Arithmetic groups and characteristic classes of manifold bundles

Bena Tshishiku June 18, 2018

$$\begin{array}{c} M \to E \\ \downarrow \\ B \end{array}$$

$$M \to E$$
 structure group \downarrow Diff(M)

$$\left\{\begin{array}{c} M \to E \\ \downarrow \\ B \end{array} \right. \text{ structure group } \left. \right\} / \text{iso}$$

M smooth oriented manifold

$$\left\{\begin{array}{c} M \to E \\ \downarrow \\ B \end{array} \right. \text{ structure group } \left. \right\} / \text{iso}$$

Problem. Find invariants.

M smooth oriented manifold

$$\left\{\begin{array}{cc} M \to E \\ \downarrow \\ B \end{array} \right. \text{ structure group } \left. \right\} / \text{iso}$$

Problem. Find invariants.

A characteristic class is

M smooth oriented manifold

$$\operatorname{Bun}_{M}(B) := \left\{ \begin{array}{cc} M \to E \\ \downarrow \\ B \end{array} \right. \text{ structure group } \left. \begin{array}{c} \\ \\ \end{array} \right\} / \text{iso}$$

Problem. Find invariants.

A characteristic class is

M smooth oriented manifold

$$\operatorname{Bun}_{M}(B) := \left\{ \begin{array}{cc} M \to E \\ \downarrow \\ B \end{array} \begin{array}{c} \operatorname{structure\ group} \\ \operatorname{Diff}(M) \end{array} \right\} \middle/ \operatorname{iso}$$

Problem. Find invariants.

$$c: \operatorname{Bun}_{M}(\cdot) \to \operatorname{H}^{*}(\cdot).$$

M smooth oriented manifold

$$\operatorname{Bun}_{M}(B) := \left\{ \begin{array}{cc} M \to E & \text{structure group} \\ \downarrow & \operatorname{Diff}(M) \end{array} \right\} / \operatorname{iso} \simeq [B, \operatorname{BDiff}(M)]$$

Problem. Find invariants.

$$c: \operatorname{Bun}_M(\cdot) \to \operatorname{H}^*(\cdot).$$

M smooth oriented manifold

$$\operatorname{Bun}_{M}(B) := \left\{ \begin{array}{cc} M \to E & \text{structure group} \\ \downarrow & \operatorname{Diff}(M) \end{array} \right\} / \operatorname{iso} \simeq [B, \operatorname{BDiff}(M)]$$

Problem. Find invariants $c \in H^*(BDiff(M))$

$$c: \operatorname{Bun}_{M}(\cdot) \to \operatorname{H}^{*}(\cdot).$$

M smooth oriented manifold

$$\operatorname{Bun}_{M}(B) := \left\{ \begin{array}{cc} M \to E & \text{structure group} \\ \downarrow & & \operatorname{Diff}(M) \end{array} \right\} / \operatorname{iso} \simeq [B, \operatorname{BDiff}(M)]$$

Problem. Find invariants $c \in H^*(BDiff(M))$

and use to study M bundles.

$$c: \operatorname{Bun}_{M}(\cdot) \to \operatorname{H}^{*}(\cdot).$$

Example.

Example. $M=S_g$ closed surface genus g.

 $\operatorname{Diff}(S_g) \subset \operatorname{H}_1(S_g)$

$$\operatorname{Diff}(S_g) \subset \operatorname{H}_1(S_g)$$

$$\mathrm{Diff}(S_g) o \mathrm{Sp}_{2g}(\mathbb{Z})$$

$$\operatorname{Diff}(S_g) \subset \operatorname{H}_1(S_g)$$

$$\mathrm{BDiff}(S_g) \to \mathrm{BSp}_{2g}(\mathbb{Z})$$

$$\operatorname{Diff}(S_g) \subset \operatorname{H}_1(S_g)$$

$$\mathrm{BDiff}(S_g) \to \mathrm{BSp}_{2g}(\mathbb{Z}) \to \mathrm{BSp}_{2g}(\mathbb{R})$$

Example. $M=S_g$ closed surface genus g.

$$\operatorname{Diff}(S_g) \subset \operatorname{H}_1(S_g)$$

 $f: \mathrm{BDiff}(S_g) \to \mathrm{BSp}_{2g}(\mathbb{Z}) \to \mathrm{BSp}_{2g}(\mathbb{R}) \sim \mathrm{BU}(g)$

$$\operatorname{Diff}(S_g) \subset \operatorname{H}_1(S_g)$$

$$f: \mathrm{BDiff}(S_g) \to \mathrm{BSp}_{2g}(\mathbb{Z}) \to \mathrm{BSp}_{2g}(\mathbb{R}) \sim \mathrm{BU}(g)$$

$$f^*(c_1) \doteq e_1$$

$$\operatorname{Diff}(S_g) \subset \operatorname{H}_1(S_g)$$

$$f: \mathrm{BDiff}(S_g) \to \mathrm{BSp}_{2g}(\mathbb{Z}) \to \mathrm{BSp}_{2g}(\mathbb{R}) \sim \mathrm{BU}(g)$$

$$f^*(c_1) = e_1 \qquad \langle f^*(c_{\text{odd}}) \rangle = \langle e_{\text{odd}} \rangle \text{ in stable range}$$

Example. $M=S_g$ closed surface genus g.

$$\operatorname{Diff}(S_g) \subset \operatorname{H}_1(S_g)$$

$$f: \mathrm{BDiff}(S_g) \to \mathrm{BSp}_{2g}(\mathbb{Z}) \to \mathrm{BSp}_{2g}(\mathbb{R}) \sim \mathrm{BU}(g)$$

$$f^*(c_1) = e_1 \qquad \langle f^*(c_{\text{odd}}) \rangle = \langle e_{\text{odd}} \rangle \text{ in stable range}$$

Question. Is (unstable) cohomology of $\operatorname{Sp}_{2g}(\mathbb{Z})$ a source for characteristic classes of S_g bundles?

Characteristic classes and arithmetic groups

Characteristic classes and arithmetic groups

Plan: give characteristic class construction for bundles with structure group in $SL_n(\mathbb{Z})$.

Characteristic classes and arithmetic groups

Plan: give characteristic class construction for bundles with structure group in $SL_n(\mathbb{Z})$.

Specifically, construct nonzero $c \in H^{n-1}(B\Gamma; \mathbb{Q})$ for certain (congruence) subgroups $\Gamma < \mathrm{SL}_n(\mathbb{Z})$.

$$\mathrm{SL}_n(\mathbb{Z}) \! < \, \mathrm{SL}_n(\mathbb{R})$$

$$\mathrm{SL}_n(\mathbb{Z}) < \mathrm{SL}_n(\mathbb{R})$$

$$\mathrm{SL}_n(\mathbb{Z}) < \mathrm{SL}_n(\mathbb{R}) \sim \mathrm{SO}(n)$$

$$\mathrm{SL}_n(\mathbb{Z}) < \mathrm{SL}_n(\mathbb{R}) \sim \mathrm{SO}(n)$$

Definition: (P,L) is <u>q</u>-orthogonal at $b \in B$ if \exists iso

 $\varphi: (\mathbb{R}^n, \mathbb{Z}^n) \to (W_b, \Lambda_b) \text{ s.t. } W_b = \varphi(P) \oplus \varphi(L) \text{ is}$ orthogonal wrt q_b .

Definition: (P,L) is \underline{q} -orthogonal at $b \in B$ if \exists iso $\varphi: (\mathbb{R}^n, \mathbb{Z}^n) \to (W_b, \Lambda_b)$ s.t. $W_b = \varphi(P) \oplus \varphi(L)$ is orthogonal wrt q_b . If (P,L) not q-orthogonal at any $b \in B$, say (P,L) is nowhere q-orthogonal.

Definition: (P,L) is \underline{q} -orthogonal at $b \in B$ if \exists iso $\varphi: (\mathbb{R}^n, \mathbb{Z}^n) \to (W_b, \Lambda_b)$ s.t. $W_b = \varphi(P) \oplus \varphi(L)$ is orthogonal wrt q_b . If (P,L) not q-orthogonal at any $b \in B$, say (P,L) is nowhere q-orthogonal.

Given $(W,\Lambda) \to B$, $\exists ? q \text{ such that } (P,L) \text{ nowhere } q\text{-orthogonal}?$

Example. B = pt

Example. B = pt

$$\mathbb{R}^n = P \oplus L$$

Example. B = pt

$$\mathbb{R}^n = P \oplus L$$

Example. B = pt

$$X = \mathrm{SO}(n) \backslash \mathrm{SL}_n(\mathbb{R}) \simeq \left\{ \begin{array}{l} \mathrm{inner\ products} \\ \mathrm{on\ } \mathbb{R}^n \end{array} \right\}$$

$$\mathbb{R}^n = P \oplus L$$

Example. B = pt

$$X = \mathrm{SO}(n) \backslash \mathrm{SL}_n(\mathbb{R}) \simeq \left\{ \begin{array}{c} \mathrm{inner\ products} \\ \mathrm{on\ } \mathbb{R}^n \end{array} \right\}$$

$$SO(n) \cdot g \longmapsto g^t g$$

$$\begin{array}{ccc}
\mathbb{Z}^n & \mathbb{R}^n \\
\downarrow & \downarrow \\
\Lambda \longrightarrow W, q \\
\downarrow & \downarrow \\
B = \text{pt}
\end{array}$$

$$\mathbb{R}^n = P \oplus L$$

Example. B = pt

$$\begin{array}{ccc}
\mathbb{Z}^n & \mathbb{R}^n \\
\downarrow & \downarrow \\
\Lambda \longrightarrow W, q \\
\downarrow & \downarrow \\
B = \mathrm{pt}
\end{array}$$

$$\mathbb{R}^n = P \oplus L$$

Example.
$$B = \operatorname{pt}$$

$$X = \operatorname{SO}(n) \backslash \operatorname{SL}_n(\mathbb{R}) \cong \left\{ \begin{array}{c} \operatorname{inner \ products} \\ \operatorname{on} \mathbb{R}^n \end{array} \right\}$$

$$\mathbb{Z}^n \quad \mathbb{R}^n \quad \operatorname{SO}(n) \cdot g \quad \longmapsto \quad g^t g$$

$$\downarrow \quad \downarrow \quad \downarrow \quad H = \left\{ \begin{array}{c} \operatorname{inner \ products} \\ \operatorname{such \ that} \\ \mathbb{R}^n = P \oplus L \text{ orthogonal} \end{array} \right\}$$

$$\downarrow \quad B = \operatorname{pt}$$

$$\mathbb{R}^n = P \oplus L$$

Example.
$$B = \operatorname{pt}$$

$$X = \operatorname{SO}(n) \backslash \operatorname{SL}_n(\mathbb{R}) \cong \left\{ \begin{array}{c} \operatorname{inner \ products} \\ \operatorname{on} \mathbb{R}^n \end{array} \right\}$$

$$\mathbb{Z}^n \quad \mathbb{R}^n \quad \operatorname{SO}(n) \cdot g \quad \longmapsto \quad g^t g$$

$$\downarrow \quad \downarrow \quad \downarrow \quad H = \left\{ \begin{array}{c} \operatorname{inner \ products} \\ \operatorname{such \ that} \\ \mathbb{R}^n = P \oplus L \text{ orthogonal} \end{array} \right\}$$

$$\downarrow \quad B = \operatorname{pt} \quad \operatorname{For \ inner \ product} \quad q \text{ on } W \cong \mathbb{R}^n,$$

$$\mathbb{R}^n = P \oplus L$$

Example. B = pt

$$X = \mathrm{SO}(n) \backslash \mathrm{SL}_n(\mathbb{R}) \simeq \left\{ \begin{array}{c} \mathrm{inner\ products} \\ \mathrm{on}\ \mathbb{R}^n \end{array} \right\}$$

$$\mathbb{Z}^n \quad \mathbb{R}^n \quad \int \quad \mathrm{SO}(n) \cdot g \quad \longmapsto \quad g^t g$$

$$\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad H = \left\{ \begin{array}{c} \mathrm{inner\ products\ such\ that} \\ \mathbb{R}^n = P \oplus L \text{ orthogonal} \end{array} \right\}$$

$$\mathbb{R}^n = P \oplus L$$

For inner product
$$q$$
 on $W \simeq \mathbb{R}^n$, (P,L) nowhere $q \in X \setminus H \cdot \operatorname{SL}_n(\mathbb{Z})$ q -orthogonal

For inner product q on $W \cong \mathbb{R}^n$, (P,L) nowhere q-orthogonal $\iff q \in X \setminus H \cdot \operatorname{SL}_n(\mathbb{Z})$

<u>Fact</u>: \exists finite-index, torsion free $\Gamma < \operatorname{SL}_n(\mathbb{Z})$ s.t. Γ orbit of H embedded in X and has Γ -invariant orientation.

<u>Fact</u>: \exists finite-index, torsion free $\Gamma < \operatorname{SL}_n(\mathbb{Z})$ s.t. Γ orbit of H embedded in X and has Γ -invariant orientation.

For $W \to B$ with structure group Γ

<u>Fact</u>: \exists finite-index, torsion free $\Gamma < \operatorname{SL}_n(\mathbb{Z})$ s.t. Γ orbit of H embedded in X and has Γ -invariant orientation.

For $W \to B$ with structure group Γ

$$\frac{\widetilde{B} \times (X \backslash H \cdot \Gamma)}{\pi_1(B)} \rightarrow B$$

<u>Fact</u>: \exists finite-index, torsion free $\Gamma < \operatorname{SL}_n(\mathbb{Z})$ s.t. Γ orbit of H embedded in X and has Γ -invariant orientation.

For $W \to B$ with structure group Γ

 $\exists q \text{ such that } (P,L)$ nowhere q-orothogonal

$$\frac{\widetilde{B} \times (X \backslash H \cdot \Gamma)}{\pi_1(B)} \rightarrow B$$

<u>Fact</u>: \exists finite-index, torsion free $\Gamma < \operatorname{SL}_n(\mathbb{Z})$ s.t. Γ orbit of H embedded in X and has Γ -invariant orientation.

For $W \to B$ with structure group Γ

$$\exists q \text{ such that } (P,L) \Longrightarrow \frac{B \times (X \backslash H \cdot \Gamma)}{\pi_1(B)} \to B$$
nowhere q-orothogonal

has a section

<u>Fact</u>: \exists finite-index, torsion free $\Gamma < \operatorname{SL}_n(\mathbb{Z})$ s.t. Γ orbit of H embedded in X and has Γ -invariant orientation.

For $W \to B$ with structure group Γ

 $\exists q \text{ such that } (P,L) \Longrightarrow \frac{\widetilde{B} \times (X \backslash H \cdot \Gamma)}{\pi_1(B)} \to$ nowhere q-orothogonal

has a section

obstruction theory $\rightarrow c(W) \in H^{n-1}(B)$

<u>Fact</u>: \exists finite-index, torsion free $\Gamma < \operatorname{SL}_n(\mathbb{Z})$ s.t. Γ orbit of H embedded in X and has Γ -invariant orientation.

For $W \to B$ with structure group Γ

 $\exists \ q \ \text{such that} \ (P,L) \\ \text{nowhere} \ q\text{-orothogonal} \implies \frac{B \times (X \backslash H^{\bullet}\Gamma)}{\pi_1(B)} \ \to \ B$

has a section

obstruction theory $\rightarrow c(W) \in H^{n-1}(B) \rightarrow c_{(P,L)} \in H^{n-1}(B\Gamma)$

Similar geometric construction gives characteristic classes for bundles with structure group in $\Gamma < \mathrm{SO}_{p,q}(\mathbb{Z})$.

Similar geometric construction gives characteristic classes for bundles with structure group in $\Gamma < \mathrm{SO}_{p,q}(\mathbb{Z})$.

Main Theorem (T, 2017). $1 \le p \le q, p+q \ge 3, p \text{ odd.}$

 $\forall N>0, \exists \Gamma < SO_{p,q}(\mathbb{Z}) \text{ finite index so that}$

Similar geometric construction gives characteristic classes for bundles with structure group in $\Gamma < \mathrm{SO}_{p,q}(\mathbb{Z})$.

Main Theorem (T, 2017). $1 \le p \le q, p+q \ge 3, p \text{ odd.}$

 $\forall N>0, \exists \Gamma < SO_{p,q}(\mathbb{Z}) \text{ finite index so that}$

 $\dim H^p(B\Gamma; \mathbb{Q}) \geq N.$

Similar geometric construction gives characteristic classes for bundles with structure group in $\Gamma < \mathrm{SO}_{p,q}(\mathbb{Z})$.

Main Theorem (T, 2017). $1 \le p \le q, p+q \ge 3, p \text{ odd.}$

 $\forall N>0, \exists \Gamma < SO_{p,q}(\mathbb{Z}) \text{ finite index so that}$ $\dim H^p(B\Gamma; \mathbb{Q}) \geq N.$

Hard part: showing these characteristic classes are nonzero/independent.

Application to manifold bundles

$$\mathbf{M}_g^{4k} = (S^{2k} \times S^{2k}) \# ... \# (S^{2k} \times S^{2k})$$

$$M_g^{4k} = (S^{2k} \times S^{2k}) \# ... \# (S^{2k} \times S^{2k})$$

$$\operatorname{Diff}(M) \longrightarrow \operatorname{SO}_{g,g}(\mathbb{Z})$$

$$\mathbf{M}_g^{4k} = (S^{2k} \times S^{2k}) \# ... \# (S^{2k} \times S^{2k})$$

$$\begin{array}{cccc} \operatorname{Diff}(M) & \xrightarrow{\alpha} & \operatorname{SO}_{g,g}(\mathbb{Z}) \\ & & & \int \operatorname{f.i.} & \\ \Gamma & & & \end{array}$$

$$M_g^{4k} = (S^{2k} \times S^{2k}) \# ... \# (S^{2k} \times S^{2k})$$

$$\operatorname{Diff}(M) \stackrel{\alpha}{\longrightarrow} \operatorname{SO}_{g,g}(\mathbb{Z})$$

$$\int \int \operatorname{f.i.}$$

$$\operatorname{Diff}^{\Gamma}(M) := \alpha^{-1}(\Gamma) \stackrel{\alpha}{\longrightarrow} \Gamma$$

$$M_g^{4k} = (S^{2k} \times S^{2k}) \# ... \# (S^{2k} \times S^{2k})$$

(Berglund-Madsen, 2013). $g \ge 4$ and $k \ge (g+1)/2$.

$$\mathbf{M}_g^{4k} = (S^{2k} \times S^{2k}) \# ... \# (S^{2k} \times S^{2k})$$

(Berglund-Madsen, 2013). $g \ge 4$ and $k \ge (g+1)/2$.

$$\mathrm{H}^i(\mathrm{B}\Gamma;\mathbf{Q}) o \mathrm{H}^i(\mathrm{BDiff}^\Gamma(M);\mathbf{Q})$$

$$\mathbf{M}_g^{4k} = (S^{2k} \times S^{2k}) \# \dots \# (S^{2k} \times S^{2k})$$

$$\mathrm{Diff}(M) \xrightarrow{\alpha} \mathrm{SO}_{g,g}(\mathbb{Z})$$

$$\int \int \mathrm{f.i.}$$

$$\mathrm{Diff}^{\Gamma}(M) := \alpha^{-1}(\Gamma) \longrightarrow \Gamma$$

(Berglund-Madsen, 2013). $g \ge 4$ and $k \ge (g+1)/2$.

$$\mathrm{H}^i(\mathrm{B}\Gamma;\mathbf{Q}) o \mathrm{H}^i(\mathrm{BDiff}^\Gamma(M);\mathbf{Q})$$

is an isomorphism for $i \leq g-1$ and injective for i = g.

$$\mathbf{M}_g^{4k} = (S^{2k} \times S^{2k}) \# ... \# (S^{2k} \times S^{2k})$$

(Berglund-Madsen). $g \ge 4$ and $k \ge (g+1)/2$.

$$\mathrm{H}^i(\mathrm{B}\Gamma;\mathbf{Q}) o \mathrm{H}^i(\mathrm{BDiff}^\Gamma(M);\mathbf{Q})$$

is an isomorphism for $i \leq g-1$ and injective for i = g.

$$\mathbf{M}_g^{4k} = (S^{2k} \times S^{2k}) \# \dots \# (S^{2k} \times S^{2k})$$

(Berglund-Madsen). $g \ge 4$ and $k \ge (g+1)/2$.

$$\mathrm{H}^i(\mathrm{B}\Gamma;\mathbf{Q}) o \mathrm{H}^i(\mathrm{BDiff}^\Gamma(M);\mathbf{Q})$$

is an isomorphism for $i \leq g-1$ and injective for i = g.

Theorem. $g \ge 3$ odd. $\forall N>0$, $\exists \Gamma < SO_{g,g}(\mathbb{Z})$ finite index with

$$\mathbf{M}_g^{4k} = (S^{2k} \times S^{2k}) \# ... \# (S^{2k} \times S^{2k})$$

(Berglund-Madsen). $g \ge 4$ and $k \ge (g+1)/2$.

$$\mathrm{H}^i(\mathrm{B}\Gamma;\mathbf{Q}) o \mathrm{H}^i(\mathrm{B}\mathrm{Diff}^\Gamma(M);\mathbf{Q})$$

is an isomorphism for $i \leq g-1$ and injective for i = g.

Theorem. $g \ge 3$ odd. $\forall N > 0$, $\exists \Gamma < SO_{g,g}(\mathbb{Z})$ finite index with dim $H^g(B\Gamma; \mathbb{Q}) \ge N$.

$$\mathbf{M}_g^{4k} = (S^{2k} \times S^{2k}) \# ... \# (S^{2k} \times S^{2k})$$

(Berglund-Madsen). $g \ge 4$ and $k \ge (g+1)/2$.

$$\mathrm{H}^i(\mathrm{B}\Gamma;\mathbf{Q}) o \mathrm{H}^i(\mathrm{BDiff}^\Gamma(M);\mathbf{Q})$$

is an isomorphism for $i \leq g-1$ and injective for i = g.

Theorem. $g \ge 3$ odd. $\forall N > 0$, $\exists \Gamma < SO_{g,g}(\mathbb{Z})$ finite index with dim $H^g(B\Gamma; \mathbb{Q}) \ge N$.

Corollary. $g \ge 5$ odd, $k \ge (g+1)/2$. $\forall N > 0$, $\exists \Gamma < SO_{g,g}(\mathbb{Z})$ so that

$$\mathbf{M}_g^{4k} = (S^{2k} \times S^{2k}) \# ... \# (S^{2k} \times S^{2k})$$

(Berglund-Madsen). $g \ge 4$ and $k \ge (g+1)/2$.

$$\mathrm{H}^i(\mathrm{B}\Gamma;\mathbf{Q}) o \mathrm{H}^i(\mathrm{B}\mathrm{Diff}^\Gamma(M);\mathbf{Q})$$

is an isomorphism for $i \leq g-1$ and injective for i = g.

Theorem. $g \ge 3$ odd. $\forall N > 0$, $\exists \Gamma < SO_{g,g}(\mathbb{Z})$ finite index with dim $H^g(B\Gamma; \mathbb{Q}) \ge N$.

Corollary. $g \ge 5$ odd, $k \ge (g+1)/2$. $\forall N > 0$, $\exists \Gamma < SO_{g,g}(\mathbb{Z})$ so that $\dim H^g(BDiff^{\Gamma}(M); \mathbb{Q}) \ge N$.

$$\mathbf{M}_g^{4k} = (S^{2k} \times S^{2k}) \# \dots \# (S^{2k} \times S^{2k})$$

(Berglund-Madsen). $g \ge 4$ and $k \ge (g+1)/2$.

$$\mathrm{H}^i(\mathrm{B}\Gamma;\mathbf{Q}) o \mathrm{H}^i(\mathrm{B}\mathrm{Diff}^\Gamma(M);\mathbf{Q})$$

is an isomorphism for $i \leq g-1$ and injective for i = g.

Corollary. $g \ge 5$ odd, $k \ge (g+1)/2$. $\forall N > 0$, $\exists \Gamma < SO_{g,g}(\mathbb{Z})$ so that $\dim H^g(BDiff^{\Gamma}(M); \mathbb{Q}) \ge N$.

$$\mathbf{M}_g^{4k} = (S^{2k} \times S^{2k}) \# \dots \# (S^{2k} \times S^{2k})$$

(Berglund-Madsen). $g \ge 4$ and $k \ge (g+1)/2$.

$$\mathrm{H}^i(\mathrm{B}\Gamma;\mathbf{Q}) o \mathrm{H}^i(\mathrm{B}\mathrm{Diff}^\Gamma(M);\mathbf{Q})$$

is an isomorphism for $i \leq g-1$ and injective for i = g.

Corollary.
$$g \ge 5$$
 odd, $k \ge (g+1)/2$. $\forall N > 0$, $\exists \Gamma < SO_{g,g}(\mathbb{Z})$ so that $\dim H^g(BDiff^{\Gamma}(M); \mathbb{Q}) \ge N$.

$$\mathrm{H}^*(\mathrm{BDiff}^\Gamma(M);\,\mathbf{Q})$$

$$\mathbf{M}_g^{4k} = (S^{2k} \times S^{2k}) \# ... \# (S^{2k} \times S^{2k})$$

(Berglund-Madsen). $g \ge 4$ and $k \ge (g+1)/2$.

$$\mathrm{H}^i(\mathrm{B}\Gamma;\mathbf{Q}) o \mathrm{H}^i(\mathrm{B}\mathrm{Diff}^\Gamma(M);\mathbf{Q})$$

is an isomorphism for $i \leq g-1$ and injective for i = g.

Corollary.
$$g \ge 5$$
 odd, $k \ge (g+1)/2$. $\forall N > 0$, $\exists \Gamma < SO_{g,g}(\mathbb{Z})$ so that dim $H^g(BDiff^{\Gamma}(M); \mathbb{Q}) \ge N$.

$$\begin{array}{c} H^*(\mathrm{BDiff}^\Gamma(M);\, \mathbb{Q}) \\ \\ 0 \\ g/2 \\ (\mathrm{Galatius}\mathrm{-Randal-Williams}) \end{array}$$

$$\mathbf{M}_g^{4k} = (S^{2k} \times S^{2k}) \# \dots \# (S^{2k} \times S^{2k})$$

(Berglund-Madsen). $g \ge 4$ and $k \ge (g+1)/2$.

$$\mathrm{H}^i(\mathrm{B}\Gamma;\mathbf{Q}) o \mathrm{H}^i(\mathrm{B}\mathrm{Diff}^\Gamma(M);\mathbf{Q})$$

is an isomorphism for $i \leq g-1$ and injective for i = g.

Corollary.
$$g \ge 5$$
 odd, $k \ge (g+1)/2$. $\forall N > 0$, $\exists \Gamma < SO_{g,g}(\mathbb{Z})$ so that dim $H^g(BDiff^{\Gamma}(M); \mathbb{Q}) \ge N$.

$$\begin{array}{c|c} & H^*(\mathrm{BDiff}^\Gamma(M);\, \mathbb{Q})\\ \hline & \mathrm{stable\ classes}\\ 0 & g/2 & g\ (\mathrm{odd}) \\ (\mathrm{Galatius}\mathrm{-Randal\text{-}Williams}) \end{array}$$

 $M \text{ K3 surface}, M \approx \{ x^4 + y^4 + z^4 + w^4 = 0 \} \subset \mathbb{C}\text{P}^3$

$$M$$
 K3 surface, $M \simeq \{ x^4 + y^4 + z^4 + w^4 = 0 \} \subset \mathbb{C}\mathrm{P}^3$
$$\mathrm{Diff}(M) \to \mathrm{SO}_{3,19}(\mathbb{Z})$$

$$M$$
 K3 surface, $M \simeq \{ x^4 + y^4 + z^4 + w^4 = 0 \} \subset \mathbb{C}\mathrm{P}^3$
$$\mathrm{Diff}(M) \to \mathrm{SO}_{3,19}(\mathbb{Z})$$

(Giansiracusa, 2009) $H_i(B\pi_0(Diff^{\Gamma}(M); \mathbb{Q}) \to H_i(B\Gamma; \mathbb{Q})$ is surjective for each $i \geq 0$.

$$M$$
 K3 surface, $M \simeq \{ x^4 + y^4 + z^4 + w^4 = 0 \} \subset \mathbb{C}\mathrm{P}^3$
$$\mathrm{Diff}(M) \to \mathrm{SO}_{3,19}(\mathbb{Z})$$

(Giansiracusa, 2009) $H_i(B\pi_0(Diff^{\Gamma}(M); \mathbb{Q}) \to H_i(B\Gamma; \mathbb{Q})$ is surjective for each $i \geq 0$.

Corollary. $\exists \Gamma < SO_{3,19}(\mathbb{Z}) \text{ and } z \in H_3(B\Gamma; \mathbb{Q}) \text{ so that }$

$$M$$
 K3 surface, $M \simeq \{ x^4 + y^4 + z^4 + w^4 = 0 \} \subset \mathbb{C}\mathrm{P}^3$
$$\mathrm{Diff}(M) \to \mathrm{SO}_{3,19}(\mathbb{Z})$$

(Giansiracusa, 2009) $H_i(B\pi_0(Diff^{\Gamma}(M); \mathbb{Q}) \to H_i(B\Gamma; \mathbb{Q})$ is surjective for each $i \geq 0$.

Corollary. $\exists \Gamma < SO_{3,19}(\mathbb{Z}) \text{ and } z \in H_3(B\Gamma; \mathbb{Q}) \text{ so that}$

• if z lifts to BDiff^{Γ}(M), \exists K3 bundle over 3-manifold with no fiberwise Einstein metric;

$$M$$
 K3 surface, $M \simeq \{ x^4 + y^4 + z^4 + w^4 = 0 \} \subset \mathbb{C}\mathrm{P}^3$
$$\mathrm{Diff}(M) \to \mathrm{SO}_{3,19}(\mathbb{Z})$$

(Giansiracusa, 2009) $H_i(B\pi_0(Diff^{\Gamma}(M); \mathbf{Q}) \to H_i(B\Gamma; \mathbf{Q})$ is surjective for each $i \geq 0$.

Corollary. $\exists \Gamma < SO_{3,19}(\mathbb{Z}) \text{ and } z \in H_3(B\Gamma; \mathbb{Q}) \text{ so that}$

- if z lifts to BDiff^{Γ}(M), \exists K3 bundle over 3-manifold with no fiberwise Einstein metric;
- if z doesn't lift, then $\mathrm{Diff}(M) \to \pi_0 \mathrm{Diff}(M)$ does not split (Nielsen realization problem).

Thank you.