Multiple fiberings of surface bundles over surfaces

Bena Tshishiku
Purdue AMS Sectional Meeting
$$
3 / 27 / 2021
$$

Surface bundles over surfaces

Surface bundles over surfaces

$S_{g} \rightarrow E \rightarrow S_{h} \quad S_{k}=$ closed oriented surface, genus k

Surface bundles over surfaces

$S_{g} \rightarrow E \rightarrow S_{h} \quad S_{k}=$ closed oriented surface, genus k
Monodromy characterization:
$\left\{\begin{array}{c}\text { Surface bundles } \\ S_{g} \rightarrow E \rightarrow S_{h} \\ \text { up to iso }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { homomorphisms } \\ \pi_{1}\left(S_{h}\right) \rightarrow \operatorname{Mod}\left(S_{g}\right) \\ \text { up to conj. }\end{array}\right\}$

Surface bundles over surfaces

$S_{g} \rightarrow E \rightarrow S_{h} \quad S_{k}=$ closed or
Monodromy characterization:
$\left\{\begin{array}{c}\text { Surface bundles } \\ S_{g} \rightarrow E \rightarrow S_{h} \\ \text { up to iso }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { homomorphisms } \\ \pi_{1}\left(S_{h}\right) \rightarrow \operatorname{Mod}\left(S_{g}\right) \\ \text { up to conj. }\end{array}\right\}$
Example. There are many homs $\pi_{1}\left(S_{h}\right) \rightarrow F_{h} \rightarrow \operatorname{Mod}\left(S_{g}\right)$

Surface bundles over surfaces

$S_{g} \rightarrow E \rightarrow S_{h}$
$S_{k}=$ closed oriented surface, genus k
Monodromy characterization:
$\left\{\begin{array}{c}\text { Surface bundles } \\ S_{g} \rightarrow E \rightarrow S_{h} \\ \text { up to iso }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { homomorphisms } \\ \pi_{1}\left(S_{h}\right) \rightarrow \operatorname{Mod}\left(S_{g}\right) \\ \text { up to conj. }\end{array}\right\}$
Example. There are many homs $\pi_{1}\left(S_{h}\right) \rightarrow F_{h} \rightarrow \operatorname{Mod}\left(S_{g}\right)$

Surface bundles over surfaces

$S_{g} \rightarrow E \rightarrow S_{h} \quad S_{k}=$ closed or
Monodromy characterization:
$\left\{\begin{array}{c}\text { Surface bundles } \\ S_{g} \rightarrow E \rightarrow S_{h} \\ \text { up to iso }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { homomorphisms } \\ \pi_{1}\left(S_{h}\right) \rightarrow \operatorname{Mod}\left(S_{g}\right) \\ \text { up to conj. }\end{array}\right\}$
Example. There are many homs $\pi_{1}\left(S_{h}\right) \rightarrow F_{h} \rightarrow \operatorname{Mod}\left(S_{g}\right)$

Main Question. How many ways can E fiber as a surface bundle over a surface?

Surface bundles over the circle

$$
S_{g} \rightarrow M \rightarrow S^{1}
$$

Surface bundles over the circle
 $$
S_{g} \rightarrow M \rightarrow S^{1}
$$

$M=\mathrm{M}_{f}$ mapping torus

$$
f \in \operatorname{Mod}\left(S_{g}\right)
$$

Surface bundles over the circle

$$
S_{g} \rightarrow M \rightarrow S^{1}
$$

$M=\mathrm{M}_{f}$ mapping torus

$$
f \in \operatorname{Mod}\left(S_{g}\right)
$$

Surface bundles over the circle

$$
S_{g} \rightarrow M \rightarrow S^{1}
$$

$M=\mathrm{M}_{f}$ mapping torus

$$
f \in \operatorname{Mod}\left(S_{g}\right)
$$

M often fibers in infinitely many ways, whenever $\mathrm{H}^{1}\left(S_{g} ; \mathbb{Q}\right)^{f} \neq 0$.

Surface bundles over the circle

$$
S_{g} \rightarrow M \rightarrow S^{1}
$$

$M=\mathrm{M}_{f}$ mapping torus

$$
f \in \operatorname{Mod}\left(S_{g}\right)
$$

M often fibers in infinitely many ways, whenever $\mathrm{H}^{1}\left(S_{g} ; \mathbb{Q}\right)^{f} \neq 0$.

These fiberings are organized by the Thurston norm.

Some general results

Some general results

(Johnson) Each E^{4} fibers in finitely many ways as a surface bundle over a surface.

Some general results

(Johnson) Each E^{4} fibers in finitely many ways as a surface bundle over a surface.
(Salter) If $E^{4} \neq S_{g} \times S_{h}$ fibers with monodromy in the Johnson kernel, then the fibering is unique.

Some general results

(Johnson) Each E^{4} fibers in finitely many ways as a surface bundle over a surface.
(Salter) If $E^{4} \neq S_{g} \times S_{h}$ fibers with monodromy in the Johnson kernel, then the fibering is unique.

Johnson kernel $=$ 〈 separating twists \rangle

Some general results

(Johnson) Each E^{4} fibers in finitely many ways as a surface bundle over a surface.
(Salter) If $E^{4} \neq S_{g} \times S_{h}$ fibers with monodromy in the Johnson kernel, then the fibering is unique.

Johnson kernel $=\langle$ separating twists \rangle
(Salter) For each $n, \exists E^{4}$ that has $\geq 2^{n}$ fiberings.

Some general results

(Johnson) Each E^{4} fibers in finitely many ways as a surface bundle over a surface.
(Salter) If $E^{4} \neq S_{g} \times S_{h}$ fibers with monodromy in the Johnson kernel, then the fibering is unique.

Johnson kernel $=\langle$ separating twists \rangle

(Salter) For each $n, \exists E^{4}$ that has $\geq 2^{n}$ fiberings.
One of these fiberings has monodromy in the

$$
\text { Torelli group }=\operatorname{ker}\left[\operatorname{Mod}\left(S_{g}\right) \rightarrow \operatorname{Sp}_{2 g}(\mathbb{Z})\right]
$$

Some general results

(Johnson) Each E^{4} fibers in finitely many ways as a surface bundle over a surface.
(Salter) If $E^{4} \neq S_{g} \times S_{h}$ fibers with monodromy in the Johnson kernel, then the fibering is unique.

Johnson kernel $=\langle$ separating twists \rangle

(Salter) For each $n, \exists E^{4}$ that has $\geq 2^{n}$ fiberings.
One of these fiberings has monodromy in the

$$
\text { Torelli group }=\operatorname{ker}\left[\operatorname{Mod}\left(S_{g}\right) \rightarrow \operatorname{Sp}_{2 g}(\mathbb{Z})\right]
$$

Question. $\exists E^{4}$ that fibers in exactly 3 ways?

Atiyah-Kodaira bundle

Atiyah-Kodaira bundle
branched covers of products of surfaces

Atiyah-Kodaira bundle
branched covers of products of surfaces
$k, m \geq 2$

Atiyah-Kodaira bundle

branched covers of products of surfaces
$k, m \geq 2 \quad X:=S_{m(k-1)+1} \xrightarrow{\mathbb{Z} / m \mathbb{Z}} S_{k}$

Atiyah-Kodaira bundle

branched covers of products of surfaces

$$
k, m \geq 2 \quad X:=S_{m(k-1)+1} \xrightarrow{\mathbb{Z} / m \mathbb{Z}} S_{k}
$$

$$
k=2, m=2
$$

Atiyah-Kodaira bundle

branched covers of products of surfaces

$$
k, m \geq 2 \quad X:=S_{m(k-1)+1} \xrightarrow{\mathbb{Z} / m \mathbb{Z}} S_{k}
$$

$$
k=2, m=2
$$

Atiyah-Kodaira bundle

branched covers of products of surfaces
$k, m \geq 2 \quad X:=S_{m(k-1)+1} \xrightarrow{\mathbb{Z} / m \mathbb{Z}} S_{k}$
Idea. Take m-fold cover $E_{k, m} \rightarrow X \times X$ branched over $U_{\operatorname{graph}}\left(\sigma^{i}\right)$

$k=2, m=2$

Atiyah-Kodaira bundle

branched covers of products of surfaces
$k, m \geq 2$

$$
X:=S_{m(k-1)+1} \xrightarrow{\mathbb{Z} / m \mathbb{Z}} S_{k}
$$

Idea. Take m-fold cover $E_{k, m} \rightarrow X \times X$ branched over \cup graph $\left(\sigma^{i}\right)$

$$
k=2, m=2
$$

Atiyah-Kodaira bundle

branched covers of products of surfaces
$k, m \geq 2$

$$
X:=S_{m(k-1)+1} \xrightarrow{\mathbb{Z} / m \mathbb{Z}} S_{k}
$$

Idea. Take m-fold cover $E_{k, m} \rightarrow X \times X$ branched over \cup graph $\left(\sigma^{i}\right)$

$k=2, m=2 \quad$ mu $\quad S_{6} \rightarrow E_{2,2} \rightarrow S_{129}$

Atiyah-Kodaira bundle

branched covers of products of surfaces

$$
k, m \geq 2 \quad X:=S_{m(k-1)+1} \xrightarrow{\mathbb{Z} / m \mathbb{Z}} S_{k}
$$

Idea. Take m-fold cover $E_{k, m} \rightarrow X \times X$ branched over \cup graph $\left(\sigma^{i}\right)$

$k=2, m=2 \quad$ mu $\quad S_{6} \rightarrow E_{2,2} \rightarrow S_{129}$

Atiyah-Kodaira bundle

branched covers of products of surfaces

$$
k, m \geq 2 \quad X:=S_{m(k-1)+1} \xrightarrow{\mathbb{Z} / m \mathbb{Z}} S_{k}
$$

Idea. Take m-fold cover $E_{k, m} \rightarrow X \times X$ branched over \cup graph $\left(\sigma^{i}\right)$

$k=2, m=2 \quad$ m $\rightarrow \quad S_{6} \rightarrow E_{2,2} \rightarrow S_{129}$

Atiyah-Kodaira bundle

branched covers of products of surfaces

$$
k, m \geq 2
$$

$$
X:=S_{m(k-1)+1} \xrightarrow{\mathbb{Z} / m \mathbb{Z}} S_{k}
$$

Idea. Take m-fold cover $E_{k, m} \rightarrow X \times X$ branched over Ugraph $\left(\sigma^{i}\right)$

$k=2, m=2 \quad$ mu $\rightarrow \quad S_{6} \rightarrow E_{2,2} \rightarrow S_{129}$
technically branched cover only exists over a cover of $S_{3} \times S_{3}$

Atiyah-Kodaira bundle

branched covers of products of surfaces

$$
k, m \geq 2
$$

$$
X:=S_{m(k-1)+1} \xrightarrow{\mathbb{Z} / m \mathbb{Z}} S_{k}
$$

Idea. Take m-fold cover $E_{k, m} \rightarrow X \times X$ branched over $U_{\operatorname{graph}}\left(\sigma^{i}\right)$

$k=2, m=2 \quad$ mu $\quad S_{6} \rightarrow E_{2,2} \rightarrow S_{129}$
technically branched cover only exists over a cover of $S_{3} \times S_{3}$

$$
S_{129} \times S_{3}
$$

Graph(id)

Atiyah-Kodaira bundle

branched covers of products of surfaces
$k, m \geq 2$

$$
X:=S_{m(k-1)+1} \xrightarrow{\mathbb{Z} / m \mathbb{Z}} S_{k}
$$

Idea. Take m-fold cover $E_{k, m} \rightarrow X \times X$ branched over $U_{\operatorname{graph}}\left(\sigma^{i}\right)$

$k=2, m=2 \quad$ mu $\quad S_{6} \rightarrow E_{2,2} \rightarrow S_{129}$
technically branched cover only exists over a cover of $S_{3} \times S_{3}$

Atiyah-Kodaira bundle

For $k, m \geq 2$, AK construct surface bundle over a surface

$$
F \rightarrow E_{k, m} \rightarrow B
$$

Atiyah-Kodaira bundle

For $k, m \geq 2$, AK construct surface bundle over a surface

$$
F \rightarrow E_{k, m} \rightarrow B
$$

Interesting properties

Atiyah-Kodaira bundle

For $k, m \geq 2$, AK construct surface bundle over a surface

$$
F \rightarrow E_{k, m} \rightarrow B
$$

Interesting properties

- holomorphic construction

Atiyah-Kodaira bundle

For $k, m \geq 2$, AK construct surface bundle over a surface

$$
F \rightarrow E_{k, m} \rightarrow B
$$

Interesting properties

- holomorphic construction
- $\operatorname{signature~}(E) \neq 0$

Atiyah-Kodaira bundle

For $k, m \geq 2$, AK construct surface bundle over a surface

$$
F \rightarrow E_{k, m} \rightarrow B
$$

Interesting properties

- holomorphic construction
- $\operatorname{signature~}(E) \neq 0$
- no Riemannian NPC metric

Atiyah-Kodaira bundle

For $k, m \geq 2$, AK construct surface bundle over a surface

$$
F \rightarrow E_{k, m} \rightarrow B
$$

Interesting properties

- holomorphic construction
- $\operatorname{signature~}(E) \neq 0 \longrightarrow$ Ballmann-Gromov-Schroeder '85
- no Riemannian NPC metric

Atiyah-Kodaira bundle

For $k, m \geq 2$, AK construct surface bundle over a surface

$$
F \rightarrow E_{k, m} \rightarrow B
$$

Interesting properties

- holomorphic construction
- $\operatorname{signature~}(E) \neq 0 \quad$ Ballmann-Gromov-Schroeder '85
- no Riemannian NPC metric

Atiyah-Kodaira bundle

For $k, m \geq 2$, AK construct surface bundle over a surface

$$
F \rightarrow E_{k, m} \rightarrow B
$$

Interesting properties

- holomorphic construction
- $\operatorname{signature~}(E) \neq 0 \quad$ Ballmann-Gromov-Schroeder '85
- no Riemannian NPC metric
- multiple fiberings

Atiyah-Kodaira bundle

For $k, m \geq 2$, AK construct surface bundle over a surface

$$
F \rightarrow E_{k, m} \rightarrow B
$$

Interesting properties

- holomorphic construction
- $\operatorname{signature~}(E) \neq 0 \quad$ Ballmann-Gromov-Schroeder '85
- no Riemannian NPC metric Stadler '15
- multiple fiberings

$$
\begin{aligned}
S_{6} \rightarrow & E_{2,2} \\
& \downarrow \\
& S_{129}
\end{aligned}
$$

Atiyah-Kodaira bundle

For $k, m \geq 2$, AK construct surface bundle over a surface

$$
F \rightarrow E_{k, m} \rightarrow B
$$

Interesting properties

- holomorphic construction
- $\operatorname{signature~}(E) \neq 0 \quad$ Ballmann-Gromov-Schroeder '85
- no Riemannian NPC metric Stadler '15
- multiple fiberings

$$
\begin{array}{cc}
S_{6} \rightarrow E_{2,2} & = \\
& \downarrow \\
& \downarrow \\
& E_{2,2} \\
S_{129} & S_{3}
\end{array}
$$

Atiyah-Kodaira bundle

For $k, m \geq 2$, AK construct surface bundle over a surface

$$
F \rightarrow E_{k, m} \rightarrow B
$$

Interesting properties

- holomorphic construction
- signature $(E) \neq 0 \longrightarrow$ Ballmann-Gromov-Schroeder '85
- no Riemannian NPC metric Stadler '15
- multiple fiberings

$$
\begin{array}{cc}
S_{6} \rightarrow E_{2,2} & = \\
& E_{2,2} \leftarrow S_{321} \\
& \downarrow \\
& S_{129}
\end{array}
$$

Question. Does $\mathrm{E}_{k, m}$ have >2 fiberings?

Fiberings of Atiyah-Kodaira manifolds

Fiberings of Atiyah-Kodaira manifolds

Theorem (L. Chen). The AK bundle

$$
S_{6} \rightarrow E_{2,2} \rightarrow S_{129}
$$

fibers in exactly two ways.

Fiberings of Atiyah-Kodaira manifolds

Theorem (L. Chen). The AK bundle

$$
S_{6} \rightarrow E_{2,2} \rightarrow S_{129}
$$

fibers in exactly two ways.

Unfortunately, the argument does not work for general AK bundles.

Fiberings of Atiyah-Kodaira manifolds

Theorem (L. Chen). The AK bundle

$$
S_{6} \rightarrow E_{2,2} \rightarrow S_{129}
$$

fibers in exactly two ways.

Unfortunately, the argument does not work for general AK bundles.
Theorem (Salter-T). For $k \geq 5, m \geq 2$ the AK bundle

$$
F \rightarrow E_{k, m} \rightarrow B
$$

fibers in exactly 2 ways.

Fiberings of Atiyah-Kodaira manifolds

Theorem (L. Chen). The AK bundle

$$
S_{6} \rightarrow E_{2,2} \rightarrow S_{129}
$$

fibers in exactly two ways.

Unfortunately, the argument does not work for general AK bundles.
Theorem (Salter-T). For $k \geq 5, m \geq 2$ the AK bundle

$$
F \rightarrow E_{k, m} \rightarrow B
$$

fibers in exactly 2 ways.
Unfortunately, our argument does not work $k \leq 4 \ldots$

About the proof

About the proof

- (Chen) Reduction to a monodromy computation:

About the proof

- (Chen) Reduction to a monodromy computation: To show AK bundle $F \rightarrow E_{k, m} \rightarrow B$ fibers in exactly 2 ways, it suffices to show $\mathrm{H}^{1}(F ; \mathbb{Q})^{\pi_{1}(B)} \cong \mathrm{H}^{1}\left(S_{k} ; \mathbb{Q}\right)$.

About the proof

- (Chen) Reduction to a monodromy computation: To show AK bundle $F \rightarrow E_{k, m} \rightarrow B$ fibers in exactly 2 ways, it suffices to show $\mathrm{H}^{1}(F ; \mathbb{Q})^{\pi_{1}(B)} \cong \mathrm{H}^{1}\left(S_{k} ; \mathbb{Q}\right)$.

$$
\begin{aligned}
& \text { In particular, want to understand image of } \\
& \rho: \pi_{1}(B) \rightarrow \operatorname{Mod}(F) \rightarrow \operatorname{Sp}\left(\mathrm{H}_{1}(F)\right) \cong \operatorname{Sp}_{2 g}(\mathbb{Z})
\end{aligned}
$$

About the proof

- (Chen) Reduction to a monodromy computation: To show AK bundle $F \rightarrow E_{k, m} \rightarrow B$ fibers in exactly 2 ways, it suffices to show $\mathrm{H}^{1}(F ; \mathbb{Q})^{\pi_{1}(B)} \cong \mathrm{H}^{1}\left(S_{k} ; \mathbb{Q}\right)$.

$$
\begin{aligned}
& \text { In particular, want to understand image of } \\
& \rho: \pi_{1}(B) \rightarrow \operatorname{Mod}(F) \rightarrow \operatorname{Sp}\left(H_{1}(F)\right) \cong \operatorname{Sp}_{2 g}(\mathbb{Z})
\end{aligned}
$$

- (Salter-T) Image(ρ) is an arithmetic subgroup whose Zariski closure can be described explicitly.

About the proof

- (Chen) Reduction to a monodromy computation: To show AK bundle $F \rightarrow E_{k, m} \rightarrow B$ fibers in exactly 2 ways, it suffices to show $\mathrm{H}^{1}(F ; \mathbb{Q})^{\pi_{1}(B)} \cong \mathrm{H}^{1}\left(S_{k} ; \mathbb{Q}\right)$.

$$
\begin{aligned}
& \text { In particular, want to understand image of } \\
& \rho: \pi_{1}(B) \rightarrow \operatorname{Mod}(F) \rightarrow \operatorname{Sp}\left(\mathrm{H}_{1}(F)\right) \cong \operatorname{Sp}_{2 g}(\mathbb{Z})
\end{aligned}
$$

- (Salter-T) Image(ρ) is an arithmetic subgroup whose Zariski closure can be described explicitly.

For $m=7, k \geq 2$, Image((ρ) is an arithmetic subgroup of $\mathrm{SU}(k, k+5) \times \mathrm{SU}(k+1, k+4) \times \mathrm{SU}(k+2, k+3)$

About the proof

- (Chen) Reduction to a monodromy computation: To show AK bundle $F \rightarrow E_{k, m} \rightarrow B$ fibers in exactly 2 ways, it suffices to show $\mathrm{H}^{1}(F ; \mathbb{Q})^{\pi_{1}(B)} \cong \mathrm{H}^{1}\left(S_{k} ; \mathbb{Q}\right)$.

$$
\begin{aligned}
& \text { In particular, want to understand image of } \\
& \rho: \pi_{1}(B) \rightarrow \operatorname{Mod}(F) \rightarrow \operatorname{Sp}\left(\mathrm{H}_{1}(F)\right) \cong \operatorname{Sp}_{2 g}(\mathbb{Z})
\end{aligned}
$$

- (Salter-T) Image (ρ) is an arithmetic subgroup whose Zariski closure can be described explicitly.

For $m=7, k \geq 2$, Image((ρ) is an arithmetic subgroup of $\mathrm{SU}(k, k+5) \times \mathrm{SU}(k+1, k+4) \times \mathrm{SU}(k+2, k+3)$

$$
\mathbb{Z} / 7 \mathbb{Z} \curvearrowright \mathrm{H}^{1}(\mathrm{~F} ; \mathbb{Q}) \cong \mathbb{Q}^{2 k} \times \mathbb{Q}\left(\zeta_{7}\right)^{2 k+5}
$$

Thank you

