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Aside: Flat surface bundles

Open Question. Does there exist Sg → E → Sh not flat?

Equivalently, does there exist ρ that has no lift? 

Mod(Sg)

Diff(Sg)→

π → 

π1(Sh) → ρ

X
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Theorem (Salter-T, 2015). S compact, genus ≥ 0.  
For n ≥ 6, Push is not realized by diffeomorphisms. 
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Proof idea: Thurston stability

Theorem (Thurston). Fix a manifold (M,x). The group 
Diff(M,TxM) = { g | g(x) = x, (dg)x = id }

is locally indicable,
i.e. for every finitely generated Γ < Diff(M,TxM), there 
exists surjection Γ ↠ Z. 

Diff(S,TxS) contains  
f.g. perfect subgroup  

Γ = [Γ,Γ]. 

Strategy 
Show: Bn(S) → Diff(S,Xn)  

exists
⇒

σ 
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Proof idea: Perfect subgroup
Note: Bn not perfect. 

Bn → Z

⟨ σ1 , … , σn-1 ⟩ 

=

σi ↦ 1

Theorem (Gorin-Lin). For n≥5, [Bn,Bn] is f.g. perfect group. 

e.g. σ1 = not a commutator, but 

σ1 σ2 -1 = is a commutator.

1→ [Bn,Bn] →  → 1

σ1 σ2 -1 = [ σ2 -1, σ1 -1 ] = [ σ4 σ2 -1, σ4 σ1-1 ]   



Thank you.
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Corollary (Thurston). Diff(D,X3) → Mod(D,X3)≃B3 splits. 

SL2(Z) PSL2(Z)

1 → Z → B3 → PSL2(Z) → 1

⟨ a,b | a2 = b3 ⟩ 
=

⟨ x,y | x2 = y3 = 1 ⟩ 

=
Homotope x|∂ , y|∂ to identity preserving relation x2=y3.


