Obstructions to Nielsen realization

Bena Tshishiku Math Congress of Americas July 26, 2017

Joint with Nick Salter

I. Realization problem for braid groups

 $B_n \coloneqq \langle \text{braids} \rangle$

 $B_n \coloneqq \langle \text{braids} \rangle$

a

 $B_n \coloneqq \langle \text{braids} \rangle \simeq \pi_1 \operatorname{Conf}_n(D^2)$

 \boldsymbol{a}

 $B_n \coloneqq \langle \text{braids} \rangle \simeq \pi_1 \operatorname{Conf}_n(D^2)$

 $B_n \coloneqq \langle \text{braids} \rangle \simeq \pi_1 \operatorname{Conf}_n(D^2) \simeq \pi_0 \operatorname{Diff}(D^2, n \text{ points})$

 $B_n \coloneqq \langle \text{braids} \rangle \simeq \pi_1 \operatorname{Conf}_n(D^2) \simeq \pi_0 \operatorname{Diff}(D^2, n \text{ points})$

 $B_n \coloneqq \langle \text{braids} \rangle \simeq \pi_1 \operatorname{Conf}_n(D^2) \simeq \pi_0 \operatorname{Diff}(D^2, n \text{ points})$


```
B_3 = \langle a, b \mid aba = bab \rangle
```

Question

$\begin{array}{c} \operatorname{Diff}(D,n) \\ \pi \downarrow \\ \pi_0 \operatorname{Diff}(D,n) \end{array}$

$\operatorname{Diff}(D,n)$ $\pi \downarrow$ $B_n \simeq \pi_0 \operatorname{Diff}(D,n)$

Does σ exist?

 $\pi \circ \sigma = \mathrm{id}$

E.g. (n = 3) Does there $\exists F, G \in \text{Diff}(D, 3 \text{ points})$ s.t.

E.g. (n = 3) Does there $\exists F, G \in \text{Diff}(D, 3 \text{ points})$ s.t. 1. $F \sim \Phi_a, G \sim \Phi_b$ (isotopic)

E.g. (n = 3) Does there $\exists F, G \in \text{Diff}(D, 3 \text{ points})$ s.t. 1. $F \sim \Phi_a, G \sim \Phi_b$ (isotopic) 2. $F \circ G \circ F = G \circ F \circ G$?

$B_n(S)$

 $\operatorname{Conf}_n(S) = \{(x_1, \dots, x_n) \mid x_i \in S, x_i \neq x_j \text{ for } i \neq j \} / S_n$

 $B_n(S)$

surface braid group: $B_n(S) = \pi_1(\operatorname{Conf}_n(S))$

 $\operatorname{Conf}_n(S) = \{(x_1, \dots, x_n) \mid x_i \in S, x_i \neq x_j \text{ for } i \neq j \} / S_n$

 $B_n(S)$

 $\operatorname{Diff}(S, X_n)$ C¹ or. pres. diffeos, $g|_{\partial S} = \operatorname{Id}$ and $g(X_n) = X_n$

 $\operatorname{Diff}(S, X_n)$ C¹ or. pres. diffeos, $g|_{\partial S} = \operatorname{Id}$ and $g(X_n) = X_n$

Push = point-pushing homomorphism

If σ exists, say Push is realized by diffeomorphisms.

Evidence against

Evidence against

• <u>Theorem</u> (Bestvina-Church-Souto, 2009). S closed, genus $\geq 2 \Rightarrow$ Push : $\pi_1(S) \rightarrow Mod(S,*)$ not realized by diffeos.

Evidence against

- <u>Theorem</u> (Bestvina-Church-Souto, 2009). S closed, genus $\geq 2 \Rightarrow$ Push : $\pi_1(S) \rightarrow Mod(S,*)$ not realized by diffeos.
- <u>Theorem</u> (T, 2014). For every[†] semi-simple real Lie group G, there exists $M = \Gamma \setminus G/K$ so that Push : $\pi_1(M) \to \operatorname{Mod}(M,*)$ not realized by diffeos.
Does
$$\sigma$$
 exist?
 $B_n(S) \xrightarrow{\sigma} Mod(S, X_n)$

- <u>Theorem</u> (Bestvina-Church-Souto, 2009). S closed, genus $\geq 2 \Rightarrow$ Push : $\pi_1(S) \rightarrow Mod(S,*)$ not realized by diffeos.
- <u>Theorem</u> (T, 2014). For every[†] semi-simple real Lie group G, there exists $M = \Gamma \setminus G/K$ so that Push : $\pi_1(M) \to \operatorname{Mod}(M,*)$ not realized by diffeos.

[†] G \neq SO(n,1) for $n \geq 3$, but e.g. G = SL_n(R), SU(n,1), E₈₍₋₂₄₎

• <u>Theorem</u> (Bestvina-Church-Souto). S_g closed, $g \ge 2$, $n \ge 1 \Rightarrow$ Push not realized by diffeos.

Does
$$\sigma$$
 exist?
 $B_n(S) \xrightarrow{\sigma} Mod(S, X_n)$

- <u>Theorem</u> (Bestvina-Church-Souto). S_g closed, $g \ge 2$, $n \ge 1 \Rightarrow$ Push not realized by diffeos.
- <u>Theorem</u> (Morita). If $g \ge 10$, then

```
Diff (S_g) \rightarrow Mod(S_g) does not split.
```

Does
$$\sigma$$
 exist?
 $B_n(S) \xrightarrow{\sigma} \operatorname{Mod}(S, X_n)$

- <u>Theorem</u> (Bestvina-Church-Souto). S_g closed, $g \ge 2$, $n \ge 1 \Rightarrow$ Push not realized by diffeos.
- <u>Theorem</u> (Morita). If $g \ge 10$, then

 $\operatorname{Diff}(S_g)$ \bigcup $\operatorname{Diff}^2(S_g) \twoheadrightarrow \operatorname{Mod}(S_g)$ does not split.

- <u>Theorem</u> (Bestvina-Church-Souto). S_g closed, $g \ge 2$, $n \ge 1 \Rightarrow$ Push not realized by diffeos.
- <u>Theorem</u> (Morita). If $g \ge 10$, then

Diff (S_g) U Diff $^2(S_g)$ - $Mod(S_g)$ does not split.

Does
$$\sigma$$
 exist?
 $Does \sigma$ exist?
 $B_n(S) \xrightarrow{\sigma} Mod(S,X_n)$
Push
Evidence against
Evidence for

- <u>Theorem</u> (Bestvina-Church-Souto). S_g closed, $g \ge 2$, $n \ge 1 \Rightarrow$ Push not realized by diffeos.
- <u>Theorem</u> (Morita). If $g \ge 10$, then

 $\begin{array}{l} \operatorname{Diff}(S_g) \\ \cup \\ \operatorname{Diff}^2(S_g) \twoheadrightarrow \operatorname{Mod}(S_g) \text{ does not split.} \end{array}$

• $\operatorname{Diff}(T^2) \twoheadrightarrow \operatorname{Mod}(T^2) \cong \operatorname{SL}(2,\mathbb{Z})$ splits.

Does
$$\sigma$$
 exist?
 $B_n(S) \xrightarrow{\sigma} Mod(S,X_n)$
Evidence against
 $Diff(S,X_n) \xrightarrow{\sigma} I_{\pi}$
 $B_n(S) \xrightarrow{} Mod(S,X_n)$
Evidence for

• <u>Theorem</u> (Bestvina-Church-Souto). S_q closed, $g \ge 2$, $n \ge 1 \Rightarrow$ Push not realized by diffeos.

Does

<u>Theorem</u> (Morita). If $g \ge 10$, then \bullet

 $\operatorname{Diff}(S_g)$ IJ $\operatorname{Diff}^2(S_q) \twoheadrightarrow \operatorname{Mod}(S_q)$ does not split.

- $\operatorname{Diff}(T^2) \twoheadrightarrow \operatorname{Mod}(T^2) \simeq \operatorname{SL}(2,\mathbb{Z})$ splits.
- <u>Corollary</u> (Thurston). $\operatorname{Diff}(D,X_3) \to \operatorname{Mod}(D,X_3) \simeq B_3$ splits.

Does
$$\sigma$$
 exist?
 $Does \sigma$ exist?
 $B_n(S) \xrightarrow{\sigma} Mod(S,X_n)$
Push
Evidence against
Evidence for

Evidence a

- <u>Theorem</u> (Bestvina-Church-Souto). S_q closed, $g \ge 2$, $n \ge 1 \Rightarrow$ Push not realized by diffeos.
- <u>Theorem</u> (Morita). If $g \ge 10$, then $\operatorname{Diff}(S_q)$ IJ $\operatorname{Diff}^2(S_q) \twoheadrightarrow \operatorname{Mod}(S_q)$ does not split.

- $\operatorname{Diff}(T^2) \twoheadrightarrow \operatorname{Mod}(T^2) \cong \operatorname{SL}(2,\mathbb{Z})$ splits.
- <u>Corollary</u> (Thurston). $\operatorname{Diff}(D,X_3) \to \operatorname{Mod}(D,X_3) \simeq B_3$ splits.
- <u>Theorem</u> (Nariman). $\operatorname{Diff}(D \setminus X_n) \twoheadrightarrow \operatorname{Mod}(D, X_n) \simeq B_n$ splits cohomologically.

<u>Theorem</u> (Salter-T, 2015). S compact, genus ≥ 0 . For $n \geq 6$, Push is not realized by diffeomorphisms.

For $n \geq 6$, Push is not realized by diffeomorphisms.

<u>Theorem</u> (Salter-T, 2015). S compact, genus ≥ 0 . For $n \geq 6$, Push is not realized by diffeomorphisms.

<u>Example</u>. Diff $(D, X_n) \twoheadrightarrow B_n$ does not split for $n \ge 6$.

<u>Theorem</u> (Salter-T, 2015). S compact, genus ≥ 0 . For $n \geq 6$, Push is not realized by diffeomorphisms.

<u>Example</u>. Diff $(D, X_n) \twoheadrightarrow B_n$ does not split for $n \ge 6$.

<u>Corollary</u> (of proof). S closed, genus ≥ 2 . Then Diff(S) \rightarrow Mod(S) does not split.

Aside: Flat surface bundles

<u>Open Question</u>. Does there exist $S_g \to E \to S_h$ not flat?

Aside: Flat surface bundles

<u>Open Question</u>. Does there exist $S_g \to E \to S_h$ not flat?

Equivalently, does there exist ρ that has no lift?

II. Proof of Main Theorem

Main theorem $\operatorname{Diff}(S, X_n)$ $\sqrt{\pi}$ $B_n(S) \longrightarrow Mod(S, X_n)$ Push

<u>Theorem</u> (Salter-T, 2015). S compact, genus ≥ 0 . For $n \geq 6$, Push is not realized by diffeomorphisms.

<u>Theorem</u> (Thurston). Fix a manifold (M,x). The group

<u>Theorem</u> (Thurston). Fix a manifold (M,x). The group $\text{Diff}(M,T_xM) = \{ g \mid g(x) = x, (dg)_x = \text{id} \}$

Theorem (Thurston). Fix a manifold (M,x). The group $Diff(M, T_x M) = \{ g \mid g(x) = x, (dg)_x = id \}$ is locally indicable,

Theorem (Thurston). Fix a manifold (M,x). The group Diff(M, T_xM) = { g | g(x) = x, (dg)_x = id } is locally indicable,
i.e. for every finitely generated Γ < Diff(M, T_xM), there exists surjection Γ → Z.

Theorem (Thurston). Fix a manifold (M,x). The group Diff(M, T_xM) = { g | g(x) = x, (dg)_x = id } is locally indicable,
i.e. for every finitely generated Γ < Diff(M, T_xM), there exists surjection Γ → Z.

Strategy

Show:

Theorem (Thurston). Fix a manifold (M,x). The group Diff(M, T_xM) = { g | g(x) = x, (dg)_x = id } is locally indicable,
i.e. for every finitely generated Γ < Diff(M, T_xM), there exists surjection Γ → Z.

 $\begin{array}{ll} \underline{Strategy}\\ \text{Show:} & B_n(S) \xrightarrow{\sigma} \mathrm{Diff}(S, X_n) \implies\\ & \text{exists} \end{array}$

Theorem (Thurston). Fix a manifold (M,x). The group Diff(M, T_xM) = { g | g(x) = x, (dg)_x = id } is locally indicable,
i.e. for every finitely generated Γ < Diff(M, T_xM), there exists surjection Γ → Z.

 $\begin{array}{lll} \underline{Strategy} & \operatorname{Diff}(S, T_x S) \text{ contains} \\ \mathrm{Show:} & B_n(S) \xrightarrow{\sigma} \operatorname{Diff}(S, X_n) \implies \text{ f.g. perfect subgroup} \\ & \text{exists} & \Gamma = [\Gamma, \Gamma]. \end{array}$

Proof idea: Perfect subgroup

Proof idea: Perfect subgroup

Note: B_n not perfect.

Proof idea: Perfect subgroup Note: B_n not perfect. $\langle \sigma_1, \dots, \sigma_{n-1} \rangle$ $||_{B_n \to \mathbb{Z}}$

Proof idea: Perfect subgroup Note: B_n not perfect. $\langle \sigma_1, \dots, \sigma_{n-1} \rangle$ || $B_n \rightarrow \mathbb{Z}$ $\sigma_i \mapsto 1$

Proof idea: Perfect subgroup Note: B_n not perfect. $\langle \sigma_1, \dots, \sigma_{n-1} \rangle$ || $1 \rightarrow [B_n, B_n] \rightarrow B_n \rightarrow \mathbb{Z} \rightarrow 1$ $\sigma_i \mapsto 1$

Proof idea: Perfect subgroup $\langle \sigma_1, \ldots, \sigma_{n-1} \rangle$ Note: B_n not perfect. $1 \rightarrow |B_n, B_n| \rightarrow B_n \rightarrow \mathbb{Z} \rightarrow 1$ $\sigma_i \mapsto 1$ e.g. $\sigma_1 = \bigwedge | \dots |$ not a commutator, but $\sigma_1 \sigma_2^{-1} = \bigvee \bigvee \bigcup \cdots \bigcup$ is a commutator.

Proof idea: Perfect subgroup $\langle \sigma_1 \, , \, ... \, , \, \sigma_{n-1} \, \rangle$ Note: B_n not perfect. $1 \rightarrow |B_n, B_n| \rightarrow B_n \rightarrow \mathbb{Z} \rightarrow 1$ $\sigma_i \mapsto 1$ e.g. $\sigma_1 = \bigwedge | \dots |$ not a commutator, but $\sigma_1 \sigma_2^{-1} = \bigwedge \bigwedge \biggr| \cdots \biggr|$ is a commutator. $\sigma_1 \sigma_2 r^{-1} = [\sigma_2 r^{-1}, \sigma_1 r^{-1}] = [\sigma_4 \sigma_2 r^{-1}, \sigma_4 \sigma_1 r^{-1}]$

Proof idea: Perfect subgroup $\langle \sigma_1, \ldots, \sigma_{n-1} \rangle$ Note: B_n not perfect. $1 \rightarrow [B_n, B_n] \rightarrow B_n \rightarrow \mathbb{Z} \rightarrow 1$ $\sigma_i \mapsto 1$ e.g. $\sigma_1 = \bigwedge | \dots |$ not a commutator, but $\sigma_1 \sigma_2^{-1} = \bigvee \bigvee \bigcup \cdots \bigcup$ is a commutator. $\sigma_1 \sigma_2 r^{-1} = [\sigma_2 r^{-1}, \sigma_1 r^{-1}] = [\sigma_4 \sigma_2 r^{-1}, \sigma_4 \sigma_1 r^{-1}]$

<u>Theorem</u> (Gorin-Lin). For $n \ge 5$, $[B_n, B_n]$ is f.g. perfect group.

Thank you.

<u>Corollary</u> (Thurston). Diff $(D,X_3) \rightarrow Mod(D,X_3) \approx B_3$ splits.
$SL_2(Z) \land \bigcirc \bigcirc$

 $SL_2(Z) \land () \bigcirc$

 $1 \rightarrow Z \rightarrow B_3 \rightarrow PSL_2(Z) \rightarrow 1$

Homotope x|a, y|a to identity preserving relation $x^2 = y^3$.