Symmetries of exotic negatively curved manifolds

Bena Tshishiku Spring Topology and Dynamics Conference 5/12/2021

joint with Mauricio Bustamante

 M^n closed hyperbolic manifold

 M^n closed hyperbolic manifold $n \gg 0$.

 M^n closed hyperbolic manifold $n \gg 0$.

N exotic smooth structure on M

 M^n closed hyperbolic manifold $n \gg 0$.

N exotic smooth structure on M

N, M homeomorphic but not diffeomorphic

 M^n closed hyperbolic manifold $n \gg 0$.

 $N \stackrel{\text{exotic smooth structure}}{\swarrow} \text{ on } M$

Example: $N = M \# \Sigma$, where $\Sigma \in \Theta_n$ exotic *n*-sphere $M \checkmark \checkmark$

 M^n closed hyperbolic manifold $n \gg 0$.

 $N \stackrel{\text{exotic smooth structure}}{\swarrow} \text{ on } M$

Example: $N = M \# \Sigma$, where $\Sigma \in \Theta_n$ exotic *n*-sphere $M \checkmark \checkmark$

Main Question: How much symmetry does N have?

 M^n closed hyperbolic manifold $n \gg 0$.

 $N \stackrel{\text{exotic smooth structure}}{\swarrow} \text{ on } M$

Example: $N = M \# \Sigma$, where $\Sigma \in \Theta_n$ exotic *n*-sphere $M \checkmark \checkmark$

Main Question: How much symmetry does N have? Specifically, what is the maximum size of a finite subgroup G < Diff(N)?

 M^n hyperbolic, N exotic smooth structure on M

Question: what is the maximum size of a finite subgroup G < Diff(N)?

 M^n hyperbolic, N exotic smooth structure on M

Question: what is the maximum size of a finite subgroup G < Diff(N)?

(Borel): Any finite G < Diff(N) acts faithfully on $\pi_1(N)$.

 M^n hyperbolic, N exotic smooth structure on M

Question: what is the maximum size of a finite subgroup G < Diff(N)?

(Borel): Any finite G < Diff(N) acts faithfully on $\pi_1(N)$.

i.e. $G \to \text{Diff}(N) \to \text{Out}(\pi_1(N))$ injective

 M^n hyperbolic, N exotic smooth structure on M

Question: what is the maximum size of a finite subgroup G < Diff(N)?

(Borel): Any finite G < Diff(N) acts faithfully on $\pi_1(N)$.

 M^n hyperbolic, N exotic smooth structure on MQuestion: what is the maximum size of a finite subgroup

 $G < \operatorname{Diff}(N)$?

(Borel): Any finite G < Diff(N) acts faithfully on $\pi_1(N)$.

 M^n hyperbolic, N exotic smooth structure on MQuestion: what is the maximum size of a finite subgroup G < Diff(N)?

(Borel): Any finite G < Diff(N) acts faithfully on $\pi_1(N)$.

e.g. Isom(M) is a maximal finite subgroup of Diff(M).

 M^n hyperbolic, N exotic smooth structure on MQuestion: what is the maximum size of a finite subgroup G < Diff(N)?

(Borel): Any finite G < Diff(N) acts faithfully on $\pi_1(N)$.

e.g. Isom(M) is a maximal finite subgroup of Diff(M). (sample) Question: Does Isom(M) act (faithfully) on N?

Given $\Sigma \in \Theta_n$, what is the max dimension of a Lie subgroup $G < \text{Diff}(\Sigma)$?

Given $\Sigma \in \Theta_n$, what is the max dimension of a Lie subgroup $G < \text{Diff}(\Sigma)$?

Upper bound: dim $G \leq \dim \operatorname{Isom}(S^n) = \dim \operatorname{O}(n+1)$

Given $\Sigma \in \Theta_n$, what is the max dimension of a Lie subgroup $G < \text{Diff}(\Sigma)$?

Upper bound: dim $G \leq \dim \operatorname{Isom}(S^n) = \dim O(n+1)$

(Hsiang-Hsiang). Fix $\Sigma \in \Theta_n$ and $G < \text{Diff}(\Sigma)$. Assume $n \gg 0$.

Given $\Sigma \in \Theta_n$, what is the max dimension of a Lie subgroup $G < \text{Diff}(\Sigma)$?

Upper bound: dim $G \leq \dim \operatorname{Isom}(S^n) = \dim \operatorname{O}(n+1)$

(Hsiang-Hsiang). Fix $\Sigma \in \Theta_n$ and $G < \text{Diff}(\Sigma)$. Assume $n \gg 0$.

• If $\Sigma \in \Theta_n \setminus \{S^n\}$, then dim $G \leq \frac{1}{4}$ dim $\text{Isom}(S^n)$

Given $\Sigma \in \Theta_n$, what is the max dimension of a Lie subgroup $G < \text{Diff}(\Sigma)$?

Upper bound: dim $G \leq \dim \operatorname{Isom}(S^n) = \dim O(n+1)$

(Hsiang-Hsiang). Fix $\Sigma \in \Theta_n$ and $G < \text{Diff}(\Sigma)$. Assume $n \gg 0$.

• If $\Sigma \in \Theta_n \setminus \{S^n\}$, then dim $G \leq \frac{1}{4}$ dim $\text{Isom}(S^n)$

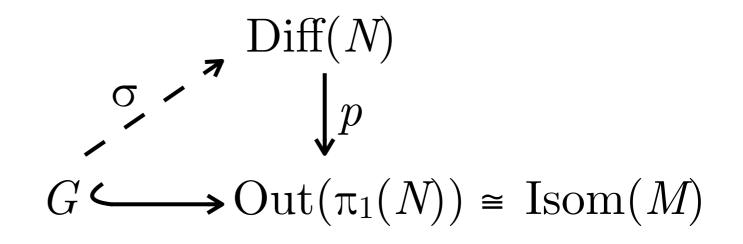
• If $\Sigma \in \Theta_n \setminus bP_{n+1}$, then dim $G \leq \frac{1}{8} \dim \operatorname{Isom}(S^n)$

 M^n hyperbolic, N exotic smooth structure on MQuestion: what is maximum size of a finite subgroup G < Diff(N)?

(Borel): Any finite G < Diff(N)acts faithfully on $\pi_1(N)$.

 M^n hyperbolic, N exotic smooth structure on MQuestion: what is maximum size of a finite subgroup G < Diff(N)?

(Borel): Any finite G < Diff(N)acts faithfully on $\pi_1(N)$.



 M^n hyperbolic, N exotic smooth structure on MQuestion: what is maximum size of a finite subgroup G < Diff(N)?

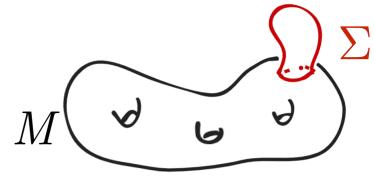
(Borel): Any finite G < Diff(N)acts faithfully on $\pi_1(N)$. $G \longrightarrow \text{Out}(\pi_1(N)) \cong \text{Isom}(M)$

(Equivalent) Question: What is the maximum size of a subgroup of $Out(\pi_1(N))$ that lifts to Diff(N)?

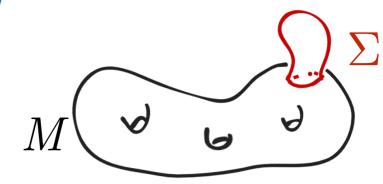
 M^n hyperbolic, N exotic smooth structure on MQuestion: what is maximum size of a finite subgroup G < Diff(N)?

(Borel): Any finite G < Diff(N)acts faithfully on $\pi_1(N)$. $G \longrightarrow \text{Out}(\pi_1(N)) \cong \text{Isom}(M)$

(Equivalent) Question: What is the maximum size of a subgroup of $Out(\pi_1(N))$ that lifts to Diff(N)? E.g. does $p : Diff(N) \to Out(\pi_1(N))$ split?



(Farrell-Jones): Fix n with $\Theta_n \neq 0$.



(Farrell-Jones): Fix n with $\Theta_n \neq 0$.

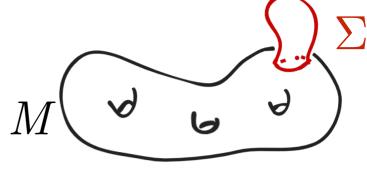
M

Then $\exists M^n$ and $N = M \# \Sigma$ so that for every finite G < Diff(N), $|G| \le \frac{1}{2} |\text{Isom}(M)|$.

(Farrell-Jones): Fix n with $\Theta_n \neq 0$.

- Then $\exists M^n$ and $N = M \# \Sigma$ so that for every finite G < Diff(N), $|G| \le \frac{1}{2} |\text{Isom}(M)|$.
- In fact they show: if M stably parallelizable and $2\Sigma \neq 0$, then $\operatorname{Im}(p) = \operatorname{Isom}^+(M)$.

$$p: \operatorname{Diff}(N) \to \operatorname{Out}(\pi_1(N)) \cong \operatorname{Isom}(M)$$

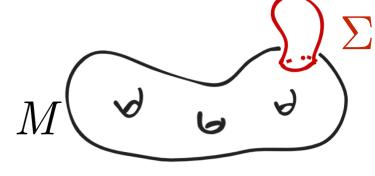


(Farrell-Jones): Fix n with $\Theta_n \neq 0$.

- Then $\exists M^n$ and $N = M \# \Sigma$ so that for every finite G < Diff(N), $|G| \le \frac{1}{2} |\text{Isom}(M)|$.
- In fact they show: if M stably parallelizable and $2\Sigma \neq 0$, then $\operatorname{Im}(p) = \operatorname{Isom}^+(M)$.

$$p: \operatorname{Diff}(N) \to \operatorname{Out}(\pi_1(N)) \cong \operatorname{Isom}(M)$$

<u>**Problem</u>: give example N=M\#\Sigma with no Isom⁺(M) action.**</u>



(Farrell-Jones): Fix n with $\Theta_n \neq 0$.

- Then $\exists M^n$ and $N = M \# \Sigma$ so that for every finite G < Diff(N), $|G| \le \frac{1}{2} |\text{Isom}(M)|$.
- In fact they show: if M stably parallelizable and $2\Sigma \neq 0$, then $\operatorname{Im}(p) = \operatorname{Isom}^+(M)$.

$$p: \operatorname{Diff}(N) \to \operatorname{Out}(\pi_1(N)) \cong \operatorname{Isom}(M)$$

<u>**Problem</u>: give example N=M\#\Sigma with no Isom⁺(M) action.**</u>

(Naive) Conjecture: If Isom(M) acts freely on M, then

(Farrell-Jones): Fix n with $\Theta_n \neq 0$.

- Then $\exists M^n$ and $N = M \# \Sigma$ so that for every finite G < Diff(N), $|G| \le \frac{1}{2} |\text{Isom}(M)|$.
- In fact they show: if M stably parallelizable and $2\Sigma \neq 0$, then $\operatorname{Im}(p) = \operatorname{Isom}^+(M)$.

$$p: \operatorname{Diff}(N) \to \operatorname{Out}(\pi_1(N)) \cong \operatorname{Isom}(M)$$

<u>**Problem</u>: give example N=M\#\Sigma with no Isom⁺(M) action.</u>**

(Naive) Conjecture: If Isom(M) acts freely on M, then G < Isom(M) acts on $N=M\#\Sigma \iff |G|$ divides $|\Sigma|$.

Example: $N = M_{\gamma,\varphi}$

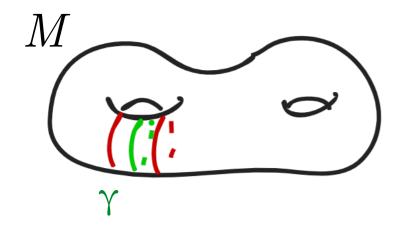
Example: $N = M_{\gamma,\varphi}$

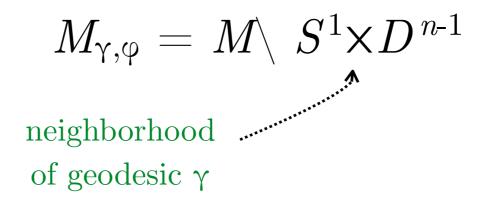
 $M_{\mathrm{Y}, \mathrm{arphi}} = M ackslash \ S^1 \! imes D^{\,n\!-\!1}$

Example: $N = M_{\gamma,\varphi}$

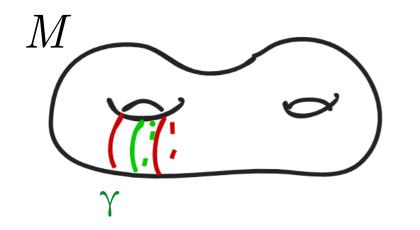
 $M_{\mathrm{Y}, arphi} = M ackslash S^1 \!\! imes \! D^{n\!-\!1}$ neighborhood of geodesic γ

Example: $N = M_{\gamma,\varphi}$



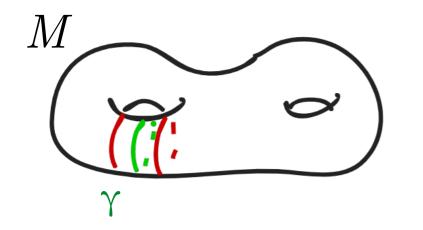


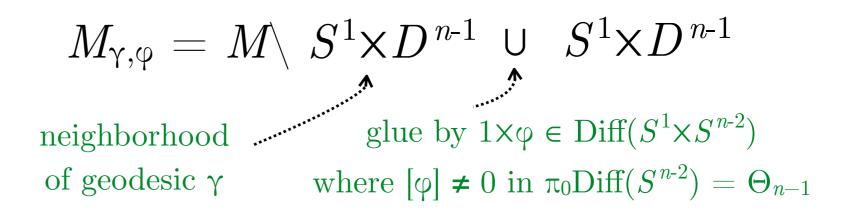
Example: $N = M_{\gamma,\varphi}$



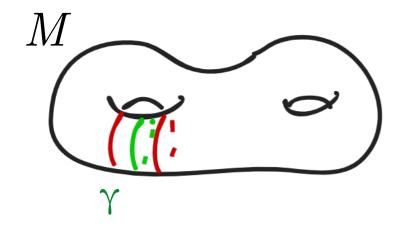
 $M_{{
m Y}, arphi} = M ackslash S^1 \!\! imes \!\! D^{n\!-\!1} \, \cup \, S^1 \!\! imes \!\! D^{n\!-\!1}$ neighborhood of geodesic $\boldsymbol{\gamma}$

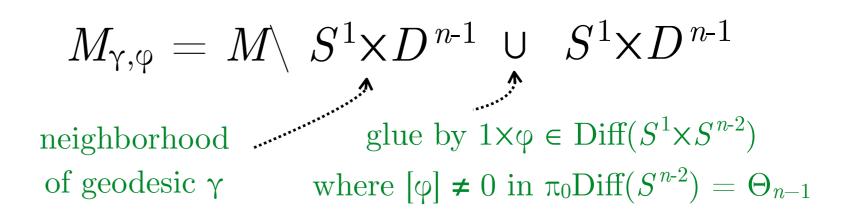
Example: $N = M_{\gamma,\varphi}$





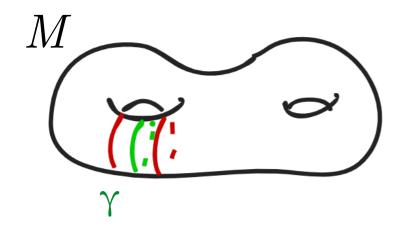
Example: $N = M_{\gamma,\varphi}$

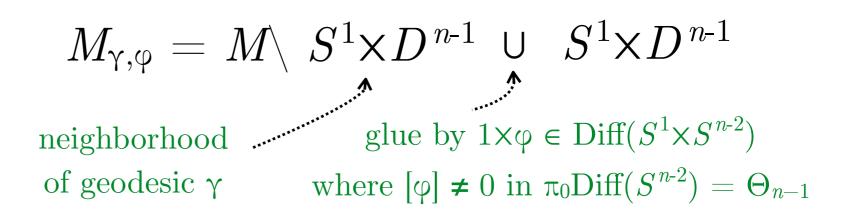




<u>Theorem</u> (Bustamante-T). Fix n with $\Theta_{n-1} \neq 0$.

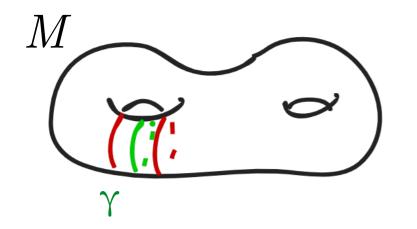
Example: $N = M_{\gamma,\varphi}$





<u>Theorem</u> (Bustamante-T). Fix n with $\Theta_{n-1} \neq 0$. For each $d \geq 2$, $\exists M^n$ and $N = M_{\gamma,\varphi}$ so that for every finite G < Diff(N), $|G| \leq \frac{1}{d} |\text{Isom}(M)|$.

Example: $N = M_{\gamma,\varphi}$



$$M_{\gamma,\varphi} = M \setminus S^{1} \times D^{n-1} \cup S^{1} \times D^{n-1}$$

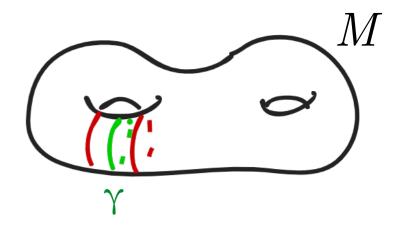
neighborhood glue by $1 \times \varphi \in \text{Diff}(S^{1} \times S^{n-2})$
of geodesic γ where $[\varphi] \neq 0$ in $\pi_0 \text{Diff}(S^{n-2}) = \Theta_{n-1}$

<u>Theorem</u> (Bustamante-T). Fix *n* with $\Theta_{n-1} \neq 0$. For each $d \geq 2$, $\exists M^n$ and $N = M_{\gamma,\varphi}$ so that for every finite G < Diff(N), $|G| \leq \frac{1}{d} |\text{Isom}(M)|$.

Proved by showing $\operatorname{Im}(p)$ has index $\geq d$ in $\operatorname{Isom}(M)$ $p: \operatorname{Diff}(N) \to \operatorname{Out}(\pi_1(N)) \cong \operatorname{Isom}(M)$

$$N=M_{{
m Y}, arphi}$$

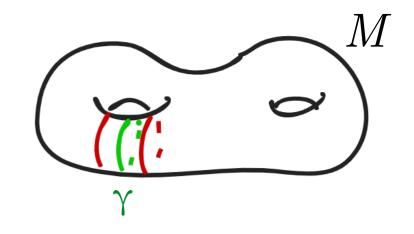
Proof Sketch



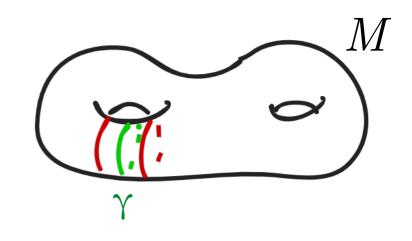
Proof Sketch

 $N=M_{{
m Y}, arphi}$

• Assume M has an order-d isometry α . $\underline{WTS}: \langle \alpha \rangle \cap \operatorname{Im}(p) = \{1\}.$ $p: \operatorname{Diff}(N) \to \operatorname{Out}(\pi_1(N)) \cong \operatorname{Isom}(M)$



• Assume M has an order-d isometry α . <u>WTS</u>: $\langle \alpha \rangle \cap \operatorname{Im}(p) = \{1\}.$ $p : \operatorname{Diff}(N) \to \operatorname{Out}(\pi_1(N)) \cong \operatorname{Isom}(M)$



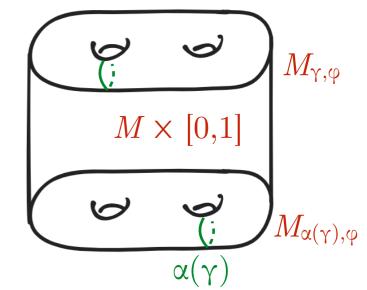
• <u>Step 1</u> If $\exists f \in \text{Diff}(N)$ inducing $\alpha \in \text{Out}(\pi_1(N))$ then $M_{\gamma,\varphi}$ and $M_{\alpha(\gamma),\varphi}$ are *concordant* smooth structures.

Proof Sketch

 $N=M_{\mathrm{Y}, \mathrm{\phi}}$

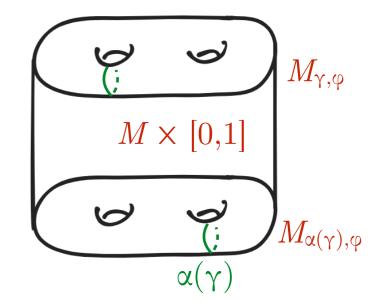
Proof Sketch

• Assume *M* has an order-*d* isometry α . <u>WTS</u>: $\langle \alpha \rangle \cap \operatorname{Im}(p) = \{1\}.$ $p: \operatorname{Diff}(N) \to \operatorname{Out}(\pi_1(N)) \cong \operatorname{Isom}(M)$



• <u>Step 1</u> If $\exists f \in \text{Diff}(N)$ inducing $\alpha \in \text{Out}(\pi_1(N))$ then $M_{\gamma,\varphi}$ and $M_{\alpha(\gamma),\varphi}$ are *concordant* smooth structures.

• Assume *M* has an order-*d* isometry α . <u>WTS</u>: $\langle \alpha \rangle \cap \operatorname{Im}(p) = \{1\}.$ $p : \operatorname{Diff}(N) \to \operatorname{Out}(\pi_1(N)) \cong \operatorname{Isom}(M)$

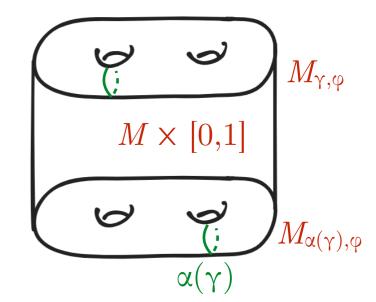


- <u>Step 1</u> If $\exists f \in \text{Diff}(N)$ inducing $\alpha \in \text{Out}(\pi_1(N))$ then $M_{\gamma,\varphi}$ and $M_{\alpha(\gamma),\varphi}$ are *concordant* smooth structures.
- <u>Step 2</u> Assume M stably parallelizable.

$$\begin{cases} \text{smooth structures} \\ \text{on } M \end{cases} \\ / \text{concordance} \end{cases} \xrightarrow{1-1} \left\{ \begin{array}{c} \text{maps} \\ M \to \text{Top/O} \end{array} \right\} / \text{homotopy}$$

Proof Sketch

• Assume *M* has an order-*d* isometry α . <u>WTS</u>: $\langle \alpha \rangle \cap \operatorname{Im}(p) = \{1\}.$ $p : \operatorname{Diff}(N) \to \operatorname{Out}(\pi_1(N)) \cong \operatorname{Isom}(M)$



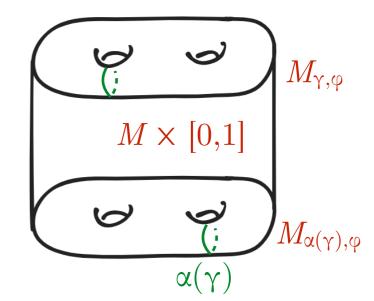
- <u>Step 1</u> If $\exists f \in \text{Diff}(N)$ inducing $\alpha \in \text{Out}(\pi_1(N))$ then $M_{\gamma,\varphi}$ and $M_{\alpha(\gamma),\varphi}$ are *concordant* smooth structures.
- <u>Step 2</u> Assume M stably parallelizable.

 $\begin{cases} \text{smooth structures} \\ \text{on } M \end{cases} \\ /\text{concordance} \end{cases} \xrightarrow{1-1} \left\{ \begin{array}{c} \text{maps} \\ M \to \text{Top/O} \end{array} \right\} /\text{homotopy}$

Proof Sketch

Assume there is homomorphism $\pi_1(M) \to \mathbb{Z}^d$ with $\alpha^i(\gamma) \longmapsto e_i$ Then $M_{\alpha^i(\gamma),\varphi}$ and $M_{\alpha^j(\gamma),\varphi}$ are not concordant $\forall i,j$.

• Assume *M* has an order-*d* isometry α . <u>WTS</u>: $\langle \alpha \rangle \cap \operatorname{Im}(p) = \{1\}.$ $p : \operatorname{Diff}(N) \to \operatorname{Out}(\pi_1(N)) \cong \operatorname{Isom}(M)$



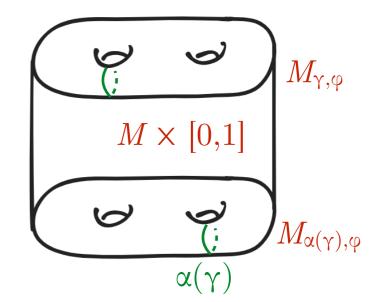
- <u>Step 1</u> If $\exists f \in \text{Diff}(N)$ inducing $\alpha \in \text{Out}(\pi_1(N))$ then $M_{\gamma,\varphi}$ and $M_{\alpha(\gamma),\varphi}$ are *concordant* smooth structures.
- <u>Step 2</u> Assume M stably parallelizable.

 $\begin{cases} \text{smooth structures} \\ \text{on } M \end{cases} \\ /\text{concordance} \end{cases} \xrightarrow{1-1} \left\{ \begin{array}{c} \text{maps} \\ M \to \text{Top/O} \end{array} \right\} /\text{homotopy}$

Proof Sketch

Assume there is homomorphism $\pi_1(M) \to \mathbb{Z}^d$ with $\alpha^i(\gamma) \longmapsto e_i$ Then $M_{\alpha^i(\gamma),\varphi}$ and $M_{\alpha^j(\gamma),\varphi}$ are not concordant $\forall i,j$. $\Longrightarrow \langle \alpha \rangle \cap \operatorname{Im}(p) = \{1\}$ $N=M_{\mathrm{Y}, \mathrm{\phi}}$

• Assume *M* has an order-*d* isometry α . <u>WTS</u>: $\langle \alpha \rangle \cap \operatorname{Im}(p) = \{1\}.$ $p : \operatorname{Diff}(N) \to \operatorname{Out}(\pi_1(N)) \cong \operatorname{Isom}(M)$



- <u>Step 1</u> If $\exists f \in \text{Diff}(N)$ inducing $\alpha \in \text{Out}(\pi_1(N))$ then $M_{\gamma,\varphi}$ and $M_{\alpha(\gamma),\varphi}$ are *concordant* smooth structures.
- <u>Step 2</u> Assume M stably parallelizable.

 $\begin{cases} \text{smooth structures} \\ \text{on } M \end{cases} \\ /\text{concordance} \end{cases} \xrightarrow{1-1} \left\{ \begin{array}{c} \text{maps} \\ M \to \text{Top/O} \end{array} \right\} /\text{homotopy}$

Proof Sketch

Assume there is homomorphism $\pi_1(M) \to \mathbb{Z}^d$ with $\alpha^i(\gamma) \longmapsto e_i$ Then $M_{\alpha^i(\gamma),\varphi}$ and $M_{\alpha^j(\gamma),\varphi}$ are not concordant $\forall i,j$. $\Longrightarrow \langle \alpha \rangle \cap \operatorname{Im}(p) = \{1\}$

• <u>Step 3</u> Show examples satisfying the assumptions exist.

Question

Does there exist M with $|\text{Isom}(M)| \gg 1$ and N exotic smooth structure that is *asymmetic*, i.e. Diff(N) has no nontrivial finite order element?

Question

Does there exist M with $|\text{Isom}(M)| \gg 1$ and N exotic smooth structure that is *asymmetic*, i.e. Diff(N) has no nontrivial finite order element?

Equivalently, $p : \text{Diff}(N) \to \text{Out}(\pi)$ is trivial.

Thank you.