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Characteristic classes of manifold
bundles

M smooth oriented manitold

M— F structure group
Bunuy(B):= { ! Diff( M) }/180 - |5 B
B

Problem. Find invariants ¢ € H*(BDiff(M))

and use to study M bundles.

A characteristic class is a natural transformation

¢ : Bunuy(+)— H*().
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Example. M=S5, closed surface genus g.

Diff(S;) C Hi(S))

f: BDiff(S;) — BSp2y(Z) — BSpzy¢(R) ~ BU(g)
f*(a)=e ( f*(Codd) » = ( eodd » in stable range

Question. Is (unstable) cohomology of Sp2y(Z) a source

for characteristic classes of S, bundles?
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Plan: give characteristic class construction for bundles with

structure group in SL,(Z).

Specifically, construct nonzero c € H"’_l(BF;(D) for certain

(congruence) subgroups I' < SL,(Z).
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Z" R
l l fiberwise

A — W,q’/\inner product SL,(7)< SLn(R) ~ SO(n)

N\

B Fix R" = P @ L defined over @, dim(L)=1.

structure group

Definition: (P,L) is g-orthogonal at beB if 3 iso
©: (R", Z") — (Wi, Ap) s.t. Wiy = o(P) ® (L) is
orthogonal wrt . If (P,L) not ¢-orthogonal at any

be B, say (P,L) is nowhere g-orthogonal.

Given (W,A) — B, 37 ¢ such that (P,L) nowhere ¢-orthogonal?
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X = SO(n)\SLu(R) = {

A

inner products }

on R"

codim n—1

SO(n) g +— 4'yg

\U
l l o inner products such that
A—W.q - { R" = P® L orthogonal
\ |
B = pt

For inner product g on W = R",
Fixed (P,L) nowhere

— X\ H-SLy(Z
R"=P® L g-orthogonal g€ X\ (Z)
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For inner product g on W = R",
(P,L) nowhere

g-orthogonal g€ X \HSLa(Z)
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Fact: 3 finite-index, torsion free I' < SL,(Z) s.t. I' orbit of

H embedded in X and has I'-invariant orientation.

For W — B with structure group I'

3 ¢ such that (P,L) B x (X\H-T")
—
nowhere g-orothogonal (D)

— B

has a section

obstruction theory ~ ¢(W) € H" '(B)~ ¢p € H" (BI)
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Characteristic class construction

Similar geometric construction gives characteristic classes for

bundles with structure group in I' < SO, (7).

Main Theorem (T, 2017). 1< p< ¢ p+¢ 2 3, p odd.

v N>0,3T < SO, 4(Z) finite index so that
dim H?(BT; Q) = N.

Hard part: showing these characteristic classes

are nonzero/independent.
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M K3 surface, M = { z4+y*+2z4+wt=0 } c CP?

Diff(M) — SOs.19(Z)

(Giansiracusa, 2009) H;(Bro(Diff' (M);Q)— H,(BT';@) is

surjective for each ¢ 20

Corollary. 3T < SOs3

19(Z) and z € H3(BI';Q) so that

o if 7 lifts to BDiff' (M), 3 K3 bundle over 3-manifold

with no fiberwise
e if zdoesn’t lift, t.

Einstein metric;

hen Diff(M) — moDiff( M) does not

split (Nielsen rea.

ization problem).



Thank you.



