Convex cocompact subgroups of the Goeritz group

Bena Tshishiku UC-Riverside Topology Seminar 5/19/2021

Convex cocompactness in mapping class groups

• $S=S_g$ closed oriented surface, genus $g \ge 2$

- $S=S_g$ closed oriented surface, genus $g \ge 2$
- Surface group extension

- $S=S_g$ closed oriented surface, genus $g \ge 2$
- Surface group extension

$$1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

- $S=S_g$ closed oriented surface, genus $g \ge 2$
- Surface group extension

$1 \to \pi_1(S) \to \Gamma_G \to G \to 1$

- $S=S_g$ closed oriented surface, genus $g \ge 2$
- Surface group extension

$$\begin{array}{ccc} \operatorname{Out}(\pi_1(S)) \\ \uparrow \\ 1 \to \pi_1(S) \to & \Gamma_G & \to & G & \to 1 \end{array}$$

- $S=S_g$ closed oriented surface, genus $g \ge 2$
- Surface group extension

$$\begin{array}{cccc} 1 \to \pi_1(S) \to \operatorname{Aut}(\pi_1(S)) \to \operatorname{Out}(\pi_1(S)) \to 1 \\ & & & \uparrow & & \uparrow \\ 1 \to \pi_1(S) \to & \Gamma_G & \to & G & \to 1 \end{array}$$

- $S=S_g$ closed oriented surface, genus $g \ge 2$
- Surface group extension

$$\begin{array}{c} \operatorname{Mod}(S) := \pi_0(\operatorname{Homeo}(S)) \\ \stackrel{\scriptscriptstyle{\mathsf{M}}}{\underset{\scriptstyle{||}}{}} 1 \to \pi_1(S) \to \operatorname{Aut}(\pi_1(S)) \to \operatorname{Out}(\pi_1(S)) \to 1 \\ \stackrel{\scriptscriptstyle{\mathsf{M}}}{\underset{\scriptstyle{||}}{}} 1 \to \pi_1(S) \to \Gamma_G \to G \to 1 \end{array}$$

- $S=S_g$ closed oriented surface, genus $g \ge 2$
- Surface group extension

$$(\text{Dehn-Nielsen-Baer}) \xrightarrow{\text{Mod}(S) := \pi_0(\text{Homeo}(S))} \\ 1 \to \pi_1(S) \to \text{Aut}(\pi_1(S)) \to \text{Out}(\pi_1(S)) \to 1 \\ || \qquad \uparrow \qquad \uparrow \qquad \uparrow \\ 1 \to \pi_1(S) \to \qquad \Gamma_G \quad \to \quad G \qquad \to 1$$

- $S=S_g$ closed oriented surface, genus $g \ge 2$
- Surface group extension

$$(\text{Dehn-Nielsen-Baer}) \xrightarrow{\text{Mod}(S) := \pi_0(\text{Homeo}(S))} \\ 1 \to \pi_1(S) \to \text{Aut}(\pi_1(S)) \to \text{Out}(\pi_1(S)) \to 1 \\ || \qquad \uparrow \qquad \uparrow \qquad \uparrow \\ 1 \to \pi_1(S) \to \qquad \Gamma_G \quad \to \quad G \qquad \to 1$$

<u>Question</u>. Is Γ_G a hyperbolic group?

For G < Mod(S), when is Γ_G a hyperbolic group?

<u>Question</u>. For G < Mod(S), when is Γ_G a hyperbolic group?

$$1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

<u>Question</u>. For G < Mod(S), when is Γ_G a hyperbolic group?

$$1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

• (Thurston). Assume $G = \langle \varphi \rangle \subset Mod(S)$.

<u>Question</u>. For G < Mod(S), when is Γ_G a hyperbolic group?

$$1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

• (Thurston). Assume $G = \langle \varphi \rangle \subset Mod(S)$.

 Γ_G is hyperbolic $\iff \varphi$ pseudo-Anosov

<u>Question</u>. For G < Mod(S), when is Γ_G a hyperbolic group?

$$1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

• (Thurston). Assume $G = \langle \varphi \rangle \subset Mod(S)$.

$$\Gamma_G$$
 is hyperbolic $\iff \varphi$ pseudo-Anosov

infinite order, irreducible (no invariant multicurve)

<u>Question</u>. For G < Mod(S), when is Γ_G a hyperbolic group?

$$1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

• (Thurston). Assume $G = \langle \varphi \rangle \subset Mod(S)$.

 Γ_G is hyperbolic $\iff \varphi$ pseudo-Anosov

infinite order, irreducible (no invariant multicurve)

• (Farb-Mosher, Hamenstadt). For any G < Mod(S),

<u>Question</u>. For G < Mod(S), when is Γ_G a hyperbolic group?

$$1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

• (Thurston). Assume $G = \langle \varphi \rangle \subset Mod(S)$.

$$\Gamma_G$$
 is hyperbolic $\iff \varphi$ pseudo-Anosov
infinite order, irreducible (no invariant multicurve)

• (Farb-Mosher, Hamenstadt). For any G < Mod(S), Γ_G is hyperbolic $\iff G < Mod(S)$ is convex cocompact

<u>Question</u>. For G < Mod(S), when is Γ_G a hyperbolic group?

$$1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

• (Thurston). Assume $G = \langle \varphi \rangle \subset Mod(S)$.

 Γ_G is hyperbolic $\iff \varphi$ pseudo-Anosov infinite order, irreducible (no invariant multicurve)

• (Farb-Mosher, Hamenstadt). For any G < Mod(S),

 $\Gamma_G \text{ is hyperbolic } \iff G < \operatorname{Mod}(S) \text{ is } convex \ cocompact}$ $in \ particular \ every \ g \neq \operatorname{id} \in G \ is \ pseudo-Anosov, \ but \ this$ $is \ (potentially) \ weaker \ than \ being \ convex \ cocompact$

• Source of this notion:

• Source of this notion:

 $G < PSL_2(\mathbb{C}) = Isom(\mathbb{H}^3)$ discrete subgroup (Kleinian group)

• Source of this notion:

 $G < PSL_2(\mathbb{C}) = Isom(\mathbb{H}^3)$ discrete subgroup (Kleinian group)

G is *convex cocomapct* if there exists closed convex invariant $X \subset \mathbb{H}^3$ so that X/G compact.

• Source of this notion:

 $G < PSL_2(\mathbb{C}) = Isom(\mathbb{H}^3)$ discrete subgroup (Kleinian group)

G is convex cocomapct if there exists closed convex invariant $X \subset \mathbb{H}^3$ so that X/G compact.

e.g. quasi-Fuchsian subgroups $\pi_1(S) \hookrightarrow PSL_2(\mathbb{C})$

• Source of this notion:

 $G < PSL_2(\mathbb{C}) = Isom(\mathbb{H}^3)$ discrete subgroup (Kleinian group)

G is *convex cocomapct* if there exists closed convex invariant $X \subset \mathbb{H}^3$ so that X/G compact.

e.g. quasi-Fuchsian subgroups $\pi_1(S) \hookrightarrow PSL_2(\mathbb{C})$

• Farb-Mosher extend this notion to $G < Mod(S) \curvearrowright Teich(S)$

• Source of this notion:

 $G < PSL_2(\mathbb{C}) = Isom(\mathbb{H}^3)$ discrete subgroup (Kleinian group)

G is *convex cocomapct* if there exists closed convex invariant $X \subset \mathbb{H}^3$ so that X/G compact.

e.g. quasi-Fuchsian subgroups $\pi_1(S) \hookrightarrow PSL_2(\mathbb{C})$

- Farb-Mosher extend this notion to $G < Mod(S) \curvearrowright Teich(S)$
- Kent-Leininger translate to GGT

• Source of this notion:

 $G < PSL_2(\mathbb{C}) = Isom(\mathbb{H}^3)$ discrete subgroup (Kleinian group)

G is convex cocomapct if there exists closed convex invariant $X \subset \mathbb{H}^3$ so that X/G compact.

e.g. quasi-Fuchsian subgroups $\pi_1(S) \hookrightarrow PSL_2(\mathbb{C})$

- Farb-Mosher extend this notion to $G < Mod(S) \curvearrowright Teich(S)$
- Kent-Leininger translate to GGT

<u>Theorem/Definition</u>. finitely generated G < Mod(S) is <u>convex cocompact</u> if the orbit map $G \to \mathscr{C}(S)$ is a quasi-isometric embedding

• Source of this notion:

 $G < PSL_2(\mathbb{C}) = Isom(\mathbb{H}^3)$ discrete subgroup (Kleinian group)

G is convex cocomapct if there exists closed convex invariant $X \subset \mathbb{H}^3$ so that X/G compact.

e.g. quasi-Fuchsian subgroups $\pi_1(S) \hookrightarrow PSL_2(\mathbb{C})$

- Farb-Mosher extend this notion to $G < Mod(S) \curvearrowright Teich(S)$
- Kent-Leininger translate to GGT

<u>Theorem/Definition</u>. finitely generated G < Mod(S) is <u>convex cocompact</u> if the orbit map $G \to \mathscr{C}(S)$ is a quasi-isometric embedding <u>curve complex</u>

 \iff

G < Mod(S) is convex cocompact

orbit map $G \to \mathscr{C}(S)$ is a quasi-isometric embedding

 \iff

G < Mod(S) is convex cocompact

orbit map $G \to \mathscr{C}(S)$ is a quasi-isometric embedding

 $\mathscr{C}(S)$ curve complex

 \iff

vertices \leftrightarrow

orbit map $G \to \mathscr{C}(S)$ is a quasi-isometric embedding

G < Mod(S) is convex cocompact

 $\mathscr{C}(S)$ curve complex

isotopy-classes of essential

simple closed curves on ${\cal S}$

 \Leftrightarrow

orbit map $G \to \mathscr{C}(S)$ is a quasi-isometric embedding

G < Mod(S) is convex cocompact

$\mathscr{C}(S)$ curve complex

vertices \leftrightarrow isotopy-classes of essential

simple closed curves on ${\cal S}$

G < Mod(S) is convex cocompact

orbit map $G \to \mathscr{C}(S)$ is a quasi-isometric embedding

 $\mathscr{C}(S)$ curve complex

vertices \leftrightarrow isotopy-classes of essential simple closed curves on S

 $G < \operatorname{Mod}(S)$ is convex cocompact

orbit map $G \to \mathscr{C}(S)$ is a quasi-isometric embedding

 $\mathscr{C}(S)$ curve complex

vertices \leftrightarrow isotopy-classes of essential simple closed curves on S

 $G < \operatorname{Mod}(S)$ is convex cocompact

orbit map $G \to \mathscr{C}(S)$ is a quasi-isometric embedding

 $Mod(S) \curvearrowright \mathscr{C}(S)$ curve complex

vertices \leftrightarrow isotopy-classes of essential simple closed curves on S

 $G < \operatorname{Mod}(S)$ is convex cocompact \iff

orbit map $G \to \mathscr{C}(S)$ is a quasi-isometric embedding

 $Mod(S) \curvearrowright \mathscr{C}(S)$ curve complex

vertices \leftrightarrow isotopy-classes of essential simple closed curves on S

edges \leftrightarrow disjoint representatives

X, Y metric spaces $f: X \rightarrow Y$ is a <u>quasi-isometric embedding</u> if $\exists K, C$ so that

The curve complex $\mathscr{C}(S)$

 $G < \operatorname{Mod}(S)$ is convex cocompact \iff

orbit map $G \to \mathscr{C}(S)$ is a quasi-isometric embedding

 $Mod(S) \curvearrowright \mathscr{C}(S)$ curve complex

vertices \leftrightarrow isotopy-classes of essential simple closed curves on S

edges \leftrightarrow disjoint representatives

X, Y metric spaces $f: X \to Y$ is a <u>quasi-isometric embedding</u> if $\exists K, C$ so that $\frac{1}{K} \cdot d(x, y) - C \leq d(f(x), f(y)) \leq K \cdot d(x, y) + C$

The curve complex $\mathscr{C}(S)$

 $G < \operatorname{Mod}(S)$ is convex cocompact \iff

orbit map $G \to \mathscr{C}(S)$ is a quasi-isometric embedding

 $Mod(S) \curvearrowright \mathscr{C}(S)$ curve complex

vertices \leftrightarrow isotopy-classes of essential simple closed curves on S

edges \leftrightarrow disjoint representatives

X, Y metric spaces $f: X \rightarrow Y$ is a <u>quasi-isometric embedding</u> if $\exists K, C$ so that

$$\frac{1}{K} \cdot d(x, y) - C \leq d(f(x), f(y)) \leq K \cdot d(x, y) + C \quad \forall x, y \in X$$

Summary so far

<u>Question</u>. For G < Mod(S), when is Γ_G a hyperbolic group?

$$1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

 Γ_G is hyperbolic $\iff G < Mod(S)$ is convex cocompact

 $\iff \begin{array}{l} \text{orbit map } G \to \mathscr{C}(S) \text{ is a} \\ \text{quasi-isometric embedding} \end{array}$

1. Geometry of surface bundles

1. Geometry of surface bundles

<u>Question</u>. Does there exist a bundle $S_g \to E \to S_h$ where

1. Geometry of surface bundles

<u>Question</u>. Does there exist a bundle $S_g \to E \to S_h$ where

(a) *E* is a hyperbolic manifold $(E \cong \mathbb{H}^4/\Gamma)$?

1. Geometry of surface bundles

Question. Does there exist a bundle $S_g \to E \to S_h$ where (a) E is a hyperbolic manifold $(E \cong \mathbb{H}^4/\Gamma)$? \longrightarrow no if SW invariants vanish for hyperbolic 4-manifolds

1. Geometry of surface bundles

Question. Does there exist a bundle $S_g \to E \to S_h$ where (a) E is a hyperbolic manifold $(E \cong \mathbb{H}^4/\Gamma)$? \longrightarrow no if SW invariants vanish for hyperbolic (b) E is Riemannian negatively curved? 4-manifolds

1. Geometry of surface bundles

Question. Does there exist a bundle $S_g \to E \to S_h$ where (a) E is a hyperbolic manifold $(E \cong \mathbb{H}^4/\Gamma)$? \longrightarrow no if SW invariants vanish for hyperbolic (b) E is Riemannian negatively curved? 4-manifolds

(c) $\pi_1(E)$ is a hyperbolic group?

1. Geometry of surface bundles

1. Geometry of surface bundles

<u>Question</u>. Does there exist a bundle $S_g \to E \to S_h$ where (a) E is a hyperbolic manifold $(E \cong \mathbb{H}^4/\Gamma)$? \longrightarrow no if SW invariants vanish for hyperbolic (b) E is Riemannian negatively curved? 4-manifolds (c) $\pi_1(E)$ is a hyperbolic group? $S_g \to E \to S_h$ \longrightarrow $1 \to \pi_1(S_g) \to \pi_1(E) \to \pi_1(S_h) \to 1$ <u>Question</u> (restatement of (c)). Does there exist a subgroup $\pi_1(S_h) < Mod(S_q)$ that's convex cocompact?

1. Geometry of surface bundles

<u>Question</u>. Does there exist a bundle $S_q \to E \to S_h$ where (a) E is a hyperbolic manifold $(E \cong \mathbb{H}^4/\Gamma)$? \longrightarrow no if SW invariants vanish for hyperbolic (b) E is Riemannian negatively curved? 4-manifolds (c) $\pi_1(E)$ is a hyperbolic group? $S_g \to E \to S_h$ \longrightarrow $1 \to \pi_1(S_g) \to \pi_1(E) \to \pi_1(S_h) \to 1$ <u>Question</u> (restatement of (c)). Does there exist a subgroup $\pi_1(S_h) < Mod(S_q)$ that's convex cocompact?

All known examples of convex co-cpt G < Mod(S) are virtually free.

- 1. Geometry of surface bundles
- 2. Hyperbolization of groups

- 1. Geometry of surface bundles
- 2. Hyperbolization of groups

<u>Problem</u> (Gromov). Assume Γ is a group with a finite $K(\Gamma, 1)$.

- 1. Geometry of surface bundles
- 2. Hyperbolization of groups

<u>Problem</u> (Gromov). Assume Γ is a group with a finite $K(\Gamma, 1)$. Prove/disprove: If Γ contains no Baumslag-Solitar subgroup, then Γ is hyperbolic.

- 1. Geometry of surface bundles
- 2. Hyperbolization of groups

Problem (Gromov). Assume Γ is a group with a finite K(Γ,1). Prove/disprove: If Γ contains no Baumslag-Solitar subgroup, then Γ is hyperbolic. $BS(p,q) = \langle a,b \mid a^{-1}b^{p}a = b^{q} \rangle$

- 1. Geometry of surface bundles
- 2. Hyperbolization of groups

Problem (Gromov). Assume Γ is a group with a finite K(Γ,1). Prove/disprove: If Γ contains no Baumslag-Solitar subgroup, then Γ is hyperbolic. $BS(p,q) = \langle a,b \mid a^{-1}b^p a = b^q \rangle$

Exercise. If G < Mod(S) is purely pseudo-Anosov, then Γ_G does not contain BS(p,q).

- 1. Geometry of surface bundles
- 2. Hyperbolization of groups

Problem (Gromov). Assume Γ is a group with a finite K(Γ,1). Prove/disprove: If Γ contains no Baumslag-Solitar subgroup, then Γ is hyperbolic. $BS(p,q) = \langle a,b \mid a^{-1}b^{p}a = b^{q} \rangle$

<u>Exercise</u>. If G < Mod(S) is purely pseudo-Anosov, then Γ_G does not contain BS(p,q).

<u>Problem</u> (Farb-Mosher, Gromov for Γ_G): Prove/disprove:

- 1. Geometry of surface bundles
- 2. Hyperbolization of groups

Problem (Gromov). Assume Γ is a group with a finite K(Γ,1). Prove/disprove: If Γ contains no Baumslag-Solitar subgroup, then Γ is hyperbolic. $BS(p,q) = \langle a,b \mid a^{-1}b^{p}a = b^{q} \rangle$

Exercise. If G < Mod(S) is purely pseudo-Anosov, then Γ_G does not contain BS(p,q).

Problem (Farb-Mosher, Gromov for Γ_G): Prove/disprove: If G < Mod(S) is purely pseudo-Anosov, then G is convex cocompact.

G < Mod(S) Γ_G hyperbolic $\iff G$ is convex cocompact

 $\iff G \to \mathscr{C}(S)$ q.i. embedding

Problem (Farb-Mosher). Prove/disprove G purely pseudo-Anosov $\implies G$ convex cocompact.

G < Mod(S) Γ_G hyperbolic $\iff G$ is convex cocompact $\iff G \to \mathscr{C}(S)$ q.i. embedding

<u>Problem</u> (Farb-Mosher). Prove/disprove G purely pseudo-Anosov $\implies G$ convex cocompact.

<u>Known cases</u>. This is true if G < H, for H

G < Mod(S) Γ_G hyperbolic $\iff G$ is convex cocompact $\iff G \to \mathscr{C}(S)$ q.i. embedding

<u>Problem</u> (Farb-Mosher). Prove/disprove G purely pseudo-Anosov $\implies G$ convex cocompact.

<u>Known cases</u>. This is true if G < H, for H

• a Veech group $Aff(X,\omega)$

 $G < \operatorname{Mod}(S) \qquad \Gamma_G \text{ hyperbolic} \iff G \text{ is convex cocompact}$ $\iff G \to \mathscr{C}(S) \text{ q.i. embedding}$

<u>Problem</u> (Farb-Mosher). Prove/disprove G purely pseudo-Anosov $\implies G$ convex cocompact.

<u>Known cases</u>. This is true if G < H, for H

• a Veech group $Aff(X,\omega)$

(Kent-Leininger-Schleimer)

• certain hyp. 3-mfld subgroups of Mod(S,*) (Dowdall-Kent-Leininger)

 $G < \operatorname{Mod}(S) \qquad \Gamma_G \text{ hyperbolic } \Longleftrightarrow G \text{ is convex cocompact} \\ \iff G \to \mathscr{C}(S) \text{ q.i. embedding}$

<u>Problem</u> (Farb-Mosher). Prove/disprove G purely pseudo-Anosov $\implies G$ convex cocompact.

<u>Known cases</u>. This is true if G < H, for H

• a Veech group $Aff(X,\omega)$

(Kent-Leininger-Schleimer)

- certain hyp. 3-mfld subgroups of Mod(S,*) (Dowdall-Kent-Leininger)
- certain right-angled Artin subgroups

(Koberda-Mangahas-Taylor)

 $G < \operatorname{Mod}(S) \qquad \Gamma_G \text{ hyperbolic } \Longleftrightarrow G \text{ is convex cocompact}$ $\iff G \to \mathscr{C}(S) \text{ q.i. embedding}$

<u>Problem</u> (Farb-Mosher). Prove/disprove G purely pseudo-Anosov $\implies G$ convex cocompact.

<u>Known cases</u>. This is true if G < H, for H

• a Veech group $Aff(X,\omega)$

(Kent-Leininger-Schleimer)

- certain hyp. 3-mfld subgroups of Mod(S,*) (Dowdall-Kent-Leininger)
- certain right-angled Artin subgroups This talk: genus-2 Goeritz group

(Koberda-Mangahas-Taylor)

The Goeritz group and convex cocompact subgroups

 $S^3 = V \cup W$ genus-g Heegaard splitting S_g

 $S^3 = V \cup W$ genus-g Heegaard splitting S_g

 $S^3 = V \cup W$ genus-g Heegaard splitting S_g

 $S^3 = V \cup W$ genus-g Heegaard splitting S_g

W (outside handlebody)

 $S^3 = V \cup W$ genus-g Heegaard splitting S_g

W (outside handlebody)

genus-g Goeritz group

 $S^3 = V \cup W$ genus-g Heegaard splitting S_g

W (outside handlebody)

genus-g Goeritz group Homeo (S^3, V)

 $S^3 = V \cup W$ genus-g Heegaard splitting S_g

W (outside handlebody)

V (inside handlebody)

genus-g Goeritz group $\pi_0(\operatorname{Homeo}(S^3, V))$

 $S^3 = V \cup W$ genus-g Heegaard splitting S_g

W (outside handlebody)

genus-g Goeritz group $\pi_0(\operatorname{Homeo}(S^3, V)) \to \pi_0(\operatorname{Homeo}(S_g)) = \operatorname{Mod}(S_g)$

 $S^3 = V \cup W$ genus-g Heegaard splitting S_g

W (outside handlebody)

genus-g Goeritz group $\pi_0(\operatorname{Homeo}(S^3, V)) \hookrightarrow \pi_0(\operatorname{Homeo}(S_g)) = \operatorname{Mod}(S_g)$

 $S^3 = V \cup W$ genus-g Heegaard splitting S_g

W (outside handlebody)

genus-g Goeritz group $\mathscr{G}_g := \pi_0(\operatorname{Homeo}(S^3, V)) \hookrightarrow \pi_0(\operatorname{Homeo}(S_g)) = \operatorname{Mod}(S_g)$

 $S^3 = V \cup W$ genus-g Heegaard splitting S_g

W (outside handlebody)

handle drag

genus-g Goeritz group $\mathscr{G}_g := \pi_0(\operatorname{Homeo}(S^3, V)) \hookrightarrow \pi_0(\operatorname{Homeo}(S_g)) = \operatorname{Mod}(S_g)$

 $S^3 = V \cup W$ genus-g Heegaard splitting S_g

W (outside handlebody)

handle drag

genus-g Goeritz group $\mathscr{G}_g := \pi_0(\operatorname{Homeo}(S^3, V)) \hookrightarrow \pi_0(\operatorname{Homeo}(S_g)) = \operatorname{Mod}(S_g)$ <u>Conjecture</u> (Powell). \mathscr{G}_g is finitely generated $\forall g$.

 $S^3 = V \cup W$ genus-g Heegaard splitting S_g

W (outside handlebody)

handle drag

genus-g Goeritz group $\mathscr{G}_g := \pi_0(\operatorname{Homeo}(S^3, V)) \hookrightarrow \pi_0(\operatorname{Homeo}(S_g)) = \operatorname{Mod}(S_g)$ <u>Conjecture</u> (Powell). \mathscr{G}_g is finitely generated $\forall g$. Known for $g \leq 3$ (Goeritz, Scharlemann-Freedman)

$$S^3 = V \cup W$$

 S_g
Heegaard splitting

$$\mathscr{G}_g := \pi_0(\operatorname{Homeo}(S^3, V)) \hookrightarrow \operatorname{Mod}(S)$$

Goeritz group

$$S^3 = V \cup W$$

 S_g
Heegaard splitting

Generators of $\boldsymbol{\mathscr{G}}_2$

$$\mathscr{G}_g := \pi_0(\operatorname{Homeo}(S^3, V)) \hookrightarrow \operatorname{Mod}(S)$$

Goeritz group

$$S^3 = V \cup W$$

 S_g
Heegaard splitting

$$\mathscr{G}_g := \pi_0(\operatorname{Homeo}(S^3, V)) \hookrightarrow \operatorname{Mod}(S)$$

Goeritz group

$$S^3 = V \cup W$$

 S_g
Heegaard splitting

$$\mathscr{G}_g := \pi_0(\operatorname{Homeo}(S^3, V)) \hookrightarrow \operatorname{Mod}(S)$$

Goeritz group

 α hyperelliptic

$$S^3 = V \cup W$$

 S_g
Heegaard splitting

 $\mathscr{G}_g := \pi_0(\operatorname{Homeo}(S^3, V)) \hookrightarrow \operatorname{Mod}(S)$ Goeritz group

$$S^3 = V \cup W$$

 S_g
Heegaard splitting

 $\mathscr{G}_g := \pi_0(\operatorname{Homeo}(S^3, V)) \hookrightarrow \operatorname{Mod}(S)$ Goeritz group

$$S^{3} = V \cup W$$
$$S_{g}$$
Heegaard splitting

 $\mathscr{G}_g := \pi_0(\operatorname{Homeo}(S^3, V)) \hookrightarrow \operatorname{Mod}(S)$ Goeritz group

(Scharlemann, Akbas, Cho)

$$\mathscr{G}_{2} \cong \left[(\mathbb{Z}_{2} \times \mathbb{Z}) \rtimes \mathbb{Z}_{2} \right] * (S_{3} \times \mathbb{Z}_{2}) \\ \mathbb{Z}_{2} \times \mathbb{Z}_{2}$$

$$S^{3} = V \cup W$$
$$S_{g}$$
Heegaard splitting

 $\mathscr{G}_g := \pi_0(\operatorname{Homeo}(S^3, V)) \hookrightarrow \operatorname{Mod}(S)$ Goeritz group

(Scharlemann, Akbas, Cho) $(\langle \alpha \rangle \times \langle \beta \rangle) \rtimes \langle \gamma \rangle \qquad \langle \gamma, \delta \rangle \times \langle \alpha \rangle$ $\mathscr{G}_2 \cong [(\mathbb{Z}_2 \times \mathbb{Z}) \rtimes \mathbb{Z}_2] * (S_3 \times \mathbb{Z}_2)$ $\mathbb{Z}_2 \times \mathbb{Z}_2$

in genus 2

 $in \ genus \ 2$

<u>Theorem A</u> (T). Finitely-generated, purely pseudo-Anosov subgroups of \mathcal{G} are convex cocompact.

$in \ genus \ 2$

Theorem A (T). Finitely-generated, purely pseudo-Anosov subgroups of $\boldsymbol{\mathscr{G}}$ are convex cocompact.

<u>Theorem B</u> (T). $g \in \mathcal{G} < Mod(S)$ is pseudo-Anosov \iff

$in \ genus \ 2$

Theorem A (T). Finitely-generated, purely pseudo-Anosov subgroups of \mathcal{G} are convex cocompact.

<u>Theorem B</u> (T). $g \in \mathcal{G} < Mod(S)$ is pseudo-Anosov \iff

g is not conjugate into any of the following subgroups

- primitive disk stabilizer $\langle \ \alpha, \ \beta, \ \gamma \delta \ \rangle$

$in \ genus \ 2$

Theorem A (T). Finitely-generated, purely pseudo-Anosov subgroups of \mathcal{G} are convex cocompact.

<u>Theorem B</u> (T). $g \in \mathcal{G} < Mod(S)$ is pseudo-Anosov \iff

- primitive disk stabilizer $\langle \ \alpha, \ \beta, \ \gamma \delta \ \rangle$
- reducing sphere stabilizer $\langle \ \alpha, \ \beta, \ \gamma \ \rangle$

$in \ genus \ 2$

<u>Theorem A</u> (T). Finitely-generated, purely pseudo-Anosov subgroups of \mathscr{G} are convex cocompact.

<u>Theorem B</u> (T). $g \in \mathcal{G} < Mod(S)$ is pseudo-Anosov \iff

- primitive disk stabilizer $\langle \ \alpha, \ \beta, \ \gamma \delta \ \rangle$
- reducing sphere stabilizer $\langle \ \alpha, \ \beta, \ \gamma \ \rangle$
- pants-decomposition stabilizer $\langle \ \alpha, \ \gamma, \ \delta \ \rangle$

$in \ genus \ 2$

<u>Theorem A</u> (T). Finitely-generated, purely pseudo-Anosov subgroups of \mathscr{G} are convex cocompact.

<u>Theorem B</u> (T). $g \in \mathcal{G} < Mod(S)$ is pseudo-Anosov \iff

- primitive disk stabilizer $\langle \ \alpha, \ \beta, \ \gamma \delta \ \rangle$
- reducing sphere stabilizer $\langle \ \alpha, \ \beta, \ \gamma \ \rangle$
- pants-decomposition stabilizer $\langle \ \alpha, \ \gamma, \ \delta \ \rangle$
- *I*-bundle stabilizer $\langle \beta \delta \beta^{-1} \delta \rangle$

$in \ genus \ 2$

<u>Theorem A</u> (T). Finitely-generated, purely pseudo-Anosov subgroups of \mathscr{G} are convex cocompact.

<u>Theorem B</u> (T). $g \in \mathcal{G} < Mod(S)$ is pseudo-Anosov \iff

g is not conjugate into any of the following subgroups

- primitive disk stabilizer $\langle \ \alpha, \ \beta, \ \gamma \delta \ \rangle$
- reducing sphere stabilizer $\langle \ \alpha, \ \beta, \ \gamma \ \rangle$
- pants-decomposition stabilizer $\langle \ \alpha, \ \gamma, \ \delta \ \rangle$
- *I*-bundle stabilizer $\langle \beta \delta \beta^{-1} \delta \rangle$

(sample) Corollary. For each $n \ge 2$,

$in \ genus \ 2$

<u>Theorem A</u> (T). Finitely-generated, purely pseudo-Anosov subgroups of \mathscr{G} are convex cocompact.

<u>Theorem B</u> (T). $g \in \mathcal{G} < Mod(S)$ is pseudo-Anosov \iff

g is not conjugate into any of the following subgroups

- primitive disk stabilizer $\langle \ \alpha, \ \beta, \ \gamma \delta \ \rangle$
- reducing sphere stabilizer $\langle \ \alpha, \ \beta, \ \gamma \ \rangle$
- pants-decomposition stabilizer $\langle \ \alpha, \ \gamma, \ \delta \ \rangle$
- *I*-bundle stabilizer $\langle \beta \delta \beta^{-1} \delta \rangle$

(<u>sample</u>) Corollary. For each $n \ge 2$,

 $G_n = \langle \beta^n \delta, \delta \beta^n \rangle$ is purely pseudo-Anosov, hence convex cocompact.

 $S^3 = V \cup W \ S$

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

 $S^3 = V \cup W \ S$

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

 $S^3 = V \cup W \ S$

a geometrically meaningful orbit:

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

 $S^3 = V \cup W \ S$

a geometrically meaningful orbit:

<u>Primitive disks complex</u> $\mathcal{P} \subset \mathcal{C}(S)$

 $S^3 = V \cup W \\ S$

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

a geometrically meaningful orbit:

<u>Primitive disks complex</u> $\mathcal{P} \subset \mathcal{C}(S)$ spanned by vertices $a \in \mathcal{C}(S)$ where

 $S^3 = V \cup W \\ S$

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

a geometrically meaningful orbit:

<u>Primitive disks complex</u> $\mathcal{P} \subset \mathcal{C}(S)$ spanned by vertices $a \in \mathcal{C}(S)$ where

• $a = \partial D$ for some disk $D \subset V$

 $S^3 = V \cup W$ S

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

a geometrically meaningful orbit:

Primitive disks complex $\mathcal{P} \subset \mathcal{C}(S)$ spanned by vertices $a \in \mathcal{C}(S)$ where

- $a = \partial D$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D} = \{ pt \}$

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

 $a \ geometrically \ meaningful \ orbit:$

Primitive disks complex $\mathcal{P} \subset \mathcal{C}(S)$ spanned by vertices $a \in \mathcal{C}(S)$ where

- $a = \partial D$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D} = \{ \text{pt} \}$

D is called a <u>primitive disk</u>

 $S^3 = V \cup W$ S

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

a geometrically meaningful orbit:

Primitive disks complex $\mathcal{P} \subset \mathcal{C}(S)$ spanned by vertices $a \in \mathcal{C}(S)$ where

- $a = \partial D$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D} = \{ \text{pt} \}$

D is called a <u>primitive disk</u>

 $S^3 = V \underset{S}{\cup} W$

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

a geometrically meaningful orbit:

<u>Primitive disks complex</u> $\mathcal{P} \subset \mathcal{C}(S)$ spanned by vertices $a \in \mathcal{C}(S)$ where

- $a = \partial D$ for some disk $D \subset V$
- $\exists \operatorname{disk} \widehat{D} \subset W \operatorname{so that} a \cap \partial \widehat{D} = \{\operatorname{pt}\}$

D is called a <u>primitive disk</u>

 $a \in \mathscr{P}$ vertex

 $S^3 = V \underset{S}{\cup} W$

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

a geometrically meaningful orbit:

Primitive disks complex $\mathcal{P} \subset \mathcal{C}(S)$ spanned by vertices $a \in \mathcal{C}(S)$ where

- $a = \partial D$ for some disk $D \subset V$
- $\exists \operatorname{disk} \widehat{D} \subset W \operatorname{so that} a \cap \partial \widehat{D} = \{\operatorname{pt}\}$

D is called a <u>primitive disk</u>

 $a \in \mathscr{P}$ vertex

 $S^3 = V \cup W$ S

a ∉ **P** doesn't bound disk in V

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

a geometrically meaningful orbit:

Primitive disks complex $\mathcal{P} \subset \mathcal{C}(S)$ spanned by vertices $a \in \mathcal{C}(S)$ where

- $a = \partial D$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D} = \{ \text{pt} \}$

D is called a <u>primitive disk</u>

 $S^3 = V \cup W \\ S$

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

a geometrically meaningful orbit:

Primitive disks complex $\mathcal{P} \subset \mathcal{C}(S)$ spanned by vertices $a \in \mathcal{C}(S)$ where

- $a = \partial D$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D} = \{ \text{pt} \}$

D is called a <u>primitive disk</u>

 $a \not\in \mathscr{P}$

bounds disk in V, is nonseparating, but $\nexists \widehat{D}$

Key ingredient: distance formula

• precise accounting for why $\mathscr{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. embedding

- precise accounting for why $\mathcal{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. embedding
- following Masur-Minsky and Masur-Schleimer

- precise accounting for why $\mathcal{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. embedding
- following Masur-Minsky and Masur-Schleimer

- precise accounting for why $\mathscr{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. embedding
- following Masur-Minsky and Masur-Schleimer

$$\frac{1}{K} \cdot \sum_{X} \{ d_X(a,b) \}_{\mu} - K \leq d_{\mathcal{P}}(a,b) \leq K \cdot \sum_{X} \{ d_X(a,b) \}_{\mu} + K$$

- precise accounting for why $\mathscr{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. embedding
- following Masur-Minsky and Masur-Schleimer

<u>Theorem</u> (T). Given $\mu > 0$, $\exists K > 0$ so that for all $a, b \in \mathscr{P}$

$$\frac{1}{K} \cdot \sum_{X} \{ d_X(a,b) \}_{\mu} - K \leq d_{\mathcal{P}}(a,b) \leq K \cdot \sum_{X} \{ d_X(a,b) \}_{\mu} + K$$

- The sum ranges over certain subsurfaces $X\!\!\subset\!S$

- precise accounting for why $\mathscr{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. embedding
- following Masur-Minsky and Masur-Schleimer

<u>Theorem</u> (T). Given $\mu > 0$, $\exists K > 0$ so that for all $a, b \in \mathscr{P}$

$$\frac{1}{K} \cdot \sum_{X} \{ d_X(a,b) \}_{\mu} - K \leq d_{\mathcal{P}}(a,b) \leq K \cdot \sum_{X} \{ d_X(a,b) \}_{\mu} + K$$

• The sum ranges over *certain* subsurfaces $X \subset S$ no primitive disk has boundary $\subset S \setminus X$

- precise accounting for why $\mathcal{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. embedding
- following Masur-Minsky and Masur-Schleimer

$$\frac{1}{K} \cdot \sum_{X} \{ d_X(a,b) \}_{\mu} - K \leq d_{\mathscr{P}}(a,b) \leq K \cdot \sum_{X} \{ d_X(a,b) \}_{\mu} + K$$

- The sum ranges over *certain* subsurfaces $X \subset S$ no primitive disk has boundary $\subset S \setminus X$
- $d_X(a,b) = \operatorname{diam}_{\mathscr{C}(X)}(\pi_X(a) \cup \pi_X(b)),$

- precise accounting for why $\mathscr{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. embedding
- following Masur-Minsky and Masur-Schleimer

$$\frac{1}{K} \cdot \sum_{X} \{ d_X(a,b) \}_{\mu} - K \leq d_{\mathcal{P}}(a,b) \leq K \cdot \sum_{X} \{ d_X(a,b) \}_{\mu} + K$$

- The sum ranges over *certain* subsurfaces $X \subset S$ no primitive disk has boundary $\subset S \setminus X$
- $d_X(a,b) = \operatorname{diam}_{\mathscr{C}(X)}(\pi_X(a) \cup \pi_X(b)),$ where $\pi_X \colon \mathscr{C}(S) \to 2^{\mathscr{C}(X)}$ is the subsurface projection

- precise accounting for why $\mathscr{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. embedding
- following Masur-Minsky and Masur-Schleimer

$$\frac{1}{K} \cdot \sum_{X} \{ d_X(a,b) \}_{\mu} - K \leq d_{\mathcal{P}}(a,b) \leq K \cdot \sum_{X} \{ d_X(a,b) \}_{\mu} + K$$

- The sum ranges over *certain* subsurfaces $X \subset S$ no primitive disk has boundary $\subset S \setminus X$
- $d_X(a,b) = \operatorname{diam}_{\mathscr{C}(X)}(\pi_X(a) \cup \pi_X(b)),$ where $\pi_X \colon \mathscr{C}(S) \to 2^{\mathscr{C}(X)}$ is the subsurface projection

•
$$\{x\}_{\mu} = \begin{cases} x & \text{if } x \ge \mu \\ 0 & \text{if } x < \mu \end{cases}$$
 "cutoff function"

Fin. gen. purely p.A. subgroups of \mathcal{G} are convex cocompact.

Fin. gen. purely p.A. subgroups of \mathcal{G} are convex cocompact.

Fin. gen. purely p.A. subgroups of \mathcal{G} are convex cocompact.

Fin. gen. purely p.A. subgroups of \mathcal{G} are convex cocompact. Fix $G < \mathcal{G}$ f.g. purely pseudo-Anosov

 $G \longrightarrow \mathscr{P}$ WTS: $G \to \mathscr{C}(S)$ is q.i. emb. suffices to show $G \to \mathscr{P}$ is q.i. emb. $\mathscr{C}(S)$

Fin. gen. purely p.A. subgroups of \mathcal{G} are convex cocompact.

Fin. gen. purely p.A. subgroups of \mathcal{G} are convex cocompact.

Fin. gen. purely p.A. subgroups of \mathcal{G} are convex cocompact.

Example: the *I*-bundle subgroup of $\boldsymbol{\mathscr{G}}$

<u>Theorem B</u> (characterization of pseudo-Anosovs in \mathscr{G}) $g \in \mathscr{G} < Mod(S)$ is pseudo-Anosov $\iff g$ is not conjugate into any of the following subgroups

- primitive disk stabilizer $\langle \ \alpha, \ \beta, \ \gamma \delta \ \rangle$
- reducing sphere stabilizer $\langle \ \alpha, \ \beta, \ \gamma \ \rangle$
- pants-decomposition stabilizer $\langle \ \alpha, \ \gamma, \ \delta \ \rangle$
- *I*-bundle stabilizer $\langle \beta \delta \beta^{-1} \delta \rangle$

<u>Theorem B</u> (characterization of pseudo-Anosovs in \mathcal{G}) $g \in \mathcal{G} < Mod(S)$ is pseudo-Anosov $\iff g$ is not conjugate into any of the following subgroups

- primitive disk stabilizer $\langle \alpha, \beta, \gamma \delta \rangle$
- reducing sphere stabilizer $\langle \ \alpha, \ \beta, \ \gamma \ \rangle$
- reducible elements • pants-decomposition stabilizer $\langle \alpha, \gamma, \delta \rangle$

obvious

• *I*-bundle stabilizer $\langle \beta \delta \beta^{-1} \delta \rangle$

<u>Theorem B</u> (characterization of pseudo-Anosovs in \mathscr{G}) $g \in \mathscr{G} < Mod(S)$ is pseudo-Anosov $\iff g$ is not conjugate into any of the following subgroups

- primitive disk stabilizer $\langle \ \alpha, \ \beta, \ \gamma \delta \ \rangle$
- reducing sphere stabilizer $\langle \ \alpha, \ \beta, \ \gamma \ \rangle$
- pants-decomposition stabilizer $\langle \alpha, \gamma, \delta \rangle$ elem
- *I*-bundle stabilizer $\langle \beta \delta \beta^{-1} \delta \rangle$

obvious reducible elements

- surprising!

 $V \cong \Sigma \times I$

 $W \cong \Sigma \times I$

 $S^{3} \cong (\Sigma \times I) \cup (\Sigma \times I)$

 $V \cong \Sigma \times I$

 $W \cong \Sigma \times I$

 $S^3 \simeq (\Sigma \times I) \cup (\Sigma \times I)$

Construction is (almost) unique up to conjugation!

Construction is (almost) unique up to conjugation!

Construction is (almost) unique up to conjugation!

• e.g. replace
$$\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$
 with $\begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$ with $H_1(M) \neq 0$.

I-bundle subgroup of $\boldsymbol{\mathcal{G}}$

Construction is (almost) unique up to conjugation!

• e.g. replace
$$\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$
 with $\begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$ $\longrightarrow M^3$ with $H_1(M) \neq 0$.

• replace φ with $\varphi \circ T^n_{\partial \Sigma} \rightsquigarrow M^3$ nontrivial homology sphere.

 $V \cong \Sigma \times I$ $W \cong \Sigma \times I$

 $\varphi \times \operatorname{id} \curvearrowright S^3 \cong (\Sigma \times I) \cup (\Sigma \times I)$

<u>*I*-bundle subgroup $\langle \beta \delta \beta^{-1} \delta \rangle$ </u>

<u>*I*-bundle subgroup $\langle \beta \delta \beta^{-1} \delta \rangle$ </u>

• Responsible for summands $X \neq S$ in distance formula $(X = \Sigma \times 1)$.

<u>*I*-bundle subgroup $\langle \beta \delta \beta^{-1} \delta \rangle$ </u>

- Responsible for summands $X \neq S$ in distance formula $(X = \Sigma \times 1)$.
- Responsible for the fact that $\mathscr{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. emb.

<u>*I*-bundle subgroup $\langle \beta \delta \beta^{-1} \delta \rangle$ </u>

- Responsible for summands $X \neq S$ in distance formula $(X = \Sigma \times 1)$.
- Responsible for the fact that $\mathscr{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. emb.
- Classification of *I*-bundle subgroups key to Theorem B (characterizing p.A. elements in *S*).

Thank you

Extra

Fin. gen. purely p.A. subgroups $G < \mathcal{G}$ are convex cocompact.

Fin. gen. purely p.A. subgroups $G < \mathcal{G}$ are convex cocompact.

Fix $G < \mathcal{G}$ purely pseudo-Anosov

Fin. gen. purely p.A. subgroups $G < \mathcal{G}$ are convex cocompact. Fix $G < \mathcal{G}$ purely pseudo-Anosov

Step 1.
$$G \xrightarrow[q.i. emb]{q.i. emb} \mathscr{P} \implies G \xrightarrow[q.i. emb]{q.i. emb} \mathscr{C}(S)$$

Fin. gen. purely p.A. subgroups $G < \mathcal{G}$ are convex cocompact. Fix $G < \mathcal{G}$ purely pseudo-Anosov

Step 1.
$$G \xrightarrow[q.i. emb]{q.i. emb} \mathscr{P} \implies G \xrightarrow[q.i. emb]{q.i. emb} \mathscr{C}(S)$$

Use distance formula to show that if $G \to \mathscr{P}$ is q.i. emb and $G \to \mathscr{C}(S)$ is not, then G contains a reducible element. (Bestvina-Bromberg-Kent-Leininger)

Fin. gen. purely p.A. subgroups $G < \mathcal{G}$ are convex cocompact. Fix $G < \mathcal{G}$ purely pseudo-Anosov

Step 1.
$$G \xrightarrow[q.i. emb]{q.i. emb} \mathscr{P} \implies G \xrightarrow[q.i. emb]{q.i. emb} \mathscr{C}(S)$$

Use distance formula to show that if $G \to \mathscr{P}$ is q.i. emb and $G \to \mathscr{C}(S)$ is not, then G contains a reducible element. (Bestvina-Bromberg-Kent-Leininger)

<u>Step 2</u>. Show $G \to \mathscr{P}$ is q.i. embedding.

Fin. gen. purely p.A. subgroups $G < \mathcal{G}$ are convex cocompact. Fix $G < \mathcal{G}$ purely pseudo-Anosov

Step 1.
$$G \xrightarrow[q.i. emb]{q.i. emb} \mathscr{P} \implies G \xrightarrow[q.i. emb]{q.i. emb} \mathscr{C}(S)$$

Use distance formula to show that if $G \to \mathscr{P}$ is q.i. emb and $G \to \mathscr{C}(S)$ is not, then G contains a reducible element. (Bestvina-Bromberg-Kent-Leininger)

<u>Step 2</u>. Show $G \to \mathscr{P}$ is q.i. embedding.

Fin. gen. purely p.A. subgroups $G < \mathcal{G}$ are convex cocompact. Fix $G < \mathcal{G}$ purely pseudo-Anosov

Step 1.
$$G \xrightarrow[q.i. emb]{q.i. emb} \mathscr{P} \implies G \xrightarrow[q.i. emb]{q.i. emb} \mathscr{C}(S)$$

Use distance formula to show that if $G \to \mathscr{P}$ is q.i. emb and $G \to \mathscr{C}(S)$ is not, then G contains a reducible element. (Bestvina-Bromberg-Kent-Leininger)

<u>Step 2</u>. Show $G \to \mathscr{P}$ is q.i. embedding.

Keys/Special features:

• $\boldsymbol{\mathscr{G}}$ is virtually free, so $G < \boldsymbol{\mathscr{G}}$ is q.i. embedded

Fin. gen. purely p.A. subgroups $G < \mathcal{G}$ are convex cocompact. Fix $G < \mathcal{G}$ purely pseudo-Anosov

Step 1.
$$G \xrightarrow[q.i. emb]{q.i. emb} \mathscr{P} \implies G \xrightarrow[q.i. emb]{q.i. emb} \mathscr{C}(S)$$

Use distance formula to show that if $G \to \mathscr{P}$ is q.i. emb and $G \to \mathscr{C}(S)$ is not, then G contains a reducible element. (Bestvina-Bromberg-Kent-Leininger)

<u>Step 2</u>. Show $G \to \mathscr{P}$ is q.i. embedding.

- $\boldsymbol{\mathscr{G}}$ is virtually free, so $G < \boldsymbol{\mathscr{G}}$ is q.i. embedded
- ${\cal P}$ is quasi-isometric to a coned-off Cayley graph for ${\cal G}$ (Cho)

Fin. gen. purely p.A. subgroups $G < \mathcal{G}$ are convex cocompact. Fix $G < \mathcal{G}$ purely pseudo-Anosov

Step 1.
$$G \xrightarrow[q.i. emb]{q.i. emb} \mathscr{P} \implies G \xrightarrow[q.i. emb]{q.i. emb} \mathscr{C}(S)$$

Use distance formula to show that if $G \to \mathscr{P}$ is q.i. emb and $G \to \mathscr{C}(S)$ is not, then G contains a reducible element. (Bestvina-Bromberg-Kent-Leininger)

<u>Step 2</u>. Show $G \to \mathscr{P}$ is q.i. embedding.

- $\boldsymbol{\mathscr{G}}$ is virtually free, so $G < \boldsymbol{\mathscr{G}}$ is q.i. embedded
- ${\cal P}$ is quasi-isometric to a coned-off Cayley graph for ${\cal G}$ (Cho)
- (Manning-Abbott) limit-set criterion to determine if $G \rightarrow \mathscr{P}$ is q.i. embedding

Fin. gen. purely p.A. subgroups $G < \mathcal{G}$ are convex cocompact. Fix $G < \mathcal{G}$ purely pseudo-Anosov

Step 1.
$$G \xrightarrow[q.i. emb]{q.i. emb} \mathscr{P} \implies G \xrightarrow[q.i. emb]{q.i. emb} \mathscr{C}(S)$$

Use distance formula to show that if $G \to \mathscr{P}$ is q.i. emb and $G \to \mathscr{C}(S)$ is not, then G contains a reducible element. (Bestvina-Bromberg-Kent-Leininger)

<u>Step 2</u>. Show $G \to \mathscr{P}$ is q.i. embedding.

- $\boldsymbol{\mathscr{G}}$ is virtually free, so $G < \boldsymbol{\mathscr{G}}$ is q.i. embedded
- ${\cal P}$ is quasi-isometric to a coned-off Cayley graph for ${\cal G}$ (Cho)
- (Manning-Abbott) limit-set criterion to determine if $G \rightarrow \mathscr{P}$ is q.i. embedding
- Show if $G \rightarrow \mathscr{P}$ is not q.i. embedding, then G contains an element that fixes a primitive disk (in particular G contains a reducible element).

imgflip.com

 $S^3 = V \cup W \ S$

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

 $S^3 = V \cup W \ S$

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

a geometrically meaningful orbit:

 $S^3 = V \cup W \ S$

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

a geometrically meaningful orbit:

<u>Primitive disks complex</u> $\mathcal{P} \subset \mathcal{C}(S)$

 $S^3 = V \cup W \\ S$

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

a geometrically meaningful orbit:

Primitive disks complex $\mathcal{P} \subset \mathcal{C}(S)$ spanned by vertices $a \in \mathcal{C}(S)$ where

 $S^3 = V \cup W \\ S$

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

a geometrically meaningful orbit:

Primitive disks complex $\mathcal{P} \subset \mathcal{C}(S)$ spanned by vertices $a \in \mathcal{C}(S)$ where

• $a = \partial D$ for some disk $D \subset V$

 $S^3 = V \cup W$ S

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

a geometrically meaningful orbit:

Primitive disks complex $\mathcal{P} \subset \mathcal{C}(S)$ spanned by vertices $a \in \mathcal{C}(S)$ where

- $a = \partial D$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D} = \{ pt \}$

 $S^3 = V \underset{S}{\cup} W$

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

a geometrically meaningful orbit:

Primitive disks complex $\mathcal{P} \subset \mathcal{C}(S)$ spanned by vertices $a \in \mathcal{C}(S)$ where

- $a = \partial D$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D} = \{ \text{pt} \}$

D is called a <u>primitive disk</u>

 $S^3 = V \underset{S}{\cup} W$

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

a geometrically meaningful orbit:

<u>Primitive disks complex</u> $\mathcal{P} \subset \mathcal{C}(S)$ spanned by vertices $a \in \mathcal{C}(S)$ where

- $a = \partial D$ for some disk $D \subset V$
- $\exists \operatorname{disk} \widehat{D} \subset W \operatorname{so that} a \cap \partial \widehat{D} = \{\operatorname{pt}\}$

D is called a <u>primitive disk</u>

 $a \in \mathscr{P}$ vertex

 $S^3 = V \underset{S}{\cup} W$

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

a geometrically meaningful orbit:

Primitive disks complex $\mathcal{P} \subset \mathcal{C}(S)$ spanned by vertices $a \in \mathcal{C}(S)$ where

- $a = \partial D$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D} = \{ \text{pt} \}$

D is called a <u>primitive disk</u>

 $S^3 = V \cup W$ S

a ∉ **P** doesn't bound disk in V

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

a geometrically meaningful orbit:

Primitive disks complex $\mathcal{P} \subset \mathcal{C}(S)$ spanned by vertices $a \in \mathcal{C}(S)$ where

- $a = \partial D$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D} = \{ \text{pt} \}$

D is called a <u>primitive disk</u>

a is separating

 $S^3 = V \cup W \\ S$

orbit map $\mathscr{G} \to \mathscr{C}(S)$ requires choice of basepoint

a geometrically meaningful orbit:

Primitive disks complex $\mathcal{P} \subset \mathcal{C}(S)$ spanned by vertices $a \in \mathcal{C}(S)$ where

- $a = \partial D$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D} = \{ \text{pt} \}$

D is called a <u>primitive disk</u>

 $a \not\in \mathscr{P}$

bounds disk in V, is nonseparating, but $\nexists \widehat{D}$

