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Specifically, what is the maximum size of a finite subgroup 
G<Diff(N)? 

n ≫0.

N,M homeomorphic but not diffeomorphic
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M 
n hyperbolic, N exotic smooth structure on M

Question: what is maximum size of a finite subgroup 
G<Diff(N)? 

(Borel):  
Any finite G<Diff(N)  

acts faithfully on π1(N).

E.g. does p : Diff(N) → Out(π1(N)) split? 
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p : Diff(N) → Out(π1(N))≅ Isom(M)

Proved by showing Im(p) has index ≥ d in Isom(M)
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Equivalently, p : Diff(N) → Out(π) is trivial.



Thank you.


