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Bz = { a,b | aba = bab >
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If o exists, say Push is realized by diffeomorphisms.
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e Theorem (Bestvina-Church-Souto, 2009). S closed, genus 2 2 =
Push : m1(S)— Mod(S,*) not realized by diffeos.

e Theorem (T, 2014). For every' semi-simple real Lie group G, there
exists M = I'\ G/K so that
Push : 1i(M)— Mod(M,«) not realized by diffeos.

' G = SO(n,1) for n 2 3, but e.g. G = SLy(R), SU(n,1), Eg(-24)
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e Theorem (Bestvina-Church- o Diff(T2) » Mod(T?)=SL(2,7) splits.
Souto). S, closed, g22, n 2 1 =
Push not realized by diffeos. e Corollary (Thurston).

Diff(D,Xg) — MOd(D,Xg)’—”Bg splits.

e Theorem (Morita). If ¢ 210, then
e Theorem (Nariman).
Diff(.Sy)

¥ Diff(D\ X,,) » Mod(D, X,)=B, splits
Diff*(S,)»Mod(S,) does not split. cohomologically.
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Main theorem
Diff( 5, X,,)
Xk
B,(S) —> Mod (S, X,)
Push

Theorem (Salter-T, 2015). S compact, genus 2 0.

For n 2 6, Push is not realized by diffeomorphisms.

Example. Diff(D,X,) » B, does not split for n 2 6.

Corollary (of proof). S closed, genus 2 2.
Then Diff(5) » Mod(S) does not split.
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Aside: Flat surface bundles

Open Question. Does there exist S, — £ — Sinot flat?

Equivalently, does there exist p that has no lift?

Diff(.Sy)
X

m(S) — Mod(s)
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For n 2 6, Push is not realized by diffeomorphisms.
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Proof idea: Thurston stability

Theorem (Thurston). Fix a manifold (M,x). The group
Diff(M, ToM) = { g | 9(z) = z, (dg). = id }

is locally indicable,
i.e. for every finitely generated I' < Diff(M, T, M), there

exists surjection I' » Z.

Strategy 0 Diff(S, T::S) contains
Show:  Bu(S) — Diff(5,Xn) = f.g. perfect subgroup
exists = [T
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Proof idea: Pertect subgroup

<017 cee o Gn—1>

1— |By,Bn| — Bh— 7 — 1

o~ 1

e.g. o1 /K ... | mnot a commutator, but

01 09" \/ 1S a commutator.

0102‘1:[(52" 1]—[0402 70401_1]

Note: B, not perfect.

Theorem (Gorin-Lin). For n25, | By, By is f.g. perfect group.
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Corollary (Thurston). Diff( D, X3) — Mod(D, X3)=Bs splits.

SL2(Z) /"N > PSLa(Z) / "\ @

1 - 7Z — B3z — PSLz(Z)

| |
Cab| o= b) (xy| 2=y =1)

Homotope z|a , y|a to identity preserving relation z°=1/.



