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→= →
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Hyperbolicity of surface group extensions

Question. Is ΓG a hyperbolic group? 

• S=Sg closed oriented surface, genus g ≥ 2

For G<Mod(S), when is ΓG a hyperbolic group? 

1 → π1(S) →       ΓG      →     G        → 1

• Surface group extension

Mod(S) := π0(Homeo(S))

≅

(Dehn-Nielsen-Baer)



Foundational results

1 → π1(S) → ΓG → G → 1

Question. For G<Mod(S), when is ΓG a hyperbolic group? 



Foundational results

• (Thurston). Assume G = ⟨φ⟩ ⊂ Mod(S). 

1 → π1(S) → ΓG → G → 1

Question. For G<Mod(S), when is ΓG a hyperbolic group? 



Foundational results

• (Thurston). Assume G = ⟨φ⟩ ⊂ Mod(S). 

ΓG is hyperbolic ⟺ φ pseudo-Anosov

1 → π1(S) → ΓG → G → 1

Question. For G<Mod(S), when is ΓG a hyperbolic group? 



Foundational results

• (Thurston). Assume G = ⟨φ⟩ ⊂ Mod(S). 

ΓG is hyperbolic ⟺ φ pseudo-Anosov

1 → π1(S) → ΓG → G → 1

Question. For G<Mod(S), when is ΓG a hyperbolic group? 

infinite order, irreducible (no invariant multicurve)



Foundational results

• (Thurston). Assume G = ⟨φ⟩ ⊂ Mod(S). 

ΓG is hyperbolic ⟺ φ pseudo-Anosov

1 → π1(S) → ΓG → G → 1

• (Farb-Mosher, Hamenstadt). For any G<Mod(S), 

Question. For G<Mod(S), when is ΓG a hyperbolic group? 

infinite order, irreducible (no invariant multicurve)



Foundational results

• (Thurston). Assume G = ⟨φ⟩ ⊂ Mod(S). 

ΓG is hyperbolic ⟺ φ pseudo-Anosov

1 → π1(S) → ΓG → G → 1

• (Farb-Mosher, Hamenstadt). For any G<Mod(S), 

ΓG is hyperbolic ⟺ G<Mod(S) is convex cocompact 

Question. For G<Mod(S), when is ΓG a hyperbolic group? 

infinite order, irreducible (no invariant multicurve)



Foundational results

• (Thurston). Assume G = ⟨φ⟩ ⊂ Mod(S). 

ΓG is hyperbolic ⟺ φ pseudo-Anosov

1 → π1(S) → ΓG → G → 1

• (Farb-Mosher, Hamenstadt). For any G<Mod(S), 

ΓG is hyperbolic ⟺ G<Mod(S) is convex cocompact 

Question. For G<Mod(S), when is ΓG a hyperbolic group? 

in particular every g ≠ id ∈ G is pseudo-Anosov, but this 
is (potentially) weaker than being convex cocompact

infinite order, irreducible (no invariant multicurve)
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• Kent-Leininger translate to GGT

G is convex cocomapct if there exists closed convex invariant X⊂ℍ3 
so that X/G compact. 

• Source of this notion:

G <PSL2(ℂ) = Isom(ℍ3) discrete subgroup (Kleinian group)

e.g. quasi-Fuchsian subgroups π1(S) ↪︎ PSL2(ℂ) 
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The curve complex 𝒞(S)

𝒞(S) curve complex

edges ↔ disjoint representatives

vertices ↔ 
isotopy-classes of essential 

simple closed curves on S

Mod(S) ↷ 

⋅d(x,y) − C ≤  d(f(x),f(y)) ≤ K⋅d(x,y)+CK
1 ∀ x,y ∈ X

f :X→Y is a quasi-isometric embedding if ∃ K,C so that 
X,Y metric spaces

G<Mod(S) is convex cocompact  orbit map G → 𝒞(S) is a

quasi-isometric embedding

⟺

S

⊂ 𝒞(S)



Summary so far

orbit map G → 𝒞(S) is a

quasi-isometric embedding

⟺

1 → π1(S) → ΓG → G → 1

Question. For G<Mod(S), when is ΓG a hyperbolic group? 

ΓG is hyperbolic ⟺ G<Mod(S) is convex cocompact 
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Question. Does there exist a bundle Sg → E → Sh where 

(b) E is Riemannian negatively curved? 

(c) π1(E) is a hyperbolic group?  

(a) E is a hyperbolic manifold (E ≅ ℍ4/Γ)? 

1. Geometry of surface bundles

Question (restatment of (c)). Does there exist a subgroup 
π1(Sh)<Mod(Sg) that’s convex cocompact?

Questions about convex cocompactness

Sg → E → Sh ⟿ 1 → π1(Sg) →π1(E)→ π1(Sh) → 1

All known examples of convex co-cpt G<Mod(S) are virtually free.

no if SW invariants 

vanish for hyperbolic 


4-manifolds
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Questions about convex cocompactness
1. Geometry of surface bundles
2. Hyperbolization of groups

Prove/disprove: If Γ contains no Baumslag-Solitar 
subgroup, then Γ is hyperbolic. 

Problem (Gromov). Assume Γ is a group with a finite K(Γ,1). 

Problem (Farb-Mosher, Gromov for ΓG): Prove/disprove:

Exercise. If G < Mod(S) is purely pseudo-Anosov, then 
ΓG does not contain BS(p,q).

If G <Mod(S) is purely pseudo-Anosov, then G is convex 
cocompact. 

BS(p,q) = ⟨ a,b | a-1b 
pa = bq ⟩ 
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Some results
ΓG hyperbolic ⟺ G is convex cocompact

Problem (Farb-Mosher). Prove/disprove 
G purely pseudo-Anosov ⟹ G convex cocompact. 

G<Mod(S)

⟺ G → 𝒞(S) q.i. embedding

• a Veech group Aff(X,ω)

This talk: genus-2 Goeritz group

Known cases. This is true if G<H, for H

• certain hyp. 3-mfld subgroups of Mod(S,∗)
(Kent-Leininger-Schleimer)
(Dowdall-Kent-Leininger)

• certain right-angled Artin subgroups (Koberda-Mangahas-Taylor)



The Goeritz group 

and convex cocompact subgroups 



Goeritz group 



Goeritz group 
S 

3 = V ⋃ W    genus-g Heegaard splitting
Sg



Goeritz group 
S 

3 = V ⋃ W    genus-g Heegaard splitting
Sg



Goeritz group 
S 

3 = V ⋃ W    genus-g Heegaard splitting
Sg

V (inside handlebody)



Goeritz group 
S 

3 = V ⋃ W    genus-g Heegaard splitting
Sg

W (outside handlebody)

V (inside handlebody)



Goeritz group 
S 

3 = V ⋃ W    genus-g Heegaard splitting
Sg

genus-g Goeritz group

W (outside handlebody)

V (inside handlebody)



Goeritz group 
S 

3 = V ⋃ W    genus-g Heegaard splitting
Sg

genus-g Goeritz group

W (outside handlebody)

V (inside handlebody)

Homeo(S 
3,V)



π0(Homeo(S 
3,V))

Goeritz group 
S 

3 = V ⋃ W    genus-g Heegaard splitting
Sg

genus-g Goeritz group

W (outside handlebody)

V (inside handlebody)

Homeo(S 
3,V)



→ π0(Homeo(Sg))=Mod(Sg)π0(Homeo(S 
3,V))

Goeritz group 
S 

3 = V ⋃ W    genus-g Heegaard splitting
Sg

genus-g Goeritz group

W (outside handlebody)

V (inside handlebody)

Homeo(S 
3,V)



π0(Homeo(Sg))=Mod(Sg)π0(Homeo(S 
3,V))

Goeritz group 
S 

3 = V ⋃ W    genus-g Heegaard splitting
Sg

genus-g Goeritz group

W (outside handlebody)

V (inside handlebody)

↪︎Homeo(S 
3,V)



π0(Homeo(Sg))=Mod(Sg)π0(Homeo(S 
3,V))𝓖g :=

Goeritz group 
S 

3 = V ⋃ W    genus-g Heegaard splitting
Sg

genus-g Goeritz group

W (outside handlebody)

V (inside handlebody)

↪︎Homeo(S 
3,V)



π0(Homeo(Sg))=Mod(Sg)π0(Homeo(S 
3,V))𝓖g :=

Goeritz group 
S 

3 = V ⋃ W    genus-g Heegaard splitting
Sg

genus-g Goeritz group

W (outside handlebody)

V (inside handlebody) handle drag

↪︎Homeo(S 
3,V)



π0(Homeo(Sg))=Mod(Sg)π0(Homeo(S 
3,V))𝓖g :=

Goeritz group 
S 

3 = V ⋃ W    genus-g Heegaard splitting
Sg

genus-g Goeritz group

Conjecture (Powell). 𝓖g is finitely generated ∀ g. 

W (outside handlebody)

V (inside handlebody) handle drag

↪︎Homeo(S 
3,V)



π0(Homeo(Sg))=Mod(Sg)π0(Homeo(S 
3,V))𝓖g :=

Goeritz group 
S 

3 = V ⋃ W    genus-g Heegaard splitting
Sg

genus-g Goeritz group

Conjecture (Powell). 𝓖g is finitely generated ∀ g. 
Known for g ≤ 3 (Goeritz, Scharlemann-Freedman)

W (outside handlebody)

V (inside handlebody) handle drag

↪︎Homeo(S 
3,V)
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Sg
𝓖g := π0(Homeo(S 

3,V)) ↪︎ Mod(S)
Goeritz group

Goeritz group in genus 2 

(Scharlemann, Akbas, Cho)

𝓖2 ≅ [(ℤ2 ⨉ ℤ)⋊ ℤ2] ∗ (S3⨉ℤ2)
ℤ2⨉ℤ2

Generators of 𝓖2

α   hyperelliptic

π

β   half-twist

π

γ
π

δ 
2π/3

⟨γ,δ⟩⨉⟨α⟩  (⟨α⟩⨉⟨β⟩) ⋊ ⟨γ⟩  

Heegaard splitting
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• Responsible for summands X≠S in distance formula (X=Σ⨉1).
• Responsible for the fact that 𝓟 ↪︎ 𝒞(S) is not a q.i. emb. 
• Classification of I-bundle subgroups key to Theorem B 

(characterizing p.A. elements in 𝓖). 
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Fix G<𝓖 purely pseudo-Anosov

Step 1. G           𝓟    ⟹   G           𝒞(S)
q.i. emb q.i. emb

Use distance formula to show that if G → 𝓟 is q.i. emb and G → 𝒞(S) is not, 
then G contains a reducible element. (Bestvina-Bromberg-Kent-Leininger)

Step 2. Show G → 𝓟 is q.i. embedding. 
Keys/Special features: 
• 𝓖 is virtually free, so G<𝓖 is q.i. embedded
• 𝓟 is quasi-isometric to a coned-off Cayley graph for 𝓖 (Cho)
• (Manning-Abbott) limit-set criterion to determine if G→𝓟 is q.i. embedding
• Show if G→𝓟 is not q.i. embedding, then G contains an element that fixes a 

primitive disk (in particular G contains a reducible element). 

Fin. gen. purely p.A. subgroups G<𝓖 are convex cocompact. 
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