{H}^*(M)$ / surjective $\mathrm{H}^*(\mathrm{BGL}_n(\mathrm{R})^{\delta}) \leftarrow \mathrm{H}^*(\mathrm{BGL}_n(\mathrm{R}))$ p_i

Step 2. Characteristic classes.

Question. For which $\Gamma \setminus G/K$ is $p_i(\Gamma \setminus G/K) \neq 0$ for some i > 0?

Pontryagin classes of locally symmetric manifolds

Assume $\Gamma \setminus G/K$ compact.

• (Borel-Hirzebruch, 1958):

- algorithm to determine if $p_i(\Gamma \setminus G/K) \neq 0$ (depends only on *G*, not on particular Γ)
- some examples (G Hermitian)
- (T-): complete list of G for which $p_i(\Gamma \setminus G/K) \neq 0$ for some *i*.

$p_i(\Gamma$	$(G/K) \neq 0$ for some	ne i	
G			
	$\mathrm{SU}(p,q)$		
	$\mathrm{SP}(p,q)$		
	$\mathrm{SO}(p,q)$		
	$E_{6(6)}, E_{6(2)}, E_{6(-14)}$		
	$E_{7(7)}, E_{7(-5)}, E_{7(-25)}$		
	$E_{8(8)}, E_{8(-24)}$		
	$F_{4(4)}, F_{4(-20)}$		
	$G_{2(2)}$		

$p_i(\Gamma \setminus G/K) \neq 0$ for some i			
G			
	$\mathrm{SU}(p,q)$		
	$\mathrm{SP}(p,q)$		
	$\mathrm{SO}(p,q)$		
	$E_{6(6)}, E_{6(2)}, E_{6(-14)}$		
	$E_{7(7)}, E_{7(-5)}, E_{7(-25)}$		
	$E_{8(8)}, E_{8(-24)}$		
	$F_{4(4)}, F_{4(-20)}$		
	$G_{2(2)}$		

Thank you.

- B. Tshishiku, Cohomological obstructions to Nielsen realization, arxiv:1402.0472. Jan. 2014.
- B. Tshishiku, Pontryagin classes of locally symmetric spaces, arxiv:1404.1115. Apr. 2014.