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Question. For G<Mod(S), when is I'¢ a hyperbolic group?

1 - m(S) - Te— G—1

e (Thurston). Assume G = <@) c Mod(59).

I'¢ is hyperbolic <= ¢ pseudo-Anosov

AN

infinite order, irreducible (no invariant multicurve)

e (Farb-Mosher, Hamenstadt). For any G<Mod(S),

['¢ is hyperbolic <= G<Mod(S5) is convexr cocompact
i
in particular every g # id € G 1s pseudo-Anosov, but this

is (potentially) weaker than being convexr cocompact
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The curve complex €(5)

G<Mod(S) is convex cocompact < orbit map G — €(5) is a

quasi-isometric embedding

Mod(S) ~ €(S) curve complex

g " isotopy-classes of essential
vertices <
@/—\VD simple closed curves on S
at edges < disjoint representatives
%\ c 6(5)

X, Y metric spaces
f:X— Y is a quasi-isometric embedding if 3 K,(' so that

[l(-d(x,y) — U= d(flz).fly) = K-d(zy)+C VzyeX




Summary so far

Question. For G<Mod(5), when is I'¢ a hyperbolic group?

1 > S =2Te— G—1

['¢ is hyperbolic <= G<Mod(S5) is convexr cocompact

orbit map G — €(95) is a
—

quasi-isometric embedding
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Question. Does there exist a bundle S, — F — S, where

(a) Eis a hyperbolic manifold (E = H*/T")? — 1o if SW invariants
vanish for hyperbolic

(b) E is Riemannian negatively curved? A-manifolds

(¢) mi(E) is a hyperbolic group?

Sg— E—= 85, w1 = mn((S) »m(E)— m(S) — 1

Question (restatment of (c)). Does there exist a subgroup
m1(Sh)<Mod(Sy) that’s conver cocompact?

All known examples of convex co-cpt G<Mod(S) are virtually free.
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2. Hyperbolization of groups

Problem (Gromov). Assume I is a group with a finite K(I',1).

Prove/disprove: If I' contains no Baumslag—Solitar)
Y

subgroup, then I' is hyperbolic. BS(p.q) = { a,b | a'b’a — b

Exercise. If G < Mod(5) is purely pseudo-Anosov, then

"¢ does not contain BS(p,q).

Problem (Farb-Mosher, Gromov for I'g): Prove/disprove:

If G <Mod(S) is purely pseudo-Anosov, then G is convex
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SB

VUW genus-g Heegaard splitting

7D

handle dmg

U
S

W (outside handlebody)

S (4

V (inside handlebody

genus-qg Goeritz group

C, .= no(Homeo(SS, 1)) < no(Homeo(Sy))=Mod(S,)

Conjecture (Powell). &, is finitely generated V g.

Known for ¢ = 3 (Goeritz, Scharlemann-Freedman)
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M genus 2

Theorem A (T). Finitely-generated, purely pseudo-Anosov

subgroups of & are convex cocompact.

Theorem B (T). g € € < Mod(S) is pseudo-Anosov <

g is not conjugate into any of the following subgroups

primitive disk stabilizer { o, (3, v0 >
reducing sphere stabilizer < o, 3, v >

pants-decomposition stabilizer < o, v, 0 )

Lbundle stabilizer ( 3575 )

(sample) Corollary. For each n = 2,

Gn = (3”5, 83" ) is purely pseudo-Anosov, hence convex

cocompact.
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S = VUuUWw
S

orbit map & — €(S5) requires choice of basepoint

a geometrically meaningful orbit:

q al/)\ ae P
Primitive disks complex &P c €(5) XA < vertex

spanned by vertices a € €(S) where
e g = dD for some disk D c V

a & P
e 3disk D cWso that a n 9D —{pt} doesn’t bound
disk in V
D is called a primitive disk
a & P a & P
bounds disk in V, bounds disk
1S nonseparating, iV, but

but 3 D a 18 separating
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Key ingredient: distance formula

o precise accounting for why &P < €(S5) is not a q.i. embedding

e following Masur-Minsky and Masur-Schleimer

Theorem (T). Given u>0, 3 K>0 so that for all a,b € &

%% (d(ad)}u — K dg(a,b) s KX {de(a,b)}u+K

e The sum ranges over certain subsurfaces Xc.S

¢

no primitive disk has boundary c S\ X
o dx(a,b) = diamgx)(nx(a) U nx(b)),

where my: €(S) — 2%% is the subsurface projection

o {z}y = {g :lé i i’uﬂ “cutoft function”
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Fin. gen. purely p.A. subgroups of & are convex cocompact.

Fix G<¥ f.g. purely pseudo-Anosov

X > Cone(¥, Stabg(acP))

. A A
q.l. emb.
(€ virtually free) q.i. (Cho +¢)
1 (Abbott-Manning —+¢) v
G > 9P
WTS: G — €(5) is q.i. emb. not a q.i. emb.
v

suffices to show ' — 92 is q.i. emb.
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I-bundle subgroup of &

id .
a . b Y]
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= U

2 1 1 — r\ QY — T T_l
2 » |
cts on Hl(Z)EZ y <1 1 Q >

V=XXI W=Xx1

standard picture

385375 acts by @Xid, generates Lbundle subgroup

Construction is (almost) unique up to conjugation!

e e.g. replace <i 1) with (? i) ww M with Hi(M)= 0.

e replace ¢ with goTgs wws M’ nontrivial homology sphere.
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Significance of the I-bundle subgroup

=2 > =
2 A E S e
Standard picture '@ C\ __—\ \_\O,/_&J N~
% P V=¥xI W=2x1

pXid ~V §° = (Zx]) U (1)

[-bundle subgroup (33373 )

e Responsible for summands X#5S in distance formula (X=XXx1).
e Responsible for the fact that &P < €(S5) is not a q.i. emb.
e (lassification of I-bundle subgroups key to Theorem B

(characterizing p.A. elements in &).
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Fin. gen. purely p.A. subgroups G<¥ are convex cocompact.

Fix G<¥ purely pseudo-Anosov

Step 1. G >P = G > 6 (S)

q.i. emb q.i. emb

Use distance formula to show that if G — & is q.i. emb and G — €(9) is not,

then G contains a reducible element. (Bestvina-Bromberg-Kent-Leininger)

Step 2. Show G — 9P is q.i. embedding.

Keys/Special features:
e & is virtually free, so G<& is q.i. embedded

o P is quasi-isometric to a coned-off Cayley graph for & (Cho)
e (Manning-Abbott) limit-set criterion to determine if G—@ is q.i. embedding

e Show it G—& is not q.i. embedding, then G contains an element that fixes a

primitive disk (in particular G contains a reducible element).
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