Convex cocompact subgroups of the Goeritz group

Bena Tshishiku
UC-Riverside Topology Seminar
$$
5 / 19 / 2021
$$

Convex cocompactness in mapping class groups

Hyperbolicity of surface group extensions

Hyperbolicity of surface group extensions

- $S=S_{g}$ closed oriented surface, genus $g \geq 2$

Hyperbolicity of surface group extensions

- $S=S_{g}$ closed oriented surface, genus $g \geq 2$
- Surface group extension

Hyperbolicity of surface group extensions

- $S=S_{g}$ closed oriented surface, genus $g \geq 2$
- Surface group extension

$$
1 \rightarrow \pi_{1}(S) \rightarrow \quad \Gamma_{G} \quad \rightarrow \quad G \quad \rightarrow 1
$$

Hyperbolicity of surface group extensions

- $S=S_{g}$ closed oriented surface, genus $g \geq 2$
- Surface group extension

$$
1 \rightarrow \pi_{1}(S) \rightarrow \quad \Gamma_{G} \quad \rightarrow \quad G \quad \rightarrow 1
$$

Question. Is Γ_{G} a hyperbolic group?

Hyperbolicity of surface group extensions

- $S=S_{g}$ closed oriented surface, genus $g \geq 2$
- Surface group extension

$$
\begin{aligned}
& \\
& \\
& \\
& \\
& \\
& \\
& \operatorname{Out}\left(\pi_{1}(S)\right) \\
& \uparrow
\end{aligned} \rightarrow \pi_{1}(S) \rightarrow \quad \Gamma_{G} \quad \rightarrow \quad G \quad \rightarrow 1
$$

Question. Is Γ_{G} a hyperbolic group?

Hyperbolicity of surface group extensions

- $S=S_{g}$ closed oriented surface, genus $g \geq 2$
- Surface group extension

$$
\begin{array}{cccc}
1 & \rightarrow \pi_{1}(S) \rightarrow \underset{\|}{\operatorname{Aut}\left(\pi_{1}(S)\right)} \rightarrow \underset{\uparrow}{\operatorname{Out}\left(\pi_{1}(S)\right)} \rightarrow & \rightarrow 1 \\
1 \rightarrow \pi_{1}(S) \rightarrow & \Gamma_{G} & \rightarrow & G
\end{array}
$$

Question. Is Γ_{G} a hyperbolic group?

Hyperbolicity of surface group extensions

- $S=S_{g}$ closed oriented surface, genus $g \geq 2$
- Surface group extension

$$
\begin{aligned}
& \operatorname{Mod}(S):=\pi_{0}(\operatorname{Homeo}(S)) \\
& \text { II } \\
& 1 \rightarrow \pi_{1}(S) \rightarrow \operatorname{Aut}\left(\pi_{1}(S)\right) \rightarrow \operatorname{Out}\left(\pi_{1}(S)\right) \rightarrow 1 \\
& \text { \| } \\
& 1 \rightarrow \pi_{1}(S) \rightarrow \quad \Gamma_{G} \quad \rightarrow \quad G \quad \rightarrow 1
\end{aligned}
$$

Question. Is Γ_{G} a hyperbolic group?

Hyperbolicity of surface group extensions

- $S=S_{g}$ closed oriented surface, genus $g \geq 2$
- Surface group extension

$$
\begin{aligned}
& \text { (Dehn-Nielsen-Baer) } \underset{\substack{\text { I\| }}}{\operatorname{Mod}(S):=\pi_{0}(\operatorname{Homeo}(S)), ~} \\
& 1 \rightarrow \pi_{1}(S) \rightarrow \operatorname{Aut}\left(\pi_{1}(S)\right) \rightarrow \operatorname{Out}\left(\pi_{1}(S)\right) \rightarrow 1 \\
& \text { \| } \\
& 1 \rightarrow \pi_{1}(S) \rightarrow \quad \Gamma_{G} \quad \rightarrow \quad G \quad \rightarrow 1
\end{aligned}
$$

Question. Is Γ_{G} a hyperbolic group?

Hyperbolicity of surface group extensions

- $S=S_{g}$ closed oriented surface, genus $g \geq 2$
- Surface group extension

$$
\begin{aligned}
& \text { (Dehn-Nielsen-Baer) } \quad \operatorname{Mod}(S):=\pi_{0}(\operatorname{Homeo}(S)) \\
& 1 \rightarrow \pi_{1}(S) \rightarrow \operatorname{Aut}\left(\pi_{1}(S)\right) \rightarrow \operatorname{Out}\left(\pi_{1}(S)\right) \rightarrow 1 \\
& \text { \| } \\
& 1 \rightarrow \pi_{1}(S) \rightarrow \quad \Gamma_{G} \quad \rightarrow \quad G \quad \rightarrow 1
\end{aligned}
$$

Question. Is Γ_{G} a hyperbolic group?
For $G<\operatorname{Mod}(S)$, when is Γ_{G} a hyperbolic group?

Foundational results

Question. For $G<\operatorname{Mod}(S)$, when is Γ_{G} a hyperbolic group?

$$
1 \rightarrow \pi_{1}(S) \rightarrow \Gamma_{G} \rightarrow G \rightarrow 1
$$

Foundational results

Question. For $G<\operatorname{Mod}(S)$, when is Γ_{G} a hyperbolic group?

$$
1 \rightarrow \pi_{1}(S) \rightarrow \Gamma_{G} \rightarrow G \rightarrow 1
$$

- (Thurston). Assume $G=\langle\varphi\rangle \subset \operatorname{Mod}(S)$.

Foundational results

Question. For $G<\operatorname{Mod}(S)$, when is Γ_{G} a hyperbolic group?

$$
1 \rightarrow \pi_{1}(S) \rightarrow \Gamma_{G} \rightarrow G \rightarrow 1
$$

- (Thurston). Assume $G=\langle\varphi\rangle \subset \operatorname{Mod}(S)$.
Γ_{G} is hyperbolic $\Longleftrightarrow \varphi$ pseudo-Anosov

Foundational results

Question. For $G<\operatorname{Mod}(S)$, when is Γ_{G} a hyperbolic group?

$$
1 \rightarrow \pi_{1}(S) \rightarrow \Gamma_{G} \rightarrow G \rightarrow 1
$$

- (Thurston). Assume $G=\langle\varphi\rangle \subset \operatorname{Mod}(S)$.
Γ_{G} is hyperbolic $\Longleftrightarrow \varphi$ pseudo-Anosov
infinite order, irreducible (no invariant multicurve)

Foundational results

Question. For $G<\operatorname{Mod}(S)$, when is Γ_{G} a hyperbolic group?

$$
1 \rightarrow \pi_{1}(S) \rightarrow \Gamma_{G} \rightarrow G \rightarrow 1
$$

- (Thurston). Assume $G=\langle\varphi\rangle \subset \operatorname{Mod}(S)$.
Γ_{G} is hyperbolic $\Longleftrightarrow \varphi$ pseudo-Anosov
infinite order, irreducible (no invariant multicurve)
- (Farb-Mosher, Hamenstadt). For any $G<\operatorname{Mod}(S)$,

Foundational results

Question. For $G<\operatorname{Mod}(S)$, when is Γ_{G} a hyperbolic group?

$$
1 \rightarrow \pi_{1}(S) \rightarrow \Gamma_{G} \rightarrow G \rightarrow 1
$$

- (Thurston). Assume $G=\langle\varphi\rangle \subset \operatorname{Mod}(S)$.
Γ_{G} is hyperbolic $\Longleftrightarrow \varphi$ pseudo-Anosov
infinite order, irreducible (no invariant multicurve)
- (Farb-Mosher, Hamenstadt). For any $G<\operatorname{Mod}(S)$,
Γ_{G} is hyperbolic $\Longleftrightarrow G<\operatorname{Mod}(S)$ is convex cocompact

Foundational results

Question. For $G<\operatorname{Mod}(S)$, when is Γ_{G} a hyperbolic group?

$$
1 \rightarrow \pi_{1}(S) \rightarrow \Gamma_{G} \rightarrow G \rightarrow 1
$$

- (Thurston). Assume $G=\langle\varphi\rangle \subset \operatorname{Mod}(S)$.
Γ_{G} is hyperbolic $\Longleftrightarrow \varphi$ pseudo-Anosov
infinite order, irreducible (no invariant multicurve)
- (Farb-Mosher, Hamenstadt). For any $G<\operatorname{Mod}(S)$,
Γ_{G} is hyperbolic $\Longleftrightarrow G<\operatorname{Mod}(S)$ is convex cocompact

Convex cocompactness

Convex cocompactness

- Source of this notion:

Convex cocompactness

- Source of this notion:

$$
G<\mathrm{PSL}_{2}(\mathbb{C})=\operatorname{Isom}\left(\mathbb{H}^{3}\right) \text { discrete subgroup (Kleinian group) }
$$

Convex cocompactness

- Source of this notion:
$G<\operatorname{PSL}_{2}(\mathbb{C})=\operatorname{Isom}\left(\mathbb{H}^{3}\right)$ discrete subgroup (Kleinian group)
G is convex cocomapct if there exists closed convex invariant $X \subset \mathbb{H}^{3}$ so that X / G compact.

Convex cocompactness

- Source of this notion:
$G<\mathrm{PSL}_{2}(\mathbb{C})=\operatorname{Isom}\left(\mathbb{H}^{3}\right)$ discrete subgroup (Kleinian group)
G is convex cocomapct if there exists closed convex invariant $X \subset \mathbb{H}^{3}$ so that X / G compact.
e.g. quasi-Fuchsian subgroups $\pi_{1}(S) \hookrightarrow \operatorname{PSL}_{2}(\mathbb{C})$

Convex cocompactness

- Source of this notion:
$G<\operatorname{PSL}_{2}(\mathbb{C})=\operatorname{Isom}\left(\mathbb{H}^{3}\right)$ discrete subgroup (Kleinian group)
G is convex cocomapct if there exists closed convex invariant $X \subset \mathbb{H}^{3}$ so that X / G compact.
e.g. quasi-Fuchsian subgroups $\pi_{1}(S) \hookrightarrow \mathrm{PSL}_{2}(\mathbb{C})$
- Farb-Mosher extend this notion to $G<\operatorname{Mod}(S) \curvearrowright \operatorname{Teich}(S)$

Convex cocompactness

- Source of this notion:
$G<\mathrm{PSL}_{2}(\mathbb{C})=\operatorname{Isom}\left(\mathbb{H}^{3}\right)$ discrete subgroup (Kleinian group)
G is convex cocomapct if there exists closed convex invariant $X \subset \mathbb{H}^{3}$ so that X / G compact.
e.g. quasi-Fuchsian subgroups $\pi_{1}(S) \hookrightarrow \mathrm{PSL}_{2}(\mathbb{C})$
- Farb-Mosher extend this notion to $G<\operatorname{Mod}(S) \curvearrowright \operatorname{Teich}(S)$
- Kent-Leininger translate to GGT

Convex cocompactness

- Source of this notion:
$G<\operatorname{PSL}_{2}(\mathbb{C})=\operatorname{Isom}\left(\mathbb{H}^{3}\right)$ discrete subgroup (Kleinian group)
G is convex cocomapct if there exists closed convex invariant $X \subset \mathbb{H}^{3}$ so that X / G compact.
e.g. quasi-Fuchsian subgroups $\pi_{1}(S) \hookrightarrow \operatorname{PSL}_{2}(\mathbb{C})$
- Farb-Mosher extend this notion to $G<\operatorname{Mod}(S) \curvearrowright \operatorname{Teich}(S)$
- Kent-Leininger translate to GGT

Theorem/Definition. finitely generated $G<\operatorname{Mod}(S)$ is convex cocompact if the orbit map $G \rightarrow \mathscr{C}(S)$ is a quasi-isometric embedding

Convex cocompactness

- Source of this notion:
$G<\operatorname{PSL}_{2}(\mathbb{C})=\operatorname{Isom}\left(\mathbb{H}^{3}\right)$ discrete subgroup (Kleinian group)
G is convex cocomapct if there exists closed convex invariant $X \subset \mathbb{H}^{3}$ so that X / G compact.
e.g. quasi-Fuchsian subgroups $\pi_{1}(S) \hookrightarrow \operatorname{PSL}_{2}(\mathbb{C})$
- Farb-Mosher extend this notion to $G<\operatorname{Mod}(S) \curvearrowright \operatorname{Teich}(S)$
- Kent-Leininger translate to GGT

Theorem/Definition. finitely generated $G<\operatorname{Mod}(S)$ is convex cocompact if the orbit map $G \rightarrow \mathscr{C}(S)$ is a quasi-isometric embedding

The curve complex $\mathscr{C}(S)$

$G<\operatorname{Mod}(S)$ is convex cocompact \Longleftrightarrow
orbit map $G \rightarrow \mathscr{C}(S)$ is a quasi-isometric embedding

The curve complex $\mathscr{C}(S)$

$G<\operatorname{Mod}(S)$ is convex cocompact \Longleftrightarrow
orbit map $G \rightarrow \mathscr{C}(S)$ is a quasi-isometric embedding
$\mathscr{C}(S)$ curve complex

The curve complex $\mathscr{C}(S)$

$G<\operatorname{Mod}(S)$ is convex cocompact $\Longleftrightarrow \quad \begin{gathered}\text { orbit map } G \rightarrow \mathscr{C}(S) \text { is a } \\ \text { quasi-isometric embedding }\end{gathered}$
$\mathscr{C}(S)$ curve complex
vertices $\leftrightarrow \begin{gathered}\text { isotopy-classes of essential } \\ \text { simple closed curves on } S\end{gathered}$

The curve complex $\mathscr{C}(S)$

$G<\operatorname{Mod}(S)$ is convex cocompact $\Longleftrightarrow \quad \begin{gathered}\text { orbit map } G \rightarrow \mathscr{C}(S) \text { is a } \\ \text { quasi-isometric embedding }\end{gathered}$
$\mathscr{C}(S)$ curve complex

$$
\begin{gathered}
\text { vertices } \leftrightarrow \begin{array}{c}
\text { isotopy-classes of essential } \\
\text { simple closed curves on } S
\end{array} \\
\text { edges } \leftrightarrow \text { disjoint representatives }
\end{gathered}
$$

The curve complex $\mathscr{C}(S)$

$G<\operatorname{Mod}(S)$ is convex cocompact \Longleftrightarrow orbit map $G \rightarrow \mathscr{C}(S)$ is a quasi-isometric embedding

$\mathscr{C}(S)$ curve complex

vertices $\leftrightarrow \begin{gathered}\text { isotopy-classes of essential } \\ \text { simple closed curves on } S\end{gathered}$
edges \leftrightarrow disjoint representatives

The curve complex $\mathscr{C}(S)$

$G<\operatorname{Mod}(S)$ is convex cocompact \Longleftrightarrow orbit map $G \rightarrow \mathscr{C}(S)$ is a quasi-isometric embedding

$\mathscr{C}(S)$ curve complex

$$
\begin{gathered}
\text { vertices } \leftrightarrow \begin{array}{c}
\text { isotopy-classes of essential } \\
\text { simple closed curves on } S
\end{array} \\
\text { edges } \leftrightarrow \text { disjoint representatives }
\end{gathered}
$$

The curve complex $\mathscr{C}(S)$

$G<\operatorname{Mod}(S)$ is convex cocompact \Longleftrightarrow orbit map $G \rightarrow \mathscr{C}(S)$ is a quasi-isometric embedding
$\operatorname{Mod}(S) \curvearrowright \mathscr{C}(S)$ curve complex

$$
\begin{gathered}
\text { vertices } \leftrightarrow \begin{array}{c}
\text { isotopy-classes of essential } \\
\text { simple closed curves on } S
\end{array} \\
\text { edges } \leftrightarrow \text { disjoint representatives }
\end{gathered}
$$

The curve complex $\mathscr{C}(S)$

$G<\operatorname{Mod}(S)$ is convex cocompact \Longleftrightarrow orbit map $G \rightarrow \mathscr{C}(S)$ is a quasi-isometric embedding
$\operatorname{Mod}(\mathrm{S}) \curvearrowright \mathscr{C}(S)$ curve complex

vertices $\leftrightarrow \begin{gathered}\text { isotopy-classes of essential } \\ \text { simple closed curves on } S\end{gathered}$ edges \leftrightarrow disjoint representatives
X, Y metric spaces
$f: X \rightarrow Y$ is a quasi-isometric embedding if $\exists K, C$ so that

The curve complex $\mathscr{C}(S)$

$G<\operatorname{Mod}(S)$ is convex cocompact
 orbit map $G \rightarrow \mathscr{C}(S)$ is a quasi-isometric embedding
$\operatorname{Mod}(\mathrm{S}) \curvearrowright \mathscr{C}(S)$ curve complex

vertices $\leftrightarrow \begin{gathered}\text { isotopy-classes of essential } \\ \text { simple closed curves on } S\end{gathered}$
edges \leftrightarrow disjoint representatives
X, Y metric spaces
$f: X \rightarrow Y$ is a quasi-isometric embedding if $\exists K, C$ so that

$$
\frac{1}{K} \cdot d(x, y)-C \leq d(f(x), f(y)) \leq K \cdot d(x, y)+C
$$

The curve complex $\mathscr{C}(S)$

$G<\operatorname{Mod}(S)$ is convex cocompact \Longleftrightarrow
orbit map $G \rightarrow \mathscr{C}(S)$ is a quasi-isometric embedding
$\operatorname{Mod}(\mathrm{S}) \curvearrowright \mathscr{C}(S)$ curve complex

vertices $\leftrightarrow \begin{gathered}\text { isotopy-classes of essential } \\ \text { simple closed curves on } S\end{gathered}$
edges \leftrightarrow disjoint representatives
X, Y metric spaces
$f: X \rightarrow Y$ is a quasi-isometric embedding if $\exists K, C$ so that

$$
\frac{1}{K} \cdot d(x, y)-C \leq d(f(x), f(y)) \leq K \cdot d(x, y)+C \quad \forall x, y \in X
$$

Summary so far

Question. For $G<\operatorname{Mod}(S)$, when is Γ_{G} a hyperbolic group?

$$
1 \rightarrow \pi_{1}(S) \rightarrow \Gamma_{G} \rightarrow G \rightarrow 1
$$

Γ_{G} is hyperbolic $\Longleftrightarrow G<\operatorname{Mod}(S)$ is convex cocompact

$$
\Longleftrightarrow \begin{gathered}
\text { orbit map } G \rightarrow \mathscr{C}(S) \text { is a } \\
\text { quasi-isometric embedding }
\end{gathered}
$$

Questions about convex cocompactness

1. Geometry of surface bundles

Questions about convex cocompactness

1. Geometry of surface bundles

Question. Does there exist a bundle $S_{g} \rightarrow E \rightarrow S_{h}$ where

Questions about convex cocompactness

1. Geometry of surface bundles

Question. Does there exist a bundle $S_{g} \rightarrow E \rightarrow S_{h}$ where
(a) E is a hyperbolic manifold $\left(E \cong \mathbb{H}^{4} / \Gamma\right)$?

Questions about convex cocompactness

1. Geometry of surface bundles

Question. Does there exist a bundle $S_{g} \rightarrow E \rightarrow S_{h}$ where
(a) E is a hyperbolic manifold $\left(E \cong \mathbb{H}^{4} / \Gamma\right) ? \longrightarrow$ no if SW invariants vanish for hyperbolic

4-manifolds

Questions about convex cocompactness

1. Geometry of surface bundles

Question. Does there exist a bundle $S_{g} \rightarrow E \rightarrow S_{h}$ where
(a) E is a hyperbolic manifold $\left(E \cong \mathbb{H}^{4} / \Gamma\right) ? \longrightarrow$ no if SW invariants vanish for hyperbolic
(b) E is Riemannian negatively curved? 4-manifolds

Questions about convex cocompactness

1. Geometry of surface bundles

Question. Does there exist a bundle $S_{g} \rightarrow E \rightarrow S_{h}$ where
(a) E is a hyperbolic manifold $\left(E \cong \mathbb{H}^{4} / \Gamma\right) ? \longrightarrow$ no if SW invariants vanish for hyperbolic
(b) E is Riemannian negatively curved? 4-manifolds
(c) $\pi_{1}(E)$ is a hyperbolic group?

Questions about convex cocompactness

1. Geometry of surface bundles

Question. Does there exist a bundle $S_{g} \rightarrow E \rightarrow S_{h}$ where
(a) E is a hyperbolic manifold $\left(E \cong \mathbb{H}^{4} / \Gamma\right) ? \longrightarrow$ no if SW invariants vanish for hyperbolic
(b) E is Riemannian negatively curved? 4-manifolds
(c) $\pi_{1}(E)$ is a hyperbolic group?

$$
S_{g} \rightarrow E \rightarrow S_{h} \quad \text { мй } \quad 1 \rightarrow \pi_{1}\left(S_{g}\right) \rightarrow \pi_{1}(E) \rightarrow \pi_{1}\left(S_{h}\right) \rightarrow 1
$$

Questions about convex cocompactness

1. Geometry of surface bundles

Question. Does there exist a bundle $S_{g} \rightarrow E \rightarrow S_{h}$ where
(a) E is a hyperbolic manifold $\left(E \cong \boldsymbol{H}^{4} / \Gamma\right) ? \longrightarrow$ no if SW invariants vanish for hyperbolic
(b) E is Riemannian negatively curved?

4-manifolds
(c) $\pi_{1}(E)$ is a hyperbolic group?

$$
S_{g} \rightarrow E \rightarrow S_{h} \quad \text { nu } \quad 1 \rightarrow \pi_{1}\left(S_{g}\right) \rightarrow \pi_{1}(E) \rightarrow \pi_{1}\left(S_{h}\right) \rightarrow 1
$$

Question (restatment of (c)). Does there exist a subgroup $\pi_{1}\left(S_{h}\right)<\operatorname{Mod}\left(S_{g}\right)$ that's convex cocompact?

Questions about convex cocompactness

1. Geometry of surface bundles

Question. Does there exist a bundle $S_{g} \rightarrow E \rightarrow S_{h}$ where
(a) E is a hyperbolic manifold $\left(E \cong \boldsymbol{H}^{4} / \Gamma\right) ? \longrightarrow$ no if SW invariants vanish for hyperbolic
(b) E is Riemannian negatively curved?

4-manifolds
(c) $\pi_{1}(E)$ is a hyperbolic group?

$$
S_{g} \rightarrow E \rightarrow S_{h} \quad \text { nu } \quad 1 \rightarrow \pi_{1}\left(S_{g}\right) \rightarrow \pi_{1}(E) \rightarrow \pi_{1}\left(S_{h}\right) \rightarrow 1
$$

Question (restatment of (c)). Does there exist a subgroup $\pi_{1}\left(S_{h}\right)<\operatorname{Mod}\left(S_{g}\right)$ that's convex cocompact?

All known examples of convex co-cpt $G<\operatorname{Mod}(S)$ are virtually free.

Questions about convex cocompactness

1. Geometry of surface bundles
2. Hyperbolization of groups

Questions about convex cocompactness

1. Geometry of surface bundles
2. Hyperbolization of groups

Problem (Gromov). Assume Γ is a group with a finite $K(\Gamma, 1)$.

Questions about convex cocompactness

1. Geometry of surface bundles
2. Hyperbolization of groups

Problem (Gromov). Assume Γ is a group with a finite $\mathrm{K}(\Gamma, 1)$. Prove/disprove: If Γ contains no Baumslag-Solitar subgroup, then Γ is hyperbolic.

Questions about convex cocompactness

1. Geometry of surface bundles
2. Hyperbolization of groups

Problem (Gromov). Assume Γ is a group with a finite $\mathrm{K}(\Gamma, 1)$. Prove/disprove: If Γ contains no Baumslag-Solitar subgroup, then Γ is hyperbolic. $\operatorname{BS}(p, q)=\left\langle a, b \mid a^{-1} b^{p} a=b^{q}\right\rangle$

Questions about convex cocompactness

1. Geometry of surface bundles
2. Hyperbolization of groups

Problem (Gromov). Assume Γ is a group with a finite $\mathrm{K}(\Gamma, 1)$. Prove/disprove: If Γ contains no Baumslag-Solitar subgroup, then Γ is hyperbolic. $\operatorname{BS}(p, q)=\left\langle a, b \left\lvert\, a^{-1} b^{\frac{b}{p}} a=b^{q}\right.\right\rangle$

Exercise. If $G<\operatorname{Mod}(S)$ is purely pseudo-Anosov, then Γ_{G} does not contain $\mathrm{BS}(p, q)$.

Questions about convex cocompactness

1. Geometry of surface bundles

2. Hyperbolization of groups

Problem (Gromov). Assume Γ is a group with a finite $\mathrm{K}(\Gamma, 1)$. Prove/disprove: If Γ contains no Baumslag-Solitar subgroup, then Γ is hyperbolic. $\operatorname{BS}(p, q)=\left\langle a, b \mid a^{-1} b^{p} a=b^{q}\right\rangle$

Exercise. If $G<\operatorname{Mod}(S)$ is purely pseudo-Anosov, then Γ_{G} does not contain $\mathrm{BS}(p, q)$.

Problem (Farb-Mosher, Gromov for Γ_{G}): Prove/disprove:

Questions about convex cocompactness

1. Geometry of surface bundles

2. Hyperbolization of groups

Problem (Gromov). Assume Γ is a group with a finite $\mathrm{K}(\Gamma, 1)$. Prove/disprove: If Γ contains no Baumslag-Solitar subgroup, then Γ is hyperbolic.

$$
\operatorname{BS}(p, q)=\left\langle a, b \left\lvert\, a^{-1} b^{\frac{b}{p}} a=b^{q}\right.\right\rangle
$$

Exercise. If $G<\operatorname{Mod}(S)$ is purely pseudo-Anosov, then Γ_{G} does not contain $\mathrm{BS}(p, q)$.

Problem (Farb-Mosher, Gromov for Γ_{G}): Prove/disprove: If $G<\operatorname{Mod}(S)$ is purely pseudo-Anosov, then G is convex cocompact.

Some results

$G<\operatorname{Mod}(S) \quad \Gamma_{G}$ hyperbolic $\Longleftrightarrow G$ is convex cocompact $\Longleftrightarrow G \rightarrow \mathscr{C}(S)$ q.i. embedding

Problem (Farb-Mosher). Prove/disprove
G purely pseudo-Anosov $\Longrightarrow G$ convex cocompact.

Some results

$G<\operatorname{Mod}(S) \quad \Gamma_{G}$ hyperbolic $\Longleftrightarrow G$ is convex cocompact $\Longleftrightarrow G \rightarrow \mathscr{C}(S)$ q.i. embedding

Problem (Farb-Mosher). Prove/disprove
G purely pseudo-Anosov $\Longrightarrow G$ convex cocompact.
Known cases. This is true if $G<H$, for H

Some results

$G<\operatorname{Mod}(S) \quad \Gamma_{G}$ hyperbolic $\Longleftrightarrow G$ is convex cocompact $\Longleftrightarrow G \rightarrow \mathscr{C}(S)$ q.i. embedding

Problem (Farb-Mosher). Prove/disprove
G purely pseudo-Anosov $\Longrightarrow G$ convex cocompact.
Known cases. This is true if $G<H$, for H

- a Veech group $\operatorname{Aff}(X, \omega)$

Some results

$G<\operatorname{Mod}(S) \quad \Gamma_{G}$ hyperbolic $\Longleftrightarrow G$ is convex cocompact

$$
\Longleftrightarrow G \rightarrow \mathscr{C}(S) \text { q.i. embedding }
$$

Problem (Farb-Mosher). Prove/disprove
G purely pseudo-Anosov $\Longrightarrow G$ convex cocompact.
Known cases. This is true if $G<H$, for H

- a Veech group $\operatorname{Aff}(X, \omega)$
(Kent-Leininger-Schleimer)
- certain hyp. 3 -mfld subgroups of $\operatorname{Mod}(S, *)$ (Dowdall-Kent-Leininger)

Some results

$G<\operatorname{Mod}(S) \quad \Gamma_{G}$ hyperbolic $\Longleftrightarrow G$ is convex cocompact

$$
\Longleftrightarrow G \rightarrow \mathscr{C}(S) \text { q.i. embedding }
$$

Problem (Farb-Mosher). Prove/disprove
G purely pseudo-Anosov $\Longrightarrow G$ convex cocompact.
Known cases. This is true if $G<H$, for H

- a Veech group $\operatorname{Aff}(X, \omega)$
(Kent-Leininger-Schleimer)
- certain hyp. 3 -mfld subgroups of $\operatorname{Mod}(S, *)$ (Dowdall-Kent-Leininger)
- certain right-angled Artin subgroups
(Koberda-Mangahas-Taylor)

Some results

$G<\operatorname{Mod}(S) \quad \Gamma_{G}$ hyperbolic $\Longleftrightarrow G$ is convex cocompact $\Longleftrightarrow G \rightarrow \mathscr{C}(S)$ q.i. embedding

Problem (Farb-Mosher). Prove/disprove
G purely pseudo-Anosov $\Longrightarrow G$ convex cocompact.
Known cases. This is true if $G<H$, for H

- a Veech group $\operatorname{Aff}(X, \omega)$
(Kent-Leininger-Schleimer)
- certain hyp. 3 -mfld subgroups of $\operatorname{Mod}(S, *)$ (Dowdall-Kent-Leininger)
- certain right-angled Artin subgroups
(Koberda-Mangahas-Taylor)
This talk: genus-2 Goeritz group

The Goeritz group

 and convex cocompact subgroups
Goeritz group

Goeritz group

$S^{3}=V \cup W \quad$ genus- g Heegaard splitting S_{g}

Goeritz group

$S^{3}=V \cup W \quad$ genus- g Heegaard splitting

Goeritz group

$S^{3}=V \cup W \quad$ genus- g Heegaard splitting

V (inside handlebody)

Goeritz group

$S^{3}=V \cup W \quad$ genus- g Heegaard splitting

W (outside handlebody)

V (inside handlebody)

Goeritz group

$S^{3}=V \cup W \quad$ genus- g Heegaard splitting

W (outside handlebody)

V (inside handlebody)
genus- g Goeritz group

Goeritz group

$S^{3}=V \cup W \quad$ genus- g Heegaard splitting

W (outside handlebody)

V (inside handlebody)
genus- g Goeritz group
$\operatorname{Homeo}\left(S^{3}, V\right)$

Goeritz group

$S^{3}=V \cup W \quad$ genus- g Heegaard splitting

W (outside handlebody)

V (inside handlebody)
genus- g Goeritz group

$$
\pi_{0}\left(\operatorname{Homeo}\left(S^{3}, V\right)\right)
$$

Goeritz group

$S^{3}=V \cup W \quad$ genus- g Heegaard splitting

W (outside handlebody)

V (inside handlebody)
genus- g Goeritz group

$$
\pi_{0}\left(\operatorname{Homeo}\left(S^{3}, V\right)\right) \rightarrow \pi_{0}\left(\operatorname{Homeo}\left(S_{g}\right)\right)=\operatorname{Mod}\left(S_{g}\right)
$$

Goeritz group

$S^{3}=V \cup W \quad$ genus- g Heegaard splitting

W (outside handlebody)

V (inside handlebody)
genus- g Goeritz group

$$
\pi_{0}\left(\operatorname{Homeo}\left(S^{3}, V\right)\right) \hookrightarrow \pi_{0}\left(\operatorname{Homeo}\left(S_{g}\right)\right)=\operatorname{Mod}\left(S_{g}\right)
$$

Goeritz group

$S^{3}=V \cup W \quad$ genus- g Heegaard splitting

W (outside handlebody)

V (inside handlebody)
genus- g Goeritz group

$$
\mathscr{G}_{g}:=\pi_{0}\left(\operatorname{Homeo}\left(S^{3}, V\right)\right) \hookrightarrow \pi_{0}\left(\operatorname{Homeo}\left(S_{g}\right)\right)=\operatorname{Mod}\left(S_{g}\right)
$$

Goeritz group

$S^{3}=V \cup W$ genus- g Heegaard splitting

W (outside handlebody)

V (inside handlebody)

handle drag
genus- g Goeritz group

$$
\mathscr{G}_{g}:=\pi_{0}\left(\operatorname{Homeo}\left(S^{3}, V\right)\right) \hookrightarrow \pi_{0}\left(\operatorname{Homeo}\left(S_{g}\right)\right)=\operatorname{Mod}\left(S_{g}\right)
$$

Goeritz group

$S^{3}=V \cup W$ genus- g Heegaard splitting

W (outside handlebody)

V (inside handlebody)

handle drag
genus- g Goeritz group

$$
\mathscr{G}_{g}:=\pi_{0}\left(\operatorname{Homeo}\left(S^{3}, V\right)\right) \hookrightarrow \pi_{0}\left(\operatorname{Homeo}\left(S_{g}\right)\right)=\operatorname{Mod}\left(S_{g}\right)
$$

Conjecture (Powell). \mathscr{G}_{g} is finitely generated $\forall g$.

Goeritz group

$S^{3}=V \cup W$ genus- g Heegaard splitting

W (outside handlebody)

V (inside handlebody)

handle drag
genus- g Goeritz group
$\mathscr{G}_{g}:=\pi_{0}\left(\operatorname{Homeo}\left(S^{3}, V\right)\right) \hookrightarrow \pi_{0}\left(\operatorname{Homeo}\left(S_{g}\right)\right)=\operatorname{Mod}\left(S_{g}\right)$
Conjecture (Powell). \mathscr{G}_{g} is finitely generated $\forall g$. Known for $g \leq 3$ (Goeritz, Scharlemann-Freedman)

Goeritz group in genus 2

$$
S^{3}=V \underset{S_{g}}{\cup} W
$$

Heegaard splitting
$\mathscr{E}_{g}:=\pi_{0}\left(\operatorname{Homeo}\left(S^{3}, V\right)\right) \hookrightarrow \operatorname{Mod}(S)$
Goeritz group

Goeritz group in genus 2

$$
S^{3}=V \underset{S_{g}}{\cup} W
$$

Heegaard splitting
Generators of \mathscr{E}_{2}
$\mathscr{E}_{g}:=\pi_{0}\left(\operatorname{Homeo}\left(S^{3}, V\right)\right) \hookrightarrow \operatorname{Mod}(S)$
Goeritz group

Goeritz group in genus 2

$$
S^{3}=V \underset{S_{g}}{\cup} W
$$

Heegaard splitting
Generators of \mathscr{G}_{2}

$\mathscr{E}_{g}:=\pi_{0}\left(\operatorname{Homeo}\left(S^{3}, V\right)\right) \hookrightarrow \operatorname{Mod}(S)$
Goeritz group

Goeritz group in genus 2

$$
S^{3}=V \underset{S_{g}}{\cup} W
$$

Heegaard splitting
Generators of \mathscr{E}_{2}

$\mathscr{G}_{g}:=\pi_{0}\left(\operatorname{Homeo}\left(S^{3}, V\right)\right) \hookrightarrow \operatorname{Mod}(S)$
Goeritz group

Goeritz group in genus 2

$$
S^{3}=V \underset{S_{g}}{\cup} W
$$

Heegaard splitting
Generators of \mathscr{E}_{2}

$\mathscr{G}_{g}:=\pi_{0}\left(\operatorname{Homeo}\left(S^{3}, V\right)\right) \hookrightarrow \operatorname{Mod}(S)$
Goeritz group

Goeritz group in genus 2

$$
S^{3}=V \underset{S_{g}}{\cup} W
$$

Heegaard splitting
Generators of \mathscr{E}_{2}

β half-twist

Goeritz group in genus 2

$$
S^{3}=V \underset{S_{g}}{\cup} W
$$

Heegaard splitting
$\mathscr{G}_{g}:=\pi_{0}\left(\operatorname{Homeo}\left(S^{3}, V\right)\right) \hookrightarrow \operatorname{Mod}(S)$
Goeritz group

Generators of $\mathscr{\mathscr { G }}_{2}$

β half-twist

(Scharlemann, Akbas, Cho)

$$
\mathscr{G}_{2} \cong\left[\left(\mathbb{Z}_{2} \times \mathbb{Z}\right) \rtimes \underset{\mathbb{Z}_{2}}{\mathbb{Z}_{2} \times \mathbb{Z}_{2}} \leqslant\left(\mathrm{~S}_{3} \times \mathbb{Z}_{2}\right)\right.
$$

Goeritz group in genus 2

$$
S^{3}=V \underset{S_{g}}{\cup} W
$$

Heegaard splitting
$\mathscr{G}_{g}:=\pi_{0}\left(\operatorname{Homeo}\left(S^{3}, V\right)\right) \hookrightarrow \operatorname{Mod}(S)$
Goeritz group

Generators of \mathscr{E}_{2}

β half-twist

(Scharlemann, Akbas, Cho)

$$
\begin{gathered}
(\langle\alpha\rangle \times\langle\beta\rangle) \rtimes\langle\gamma\rangle \quad\langle\gamma, \delta\rangle \times\langle\alpha\rangle \\
\boldsymbol{G}_{2} \cong\left[\left(\mathbb{Z}_{2} \times \mathbb{Z}\right) \rtimes \mathbb{Z}_{2}\right] *\left(\mathrm{~S}_{3} \times \mathbb{Z}_{2}\right) \\
\mathbb{Z}_{2} \times \mathbb{Z}_{2}
\end{gathered}
$$

Main results (in progress)

Main results (in progress)

$$
\text { in genus } 2
$$

Main results (in progress)

in genus 2

Theorem A (T). Finitely-generated, purely pseudo-Anosov subgroups of \mathscr{E} are convex cocompact.

Main results (in progress)

in genus 2

Theorem A (T). Finitely-generated, purely pseudo-Anosov subgroups of \mathscr{E} are convex cocompact.

Theorem B (T). $g \in \mathscr{G}<\operatorname{Mod}(S)$ is pseudo-Anosov \Longleftrightarrow g is not conjugate into any of the following subgroups

Main results (in progress)

in genus 2

Theorem A (T). Finitely-generated, purely pseudo-Anosov subgroups of \mathscr{E} are convex cocompact.

Theorem B (T). $g \in \mathscr{G}<\operatorname{Mod}(S)$ is pseudo-Anosov \Longleftrightarrow g is not conjugate into any of the following subgroups

- primitive disk stabilizer $\langle\alpha, \beta, \gamma \delta\rangle$

Main results (in progress)

in genus 2

Theorem A (T). Finitely-generated, purely pseudo-Anosov subgroups of \mathscr{G} are convex cocompact.

Theorem B (T). $g \in \mathscr{G}<\operatorname{Mod}(S)$ is pseudo-Anosov \Longleftrightarrow g is not conjugate into any of the following subgroups

- primitive disk stabilizer $\langle\alpha, \beta, \gamma \delta\rangle$
- reducing sphere stabilizer $\langle\alpha, \beta, \gamma\rangle$

Main results (in progress)

in genus 2

Theorem A (T). Finitely-generated, purely pseudo-Anosov subgroups of \mathscr{G} are convex cocompact.

Theorem B (T). $g \in \mathscr{G}<\operatorname{Mod}(S)$ is pseudo-Anosov \Longleftrightarrow g is not conjugate into any of the following subgroups

- primitive disk stabilizer $\langle\alpha, \beta, \gamma \delta\rangle$
- reducing sphere stabilizer $\langle\alpha, \beta, \gamma\rangle$
- pants-decomposition stabilizer $\langle\alpha, \gamma, \delta\rangle$

Main results (in progress)

in genus 2

Theorem A (T). Finitely-generated, purely pseudo-Anosov subgroups of \mathscr{G} are convex cocompact.

Theorem B (T). $g \in \mathscr{G}<\operatorname{Mod}(S)$ is pseudo-Anosov \Longleftrightarrow g is not conjugate into any of the following subgroups

- primitive disk stabilizer $\langle\alpha, \beta, \gamma \delta\rangle$
- reducing sphere stabilizer $\langle\alpha, \beta, \gamma\rangle$
- pants-decomposition stabilizer $\langle\alpha, \gamma, \delta\rangle$
- I-bundle stabilizer $\left\langle\beta \delta \beta^{-1} \delta\right\rangle$

Main results (in progress)

in genus 2

Theorem A (T). Finitely-generated, purely pseudo-Anosov subgroups of \mathscr{G} are convex cocompact.

Theorem B (T). $g \in \mathscr{G}<\operatorname{Mod}(S)$ is pseudo-Anosov \Longleftrightarrow g is not conjugate into any of the following subgroups

- primitive disk stabilizer $\langle\alpha, \beta, \gamma \delta\rangle$
- reducing sphere stabilizer $\langle\alpha, \beta, \gamma\rangle$
- pants-decomposition stabilizer $\langle\alpha, \gamma, \delta\rangle$
- I-bundle stabilizer $\left\langle\beta \delta \beta^{-1} \delta\right\rangle$
(sample) Corollary. For each $n \geq 2$,

Main results (in progress)

in genus 2

Theorem A (T). Finitely-generated, purely pseudo-Anosov subgroups of \mathscr{G} are convex cocompact.

Theorem B (T). $g \in \mathscr{G}<\operatorname{Mod}(S)$ is pseudo-Anosov \Longleftrightarrow g is not conjugate into any of the following subgroups

- primitive disk stabilizer $\langle\alpha, \beta, \gamma \delta\rangle$
- reducing sphere stabilizer $\langle\alpha, \beta, \gamma\rangle$
- pants-decomposition stabilizer $\langle\alpha, \gamma, \delta\rangle$
- I-bundle stabilizer $\left\langle\beta \delta \beta^{-1} \delta\right\rangle$
(sample) Corollary. For each $n \geq 2$,
$G_{n}=\left\langle\beta^{n} \delta, \delta \beta^{n}\right\rangle$ is purely pseudo-Anosov, hence convex cocompact.

Key ingredient: primitive disk complex

$$
S^{3}=V \underset{S}{\cup} W
$$

Key ingredient: primitive disk complex

orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires choice of basepoint

$$
S^{3}=V \underset{S}{\cup} W
$$

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires choice of basepoint$$
S^{3}=V \underset{S}{\cup} W
$$

a geometrically meaningful orbit:

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires choice of basepoint$$
S^{3}=V \underset{S}{\cup} W
$$

a geometrically meaningful orbit:
Primitive disks complex $\mathscr{P} \subset \mathscr{C}(S)$

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires choice of basepoint$$
S^{3}=V \underset{S}{\cup} W
$$

a geometrically meaningful orbit:
Primitive disks complex $\mathscr{P} \subset \mathscr{C}(S)$
spanned by vertices $a \in \mathscr{C}(S)$ where

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires choice of basepoint$$
S^{3}=V \underset{S}{\cup} W
$$

a geometrically meaningful orbit:
Primitive disks complex $\mathscr{P} \subset \mathscr{C}(S)$
spanned by vertices $a \in \mathscr{C}(S)$ where

- $a=\partial \mathrm{D}$ for some disk $D \subset V$

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires choice of basepoint$$
S^{3}=V \underset{S}{\cup} W
$$

a geometrically meaningful orbit:
Primitive disks complex $\mathscr{P} \subset \mathscr{C}(S)$
spanned by vertices $a \in \mathscr{C}(S)$ where

- $a=\partial \mathrm{D}$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D}=\{\mathrm{pt}\}$

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires choice of basepoint$$
S^{3}=V \underset{S}{\cup} W
$$

a geometrically meaningful orbit:
Primitive disks complex $\mathscr{P} \subset \mathscr{C}(S)$
spanned by vertices $a \in \mathscr{C}(S)$ where

- $a=\partial \mathrm{D}$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D}=\{\mathrm{pt}\}$
D is called a primitive disk

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires cha geometrically meaningful orbit:

Primitive disks complex $\mathscr{P} \subset \mathscr{C}(S)$ spanned by vertices $a \in \mathscr{C}(S)$ where

$$
S^{3}=V \underset{S}{\cup} W
$$

- $a=\partial \mathrm{D}$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D}=\{\mathrm{pt}\}$ D is called a primitive disk

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires cha geometrically meaningful orbit:

Primitive disks complex $\mathscr{P} \subset \mathscr{C}(S)$

$a \in \mathscr{P}$
vertex spanned by vertices $a \in \mathscr{C}(S)$ where

- $a=\partial \mathrm{D}$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D}=\{\mathrm{pt}\}$ D is called a primitive disk

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires cha geometrically meaningful orbit:

Primitive disks complex $\mathscr{P} \subset \mathscr{C}(S)$
 spanned by vertices $a \in \mathscr{C}(S)$ where

- $a=\partial \mathrm{D}$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D}=\{\mathrm{pt}\}$ D is called a primitive disk

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires cha geometrically meaningful orbit:

Primitive disks complex $\mathscr{P} \subset \mathscr{C}(S)$ spanned by vertices $a \in \mathscr{C}(S)$ where

- $a=\partial \mathrm{D}$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D}=\{\mathrm{pt}\}$ D is called a primitive disk

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires cha geometrically meaningful orbit:

Primitive disks complex $\mathscr{P} \subset \mathscr{C}(S)$ spanned by vertices $a \in \mathscr{C}(S)$ where

- $a=\partial \mathrm{D}$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D}=\{\mathrm{pt}\}$ D is called a primitive disk

$a \notin \mathscr{P}$
bounds disk in V,
is nonseparating, but $\nexists \widehat{D}$

Key ingredient: distance formula

Key ingredient: distance formula

- precise accounting for why $\mathscr{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. embedding

Key ingredient: distance formula

- precise accounting for why $\mathscr{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. embedding
- following Masur-Minsky and Masur-Schleimer

Key ingredient: distance formula

- precise accounting for why $\mathscr{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. embedding
- following Masur-Minsky and Masur-Schleimer

Theorem (T). Given $\mu>0, \exists K>0$ so that for all $a, b \in \mathscr{P}$

Key ingredient: distance formula

- precise accounting for why $\mathscr{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. embedding
- following Masur-Minsky and Masur-Schleimer

Theorem (T). Given $\mu>0, \exists K>0$ so that for all $a, b \in \mathscr{P}$
$\frac{1}{K} \cdot \sum_{X}\left\{d_{X}(a, b)\right\}_{\mu}-K \leq d_{\mathscr{P}}(a, b) \leq K \cdot \sum_{X}\left\{d_{X}(a, b)\right\}_{\mu}+K$

Key ingredient: distance formula

- precise accounting for why $\mathscr{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. embedding
- following Masur-Minsky and Masur-Schleimer

Theorem (T). Given $\mu>0, \exists K>0$ so that for all $a, b \in \mathscr{P}$

$$
\frac{1}{K} \cdot \sum_{X}\left\{d_{X}(a, b)\right\}_{\mu}-K \leq d_{\mathscr{P}}(a, b) \leq K \cdot \sum_{X}\left\{d_{X}(a, b)\right\}_{\mu}+K
$$

- The sum ranges over certain subsurfaces $X \subset S$

Key ingredient: distance formula

- precise accounting for why $\mathscr{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. embedding
- following Masur-Minsky and Masur-Schleimer

Theorem (T). Given $\mu>0, \exists K>0$ so that for all $a, b \in \mathscr{P}$

$$
\frac{1}{K} \cdot \sum_{X}\left\{d_{X}(a, b)\right\}_{\mu}-K \leq d_{\mathscr{P}}(a, b) \leq K \cdot \sum_{X}\left\{d_{X}(a, b)\right\}_{\mu}+K
$$

- The sum ranges over certain subsurfaces $X \subset S$

Key ingredient: distance formula

- precise accounting for why $\mathscr{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. embedding
- following Masur-Minsky and Masur-Schleimer

Theorem (T). Given $\mu>0, \exists K>0$ so that for all $a, b \in \mathscr{P}$

$$
\frac{1}{K} \cdot \sum_{X}\left\{d_{X}(a, b)\right\}_{\mu}-K \leq d_{\mathscr{P}}(a, b) \leq K \cdot \sum_{X}\left\{d_{X}(a, b)\right\}_{\mu}+K
$$

- The sum ranges over certain subsurfaces $X \subset S$
no primitive disk has boundary $\subset S \backslash X$
- $d_{X}(a, b)=\operatorname{diam}_{\mathscr{G}(X)}\left(\pi_{X}(a) \cup \pi_{X}(b)\right)$,

Key ingredient: distance formula

- precise accounting for why $\mathscr{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. embedding
- following Masur-Minsky and Masur-Schleimer

Theorem (T). Given $\mu>0, \exists K>0$ so that for all $a, b \in \mathscr{P}$

$$
\frac{1}{K} \cdot \sum_{X}\left\{d_{X}(a, b)\right\}_{\mu}-K \leq d_{\mathscr{P}}(a, b) \leq K \cdot \sum_{X}\left\{d_{X}(a, b)\right\}_{\mu}+K
$$

- The sum ranges over certain subsurfaces $X \subset S$ no primitive disk has boundary $\subset S \backslash X$
- $d_{X}(a, b)=\operatorname{diam}_{\mathscr{C}(X)}\left(\pi_{X}(a) \cup \pi_{X}(b)\right)$,
where $\pi_{X}: \mathscr{C}(S) \rightarrow 2^{\mathscr{C}(X)}$ is the subsurface projection

Key ingredient: distance formula

- precise accounting for why $\mathscr{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. embedding
- following Masur-Minsky and Masur-Schleimer

Theorem (T). Given $\mu>0, \exists K>0$ so that for all $a, b \in \mathscr{P}$
$\frac{1}{K} \cdot \sum_{X}\left\{d_{X}(a, b)\right\}_{\mu}-K \leq d_{\mathscr{P}}(a, b) \leq K \cdot \sum_{X}\left\{d_{X}(a, b)\right\}_{\mu}+K$

- The sum ranges over certain subsurfaces $X \subset S$ no primitive disk has boundary $\subset S \backslash X$
- $d_{X}(a, b)=\operatorname{diam}_{\mathscr{C}(X)}\left(\pi_{X}(a) \cup \pi_{X}(b)\right)$, where $\pi_{X}: \mathscr{C}(S) \rightarrow 2^{\mathscr{C}(X)}$ is the subsurface projection
- $\{x\}_{\mu}=\left\{\begin{array}{ll}x & \text { if } x \geq \mu \\ 0 & \text { if } x<\mu\end{array} \quad\right.$ "cutoff function"

About proof of Theorem A

Fin. gen. purely p.A. subgroups of \mathscr{G} are convex cocompact.

About proof of Theorem A

Fin. gen. purely p.A. subgroups of \mathscr{G} are convex cocompact.
Fix $G<\mathscr{G}$ f.g. purely pseudo-Anosov

About proof of Theorem A

Fin. gen. purely p.A. subgroups of \mathscr{G} are convex cocompact.
Fix $G<\mathscr{G}$ f.g. purely pseudo-Anosov

About proof of Theorem A

Fin. gen. purely p.A. subgroups of \mathscr{G} are convex cocompact.
Fix $G<\mathscr{G}$ f.g. purely pseudo-Anosov

About proof of Theorem A

Fin. gen. purely p.A. subgroups of \mathscr{G} are convex cocompact.
Fix $G<\mathscr{G}$ f.g. purely pseudo-Anosov

About proof of Theorem A

Fin. gen. purely p.A. subgroups of \mathscr{G} are convex cocompact.
Fix $G<\mathscr{G}$ f.g. purely pseudo-Anosov

About proof of Theorem A

Fin. gen. purely p.A. subgroups of \mathscr{G} are convex cocompact.
Fix $G<\mathscr{G}$ f.g. purely pseudo-Anosov

Show if $G \rightarrow \mathscr{P}$ is q.i. emb but $G \rightarrow \mathscr{C}(S)$ is not,

About proof of Theorem A

Fin. gen. purely p.A. subgroups of \mathscr{G} are convex cocompact.
Fix $G<\mathscr{G}$ f.g. purely pseudo-Anosov

(distance formula + Bestvina-Bromberg-Kent-Leininger)
Show if $G \rightarrow \mathscr{P}$ is q.i. emb but $G \rightarrow \mathscr{C}(S)$ is not, then G contains reducible element.

About proof of Theorem A

Fin. gen. purely p.A. subgroups of \mathscr{G} are convex cocompact.
Fix $G<\mathscr{G}$ f.g. purely pseudo-Anosov

(distance formula + Bestvina-Bromberg-Kent-Leininger)
Show if $G \rightarrow \mathscr{P}$ is q.i. emb but $G \rightarrow \mathscr{C}(S)$ is not,
then G contains reducible element.

About proof of Theorem A

Fin. gen. purely p.A. subgroups of \mathscr{G} are convex cocompact.
Fix $G<\mathscr{G}$ f.g. purely pseudo-Anosov

Show if $G \rightarrow \mathscr{P}$ is q.i. emb but $G \rightarrow \mathscr{C}(S)$ is not,
then G contains reducible element.

About proof of Theorem A

Fin. gen. purely p.A. subgroups of \mathscr{G} are convex cocompact.
Fix $G<\mathscr{G}$ f.g. purely pseudo-Anosov

Show if $G \rightarrow \mathscr{P}$ is q.i. emb but $G \rightarrow \mathscr{C}(S)$ is not,
then G contains reducible element.

About proof of Theorem A

Fin. gen. purely p.A. subgroups of \mathscr{G} are convex cocompact.
Fix $G<\mathscr{G}$ f.g. purely pseudo-Anosov

Show if $G \rightarrow \mathscr{P}$ is q.i. emb but $G \rightarrow \mathscr{C}(S)$ is not, then G contains reducible element.

About proof of Theorem A

Fin. gen. purely p.A. subgroups of \mathscr{G} are convex cocompact.
Fix $G<\mathscr{G}$ f.g. purely pseudo-Anosov

Show if $G \rightarrow \mathscr{P}$ is q.i. emb but $G \rightarrow \mathscr{C}(S)$ is not,
then G contains reducible element.

Example:
the I-bundle subgroup of \mathscr{E}

Theorem B (characterization of pseudo-Anosovs in \mathscr{G}) $g \in \mathscr{G}<\operatorname{Mod}(S)$ is pseudo-Anosov $\Longleftrightarrow g$ is not conjugate into any of the following subgroups

- primitive disk stabilizer $\langle\alpha, \beta, \gamma \delta\rangle$
- reducing sphere stabilizer $\langle\alpha, \beta, \gamma\rangle$
- pants-decomposition stabilizer $\langle\alpha, \gamma, \delta\rangle$
- I-bundle stabilizer $\left\langle\beta \delta \beta^{-1} \delta\right\rangle$

Theorem B (characterization of pseudo-Anosovs in \mathscr{E}) $g \in \mathscr{G}<\operatorname{Mod}(S)$ is pseudo-Anosov $\Longleftrightarrow g$ is not conjugate into any of the following subgroups

- primitive disk stabilizer $\langle\alpha, \beta, \gamma \delta\rangle$
- reducing sphere stabilizer $\langle\alpha, \beta, \gamma\rangle$
- pants-decomposition stabilizer $\langle\alpha, \gamma, \delta\rangle$ elements
- I-bundle stabilizer $\left\langle\beta \delta \beta^{-1} \delta\right\rangle$

Theorem B (characterization of pseudo-Anosovs in \mathscr{E}) $g \in \mathscr{G}<\operatorname{Mod}(S)$ is pseudo-Anosov $\Longleftrightarrow g$ is not conjugate into any of the following subgroups

- primitive disk stabilizer $\langle\alpha, \beta, \gamma \delta\rangle$
- reducing sphere stabilizer $\langle\alpha, \beta, \gamma\rangle$
- pants-decomposition stabilizer $\langle\alpha, \gamma, \delta\rangle$ elements
- I-bundle stabilizer $\left\langle\beta \delta \beta^{-1} \delta\right\rangle$

I-bundle subgroup of \mathscr{G}

I-bundle subgroup of \mathscr{G}

I-bundle subgroup of \mathscr{G}

$$
S^{3} \cong(\Sigma \times I) \cup(\Sigma \times I)
$$

I-bundle subgroup of \mathscr{G}

$$
S^{3} \cong(\Sigma \times I) \cup(\Sigma \times I)
$$

I-bundle subgroup of \mathscr{G}

Construction is (almost) unique up to conjugation!

I-bundle subgroup of \mathscr{G}

Construction is (almost) unique up to conjugation!

I-bundle subgroup of \mathscr{G}

Construction is (almost) unique up to conjugation!

- e.g. replace $\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$ with $\left(\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right) \xrightarrow{m} M^{3}$ with $\mathrm{H}_{1}(M) \neq 0$.

I-bundle subgroup of \mathscr{G}

Construction is (almost) unique up to conjugation!

- e.g. replace $\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$ with $\left(\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right)$ ma M^{3} with $\mathrm{H}_{1}(M) \neq 0$.
- replace φ with $\varphi \circ \mathrm{T}_{\partial \Sigma}^{n}$ m $\rightarrow M^{3}$ nontrivial homology sphere.

Significance of the I-bundle subgroup

Standard picture

I-bundle subgroup $\left\langle\beta \delta \beta^{-1} \delta\right\rangle$

Significance of the I-bundle subgroup

Standard picture

I-bundle subgroup $\left\langle\beta \delta \beta^{-1} \delta\right\rangle$

- Responsible for summands $X \neq S$ in distance formula ($X=\Sigma \times 1$).

Significance of the I-bundle subgroup

Standard picture

I-bundle subgroup $\left\langle\beta \delta \beta^{-1} \delta\right\rangle$

- Responsible for summands $X \neq S$ in distance formula ($X=\Sigma \times 1$).
- Responsible for the fact that $\mathscr{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. emb.

Significance of the I-bundle subgroup

Standard picture

I-bundle subgroup $\left\langle\beta \delta \beta^{-1} \delta\right\rangle$

- Responsible for summands $X \neq S$ in distance formula ($X=\Sigma \times 1$).
- Responsible for the fact that $\mathscr{P} \hookrightarrow \mathscr{C}(S)$ is not a q.i. emb.
- Classification of I-bundle subgroups key to Theorem B (characterizing p.A. elements in \mathscr{E}).

Thank you

Extra

About proof of Theorem A

Fin. gen. purely p.A. subgroups $G<\mathscr{G}$ are convex cocompact.

About proof of Theorem A

Fin. gen. purely p.A. subgroups $G<\mathscr{G}$ are convex cocompact. Fix $G<\mathscr{G}$ purely pseudo-Anosov

About proof of Theorem A

Fin. gen. purely p.A. subgroups $G<\mathscr{G}$ are convex cocompact. Fix $G<\mathscr{G}$ purely pseudo-Anosov

$$
\underline{\text { Step 1. }} G \underset{\text { qi. emb }}{ } \mathscr{P} \Longrightarrow G \underset{\text { q.i. emb }}{ } \mathscr{C}(\mathrm{S})
$$

About proof of Theorem A

Fin. gen. purely p.A. subgroups $G<\mathscr{G}$ are convex cocompact. Fix $G<\mathscr{G}$ purely pseudo-Anosov

$$
\underline{\text { Step 1. }} G \underset{\text { q.i. emb }}{ } \mathscr{P} \quad \Longrightarrow \quad G \xrightarrow[\text { q.i. emb }]{ } \mathscr{C}(\mathrm{S})
$$

Use distance formula to show that if $G \rightarrow \mathscr{P}$ is q.i. emb and $G \rightarrow \mathscr{C}(S)$ is not, then G contains a reducible element. (Bestvina-Bromberg-Kent-Leininger)

About proof of Theorem A

Fin. gen. purely p.A. subgroups $G<\mathscr{G}$ are convex cocompact. Fix $G<\mathscr{G}$ purely pseudo-Anosov

Step 1. $G \underset{\text { q.i. emb }}{ } \mathscr{P} \quad \Longrightarrow \quad G \underset{\text { q.i. emb }}{ } \mathscr{C}(\mathrm{S})$
Use distance formula to show that if $G \rightarrow \mathscr{P}$ is q.i. emb and $G \rightarrow \mathscr{C}(S)$ is not, then G contains a reducible element. (Bestvina-Bromberg-Kent-Leininger)

Step 2. Show $G \rightarrow \mathscr{P}$ is q.i. embedding.

About proof of Theorem A

Fin. gen. purely p.A. subgroups $G<\mathscr{G}$ are convex cocompact. Fix $G<\mathscr{G}$ purely pseudo-Anosov

Step 1. $G \underset{\text { q.i. emb }}{ } \mathscr{P} \quad \Longrightarrow \quad G \underset{\text { q.i. emb }}{ } \mathscr{C}(\mathrm{S})$
Use distance formula to show that if $G \rightarrow \mathscr{P}$ is q.i. emb and $G \rightarrow \mathscr{C}(S)$ is not, then G contains a reducible element. (Bestvina-Bromberg-Kent-Leininger)

Step 2. Show $G \rightarrow \mathscr{P}$ is q.i. embedding.
Keys/Special features:

About proof of Theorem A

Fin. gen. purely p.A. subgroups $G<\mathscr{G}$ are convex cocompact. Fix $G<\mathscr{G}$ purely pseudo-Anosov

Step 1. $G \underset{\text { q.i. emb }}{ } \mathscr{P} \quad \Longrightarrow \quad G \underset{\text { q.i. emb }}{ } \mathscr{C}(\mathrm{S})$
Use distance formula to show that if $G \rightarrow \mathscr{P}$ is q.i. emb and $G \rightarrow \mathscr{C}(S)$ is not, then G contains a reducible element. (Bestvina-Bromberg-Kent-Leininger)

Step 2. Show $G \rightarrow \mathscr{P}$ is q.i. embedding.
Keys/Special features:

- \mathscr{G} is virtually free, so $G<\mathscr{G}$ is q.i. embedded

About proof of Theorem A

Fin. gen. purely p.A. subgroups $G<\mathscr{G}$ are convex cocompact. Fix $G<\mathscr{G}$ purely pseudo-Anosov

Step 1. $G \underset{\text { q.i. emb }}{ } \mathscr{P} \quad \Longrightarrow \quad G \underset{\text { q.i. emb }}{ } \mathscr{C}(\mathrm{S})$
Use distance formula to show that if $G \rightarrow \mathscr{P}$ is q.i. emb and $G \rightarrow \mathscr{C}(S)$ is not, then G contains a reducible element. (Bestvina-Bromberg-Kent-Leininger)

Step 2. Show $G \rightarrow \mathscr{P}$ is q.i. embedding.
Keys/Special features:

- \mathscr{G} is virtually free, so $G<\mathscr{G}$ is q.i. embedded
- \mathscr{P} is quasi-isometric to a coned-off Cayley graph for \mathscr{G} (Cho)

About proof of Theorem A

Fin. gen. purely p.A. subgroups $G<\mathscr{G}$ are convex cocompact. Fix $G<\mathscr{G}$ purely pseudo-Anosov

Step 1. $G \underset{\text { q.i. emb }}{ } \mathscr{P} \quad \Longrightarrow \quad G \underset{\text { q.i. emb }}{ } \mathscr{C}(\mathrm{S})$
Use distance formula to show that if $G \rightarrow \mathscr{P}$ is q.i. emb and $G \rightarrow \mathscr{C}(S)$ is not, then G contains a reducible element. (Bestvina-Bromberg-Kent-Leininger)

Step 2. Show $G \rightarrow \mathscr{P}$ is q.i. embedding.
Keys/Special features:

- \mathscr{G} is virtually free, so $G<\mathscr{G}$ is q.i. embedded
- \mathscr{P} is quasi-isometric to a coned-off Cayley graph for \mathscr{G} (Cho)
- (Manning-Abbott) limit-set criterion to determine if $G \rightarrow \mathscr{P}$ is q.i. embedding

About proof of Theorem A

Fin. gen. purely p.A. subgroups $G<\mathscr{G}$ are convex cocompact.
Fix $G<\mathscr{G}$ purely pseudo-Anosov
Step 1. $G \underset{\text { q.i. emb }}{\longrightarrow} \mathscr{P} \Longrightarrow G \underset{\text { q.i. emb }}{\longrightarrow} \mathscr{C}(\mathrm{S})$
Use distance formula to show that if $G \rightarrow \mathscr{P}$ is q.i. emb and $G \rightarrow \mathscr{C}(S)$ is not, then G contains a reducible element. (Bestvina-Bromberg-Kent-Leininger)

Step 2. Show $G \rightarrow \mathscr{P}$ is q.i. embedding.
Keys/Special features:

- \mathscr{G} is virtually free, so $G<\mathscr{G}$ is q.i. embedded
- \mathscr{P} is quasi-isometric to a coned-off Cayley graph for \mathscr{G} (Cho)
- (Manning-Abbott) limit-set criterion to determine if $G \rightarrow \mathscr{P}$ is q.i. embedding
- Show if $G \rightarrow \mathscr{P}$ is not q.i. embedding, then G contains an element that fixes a primitive disk (in particular G contains a reducible element).

Key ingredient: primitive disk complex

$$
S^{3}=V \underset{S}{\cup} W
$$

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires choice of basepoint $\quad S^{3}=V \underset{S}{\cup} W$

Key ingredient: primitive disk complex

orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires choice of basepoint

$$
S^{3}=V \underset{S}{\cup} W
$$ a geometrically meaningful orbit:

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires choice of basepoint$$
S^{3}=V \underset{S}{\cup} W
$$ a geometrically meaningful orbit:

Primitive disks complex $\mathscr{P} \subset \mathscr{C}(S)$

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires choice of basepoint$$
S^{3}=V \underset{S}{\cup} W
$$

a geometrically meaningful orbit:
Primitive disks complex $\mathscr{P} \subset \mathscr{C}(S)$ spanned by vertices $a \in \mathscr{C}(S)$ where

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires cha geometrically meaningful orbit:

Primitive disks complex $\mathscr{P} \subset \mathscr{C}(S)$ spanned by vertices $a \in \mathscr{C}(S)$ where

$$
S^{3}=V \underset{S}{\cup} W
$$

- $a=\partial \mathrm{D}$ for some disk $D \subset V$

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires choice of basepoint$$
S^{3}=V \underset{S}{\cup} W
$$

a geometrically meaningful orbit:
Primitive disks complex $\mathscr{P} \subset \mathscr{C}(S)$ spanned by vertices $a \in \mathscr{C}(S)$ where

- $a=\partial \mathrm{D}$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D}=\{\mathrm{pt}\}$

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires cha geometrically meaningful orbit:

Primitive disks complex $\mathscr{P} \subset \mathscr{C}(S)$ spanned by vertices $a \in \mathscr{C}(S)$ where

- $a=\partial \mathrm{D}$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D}=\{\mathrm{pt}\}$ D is called a primitive disk

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires cha geometrically meaningful orbit:

Primitive disks complex $\mathscr{P} \subset \mathscr{C}(S)$

$a \in \mathscr{P}$
vertex spanned by vertices $a \in \mathscr{C}(S)$ where

- $a=\partial \mathrm{D}$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D}=\{\mathrm{pt}\}$ D is called a primitive disk

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires cha geometrically meaningful orbit:

Primitive disks complex $\mathscr{P} \subset \mathscr{C}(S)$
 spanned by vertices $a \in \mathscr{C}(S)$ where

- $a=\partial \mathrm{D}$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D}=\{\mathrm{pt}\}$ D is called a primitive disk

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires cha geometrically meaningful orbit:

Primitive disks complex $\mathscr{P} \subset \mathscr{C}(S)$ spanned by vertices $a \in \mathscr{C}(S)$ where

- $a=\partial \mathrm{D}$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D}=\{\mathrm{pt}\}$ D is called a primitive disk

Key ingredient: primitive disk complex

 orbit map $\mathscr{G} \rightarrow \mathscr{C}(S)$ requires choice of basepoint$$
S^{3}=V \underset{S}{\cup} W
$$

a geometrically meaningful orbit:
Primitive disks complex $\mathscr{P} \subset \mathscr{C}(S)$ spanned by vertices $a \in \mathscr{C}(S)$ where

- $a=\partial \mathrm{D}$ for some disk $D \subset V$
- \exists disk $\widehat{D} \subset W$ so that $a \cap \partial \widehat{D}=\{\mathrm{pt}\}$
D is called a primitive disk

$a \notin \mathscr{P}$
bounds disk in V,
is nonseparating, but $\nexists \widehat{D}$

