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Abstract. For n ≥ 7, we show that if G is a torsion-free hyperbolic group whose visual

boundary ∂∞G ' S n−2 is an (n−2)-dimensional Sierpinski space, then G = π1(W ) for some

aspherical n-manifold W with nonempty boundary. Concerning the converse, we construct,
for each n ≥ 4, examples of aspherical manifolds with boundary, whose fundamental group G

is hyperbolic, but with visual boundary ∂∞G not homeomorphic to S n−2. Our examples

even support (metric) negative curvature, and have totally geodesic boundary.

1. Introduction

One of the basic invariants for a hyperbolic group is its boundary at infinity, and a fundamental
question is to determine what properties of the group are captured by the topology of the
boundary at infinity. For example, the famous Cannon conjecture postulates that a hyperbolic
group whose boundary at infinity is the 2-sphere S2 must admit a properly discontinuous,
isometric, cocompact action on hyperbolic 3-space H3.

In [21], Kapovich and Kleiner study groups whose boundary at infinity is a Sierpinski carpet –
a boundary version of the Cannon conjecture. In [4], Bartels, Lück, and Weinberger study groups
whose boundary at infinity is a sphere Sn of dimension n ≥ 5 – a high-dimensional version
of the Cannon conjecture. In this paper, we consider groups whose boundary at infinity are
high-dimensional Sierpinski spaces – thus lying somewhere between the work of Kapovich-Kleiner
and that of Bartels-Lück-Weinberger.

The two main theorems are as follows. Let S n−2 denote an (n− 2)-dimensional Sierpinski
space. See Section 2 for the definition.

Theorem 1. Fix n ≥ 7 and let G be a torsion-free hyperbolic group. If the visual boundary ∂∞G
is homeomorphic to S n−2, then there exists an n-dimensional compact aspherical topological
manifold W with nonempty boundary such that π1(W ) ∼= G. Furthermore, W is unique up to
homeomorphism.

Note that the fundamental group π of a closed aspherical manifold M is an example of a
Poincaré duality group. Whether or not all finitely presented Poincaré duality groups arise in
this fashion is an open problem that goes back to Wall [17]. So the existence portion of Theorem
1 addresses a relative version of Wall realization problem for a special class of groups. On the
other hand, the uniqueness portion of Theorem 1 verifies the Borel conjecture for this same
class of groups.
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Our second result shows that the converse of Theorem 1 is false – even if one imposes
additional strong constraints on the geometry of the aspherical manifold.

Theorem 2. For each n ≥ 4, there exists a compact aspherical manifold Mn with nonempty
connected boundary ∂Mn = Nn−1 such that:

(1) G = π1(M) is hyperbolic, and H = π1(N) is a proper quasi-convex subgroup in G.
(2) ∂∞(π1(N)) is homeomorphic to Sn−2, but

(3) ∂∞G ∼= ∂∞M̃ is not homeomorphic to S n−2.

Moreover, when n ≥ 5, the manifold Mn supports a locally CAT(−1) metric with totally geodesic
boundary.

Remark 3. If one just wants a simple counterexample to the converse of Theorem 1, one can
proceed as follows: start with a k-dimensional closed hyperbolic manifold K with fundamental
group G, where k < n. Now embed the hyperbolic k-plane Hk isometrically inside Hn. Then
the G-action on the embedded Hk extends to an action on the r-neighborhood X of the Hk.
Let M = X/G, and note that M is aspherical, diffeomorphic to K × Dn−k, with fundamental
group G. Clearly ∂∞G is homeomorphic to the (k − 1)-sphere Sk−1, and not to Sierpinski
(n− 2)-space S n−2. Of course, in this example, N = K × Sn−k−1, so the example fails to have
property (1) from Theorem 2. Note that (1) is the group-theoretic analogue of a negatively
curved manifold with totally geodesic boundary.

Another simple example is to take three copies of the torus with one boundary component
and define X as the result of gluing the 3 boundaries together by homeomorphisms. A thickening
M of X in R3 satisfies the conditions of Theorem 2, except ∂M is not connected. In this case
∂∞
(
π1(M)

)
has local cut points, so it cannot be S 1. It seems likely, and would be interesting

to show, that ∂∞G has no local cut points for the G constructed in Theorem 2.

Remark 4. In Theorem 2 one can construct, in dimensions n ≥ 5, manifolds satisfying property
(1), but failing to have (2). Start with a Davis-Januszkiewicz example of a locally CAT(−1)

closed (n−1)-manifold N with ∂∞Ñ not homeomorphic to Sn−2, chosen so that N = ∂Wn+1 for
some compact manifold Wn+1. Then take M to be the relative hyperbolization of W , relative to
N (see [16]). Properties of relative hyperbolization readily yield statement (1), while the choice
of N ensures that (2) fails. It seems likely that such manifolds M would also have property (3).

Indeed, one could visualize the boundary at infinity of M̃ to be similar to a Sierpinski curve,
but instead of having peripheral spheres (see Section 2), it would have peripheral subspaces
which are Čech homology spheres instead of genuine spheres (since (2) fails). Such a space is
probably not homeomorphic to S n−2. We point out, however, that this approach could not
possibly work in dimension n = 4, as in this case the boundary would be a closed 3-manifold,
which forces (2) to hold.

Structure of paper. In Section 2 we recall the definition of an n-dimensional Sierpinski space.
In Sections 3 and 4, we prove Theorems 1 and 2, respectively. In Section 5, we remark on a
generalization of Theorem 1 to CAT(0) groups.
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2. n-dimensional Sierpinski space and hyperbolic groups

We use Cannon’s definition of n-dimensional Sierpinski space [12] (Cannon uses the term
Sierpinski curve instead of Sierpinski space).

Definition. Fix n ≥ 0. Let D1, D2, . . . ⊂ Sn+1 be a sequence of open topological balls such
that

(i) Di ∩Dj = ∅ for i 6= j,
(ii) diam(Di)→ 0 with respect to the round metric on Sn+1, and

(iii)
⋃
Di ⊂ Sn+1 is dense.

Then S n := Sn+1\
⋃
Di is an n-dimensional Sierpinski space. The spheres Sn ∼= ∂(Di) ⊂ S

are called peripheral spheres.

Example. A 0-dimensional Sierpinski space S 0 is a Cantor set, while the space S 1 is the
classical Sierpinski carpet. The Sierpinski space S n−2 arises as the visual boundary of hyperbolic
groups (in the sense of Gromov [19]). For example, if Wn is a hyperbolic n-manifold with
nonempty totally geodesic boundary, then π1(W ) is a hyperbolic group whose visual boundary

is a Sierpinski (n−2)-space. To see this, observe that the universal cover W̃ can be embedded as

a submanifold of hyperbolic space W̃ ↪→ Hn. Using the disk model, the visual boundary ∂∞W̃
is a subspace of ∂∞Hn ∼= Sn−1. The boundary components of W lift to countably many disjoint
geodesic hyperplanes Hn−1 ⊂ Hn. Each hyperplane has boundary a sphere ∂∞Hn−1 ∼= Sn−2,

which bounds an open ball Dn−1 ⊂ Sn−1. The visual boundary of W̃ is obtained by removing
this countable collection of open balls, yielding a Sierpinski space S n−2.

Figure 1. A torus with one boundary component, and its universal cover
inside the hyperbolic plane.

The simplest example of this is when W is a torus with one boundary component (see Figure
1). More examples are furnished by the following general theorem of Lafont [22].

Theorem 5 (Lafont). Let Mn be a compact, negatively curved Riemannian manifold with

nonempty totally geodesic boundary. Then ∂∞M̃ is homeomorphic to S n−2.

We remark that the dimension restriction in the statement of [22, Theorem 1.1] is unnecessary
thanks to work of Freedman and Quinn (c.f. the MathSciNet review of [27]). As a consequence
of this result, the “locally CAT(−1) metric” statement in Theorem 2 cannot be replaced by
“negatively curved Riemannian metric”.
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3. Proof of Theorem 1

Proof. We first prove the existence part of the statement, proceeding in three steps.

Step 1 (Peripheral subgroups and Poincaré duality pairs). Recall that G is a torsion-
free hyperbolic group such that ∂∞G ∼= S n−2. The stabilizer H ≤ G of a peripheral sphere
Sn−2 ⊂ S n−2 is called a peripheral subgroup. By the proof of Kapovich-Kleiner [21, Theorem
8(1)], there are finitely many peripheral subgroups, up to conjugacy in G. Choose representatives
H1, . . . ,Hp for the conjugacy classes.

In order to show that G is the fundamental group of a manifold with boundary, we first need
to establish that G has the same Poincaré duality as a manifold with boundary. To be precise,
the doubling argument of Kapovich-Kleiner [21, Corollary 12] shows that (G, {Hi}) is a group
PD(n) pair in the sense of Bieri-Eckmann [7]. This has the following topological consequence
(see [20, Theorem 1] and [6, Section 6]): let (X,Y ) be the CW-complex pair obtained by taking
Y =

∐p
i=1BHi and defining X to be the mapping cylinder of the map

∐
BHi → BG. Then

(X,Y ) is a CW-complex PD(n) pair in the sense of Wall [30]. In particular this means that
there are isomorphisms Hi(X;Z) ∼= Hn−i(X,Y ;Z) and Hi−1(Y ;Z) ∼= Hn−i(Y ;Z) induced by
cap product with [X] ∈ Hn(X) and ∂[X] ∈ Hn−1(Y ), respectively, and that X is a finitely

dominated CW complex (i.e. there exists a finite CW complex L and maps X
i−→ L

r−→ X such
that r ◦ i = idX).

Step 2 (Preparing for surgery). Let (X,Y ) be the pair from Step 1. We now explain why
(X,Y ) is homotopy equivalent to a pair (K,N) such that

(A) K is a finite CW complex, and
(B) N is a manifold.

This will allow us to employ the total surgery obstruction in Step 3.

(A) Wall’s finiteness obstruction õ(X) ∈ K̃0(X) vanishes if and only if X is homotopy

equivalent to a finite CW complex [29]. Thus to show (A), it suffices to show K̃0(X) = 0. This is
a corollary of the following powerful result (see [4, Proof of Theorem 1.2] for more information):

Theorem 6 (Bartels-Lück [2], Bartels-Lück-Reich [3]). Let G be a torsion-free hyperbolic group
G. Then

(†) the (non-connective) K-theory assembly map Hi(BG;KZ)→ Ki(ZG) is an isomorphism
for i ≤ 0 and surjective for i = 1;

(‡) the (non-connective) L-theory assembly map Hi

(
BG;w L〈−∞〉Z

)
→ L

〈−∞〉
i (ZG,w) is

bijective for every i ∈ Z and every orientation homomorphism w : G→ {±1}.

The conditions (†) and (‡) are called the Farrell-Jones conjectures in K- and L-theory,
respectively. Note that, since G is a torsion-free hyperbolic group, a constructive alternative is
to take X a large enough Rips complex (which is automatically a finite simplicial complex). We
included the non-constructive proof above, as this “obstruction” point of view will reappear in
later arguments.

(B) It remains to see that Y is homotopy equivalent to a closed manifold Nn−1. By definition
Y is homotopy equivalent to

∐p
i=1BHi. The peripheral subgroups Hi are all hyperbolic groups,

and ∂∞Hi is identified with the sphere Sn−2 ⊂ S n−2 stabilized by Hi (see [21, Theorem 8]).
The following result from [4, Theorem A] implies that Y '

∐p
i=1BHi is homotopy equivalent

to a manifold:
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Theorem 7 (Bartels-Lück-Weinberger [4]). Fix n ≥ 7, and let H be a torsion-free hyperbolic
group. If ∂∞H ∼= Sn−2, then there is a closed aspherical manifold Nn−1 such that π1(N) ∼= H.

Step 3 (The total surgery obstruction). Let (K,N) be the pair from Step 2. The
structure set STOP∂ (K) is defined as the set of equivalence classes of homotopy equivalences
f : (M,∂M)→ (K,N) where (M,∂M) is a manifold with boundary and f

∣∣
∂M

: ∂M → N is a

homeomorphism (the equivalence relation is h-cobordism rel ∂; see [26, Chapter 18]). Surgery
theory provides computable obstructions to determine whether or not (K,N) is homotopy
equivalent to a manifold with boundary, i.e. whether or not STOP∂ (K) 6= ∅.

We will follow the algebraic approach detailed in Ranicki [26]. The total surgery obstruction
s∂(K) lives in the structure group Sn(K) and has the property that s∂(K) = 0 if and only if
(K,N) is homotopy equivalent (rel boundary) to an n-manifold with boundary; see [25, Theorem
1]. The group Sn(K) fits into the algebraic surgery exact sequence [26, Definition 15.19]

· · · → Hn(K;L•)
A−→ Ln

(
π1(K)

)
→ Sn(K)→ Hn−1(K;L•)→ · · ·

where A is the assembly map and L• is the 1-connective surgery spectrum whose 0th space is
G/TOP and whose homotopy groups are πi(L•) = Li(Z) for i ≥ 1.

To show that STOP∂ (K) 6= ∅, we will show that Sn(K) = 0. For this, we need to consider two
other versions of the structure groups.

• The quadratic structure groups Si(Z,K) are defined in [26, Definition 14.6].
• The group Sn(K) (see [26, Chapter 25]) belongs to the 4-periodic algebraic surgery exact

sequence

· · · → Hn(K;L•)
A−→ Ln

(
π1(K)

)
→ Sn(K)→ Hn−1(K;L•)→ · · ·

where L• is the 0-connective surgery spectrum whose 0th space is L0(Z)×G/TOP ∼=
Z×G/TOP and whose homotopy groups are πi(L•) = Li(Z) for i ≥ 0.

In order to show that Sn(K) = 0, we use the following three facts.

(a) The groups Sn(K) and Sn(Z,K) are equal. This follows directly from Ranicki [26, Proposi-
tion 15.11(iii)-(iv)]. Here we have used that dimK ≥ 6. Note that Lq(Z) = 0 for q = −1,

and in Ranicki’s notation Sn〈0〉(Z,K) = Sn(K) (compare with [26, Page 289]).
(b) The quadratic structure groups Si(Z,K) ∼= Si(Z, BG) are 0 for all i ∈ Z. For the proof, see

[4, Proof of Theorem 1.2]. Note that this also uses Theorem 6.
(c) There is an exact sequence

Hn

(
K;L0(Z)

)
→ Sn(K)→ Sn(K).

See Ranicki [26, Theorem 25.3(i)].

From (a) and (b), it follows that Sn(K) = 0. Then, by (c), to show Sn(K) = 0 is suffices
to show Hn(K;L0(Z)) = Hn(K;Z) = 0. This can be seen from the long exact sequence in
homology of a pair (K,N):

Hn(N ;Z)→ Hn(K;Z)→ Hn(K,N ;Z)
∂−→ Hn−1(N ;Z).

The group Hn(N ;Z) = 0 because N is a PD(n−1) complex. Also Hn(K,N ;Z) ∼= Z is generated
by the fundamental class [K], and ∂[K] is a sum of fundamental classes of the components of
N . In particular ∂[K] 6= 0, so Hn(K;Z) = 0, as desired.

This concludes the proof of existence.
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Uniqueness. So far we have proven the existence of a compact aspherical manifold W with
π1(W ) = G. To show W is unique, we want to show that STOP∂ (W ) is a singleton. By [25,
Corollary 1 (rel ∂)], it suffices to show that Sn+1(W ) = 0. By [26, Theorem 25.3(i)], there is an
exact sequence

0→ Sn+1(W )→ Sn+1(W )→ Hn(W ;Z),

and as noted above, Hn(W ;Z) = 0. Thus, it suffices to show that Sn+1(W ) = 0. This
follows because Sn+1(W ) = Sn+1(Z,W ) (by the same reason as in Step 3, Fact (a) above), and
Sn+1(Z,W ) = 0 (see Step 3, Fact (b)). �

4. Proof of Theorem 2

The proof of Theorem 2 is an adaptation of [15, Section (5a), (5c)]. We briefly explain the
relative version of [15] and the problem with extending it directly to our case.

The paper [15] uses hyperbolization to construct a closed, locally CAT(−1) manifold Mn

with the unusual property that ∂∞M̃ is not homomorphic to Sn−1. To show this, they establish

that ∂∞M̃ − {γ+, γ−} is not simply connected, where γ+, γ− are the endpoints of a geodesic

γ : (−∞,∞)→ M̃ whose link is a homology sphere H with π1(H) 6= 1. In order to find nontrivial

elements of π1

(
∂∞M̃ −{γ+, γ−}

)
, [15] studies metric spheres Sp(r) centered at p = γ(0). When

s > r, there are natural geodesic contraction maps ρsr : Sp(s)→ Sp(r), which allow one to relate

the topology of small spheres to the topology of ∂∞M̃ = lim←−{Sp(r)}r>0. The central property
of the maps ρsr that makes the comparison work is that they are cell-like. We refer the reader to
[18] for information concerning cell-like sets and maps.

Following [15], we will construct a triangulated, locally CAT(−1) manifold M with totally

geodesic boundary ∂M whose universal cover M̃ contains a geodesic γ : (−∞,∞)→ M̃ whose

link is a homology sphere H with π1(H) 6= 1. As above, we wish to show π1(∂∞M̃−{γ+, γ−}) 6= 1

(Lemma 8 below then implies that ∂∞M̃ is not homeomorphic to S n−2). In this case M̃ is
a manifold with boundary, and the maps ρsr : Sp(s) → Sp(r) are not surjective for s >> r.
This prevents us from proceeding directly as in [15]. To bypass this issue, we “cap off” the

boundary components of M̃ to obtain a CAT(−1) manifold M̂ ⊃ M̃ to which the arguments

of [15] apply; in particular, π1(∂∞M̂ − {γ+, γ−}) 6= 1. At this point it will be clear from the

capping procedure (see specifically Lemma 9 below) that π1(∂∞M̃ − {γ+, γ−}) 6= 1.
For the proof of Theorem 2, we need the following elementary fact.

Lemma 8. For n ≥ 2, the n-dimensional Sierpinski space S n is simply-connected. Moreover,
if F ⊂ S n is any finite collection of points in S n, then S n \ F is still simply-connected.

Proof. Model S n as the complement, in the standard sphere Sn+1, of the interiors of a dense
collection of pairwise disjoint round disks Di whose radii ri tend to zero. If γ is a curve in
S n ⊂ Sn+1, we can find a bounding disk φ : D2 → Sn+1. Inductively define φk : D2 → Sn+1 to
have image disjoint from the interiors of D1, . . . , Dk, as follows. First perturb φ to be transverse
to D1. Then φ−1(∂D1) is a finite collection of curves in D2, and each of these curves maps to a
curve ηj on ∂D1 ' Sn. Since n ≥ 2, we can redefine φ on the interior of these finitely many
curves in D2 by sending each of these to a bounding disk in ∂D1 for the corresponding ηj . In
this way we obtain a map φ1 : D2 → Sn+1 whose image is disjoint from int(D1). Since the Di

are disjoint, we may continue inductively, replacing φ1 by a map φ2 whose image is disjoint
from the interior of D1 ∪D2, and so on. Since the diameter of the Di shrinks to zero, the maps
φk converge to a map φ∞ : D2 → Sn+1 whose boundary coincides with γ, and whose image is
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disjoint from the interiors of all the Di, i.e. the image of φ∞ lies in S n. A similar argument
works even after removing finitely many points in S n. �

Proof of Theorem 2. We proceed in several steps.

Step 1 (Construction). We construct M using the strict hyperbolization construction of
Charney-Davis [13]. For simplicity we will focus primarily on the case n ≥ 5. The case n = 4
will be explained at the end of Step 2.

The case n ≥ 5 is modeled on [15, Section (5c)]. Fix a smooth n-manifold X with non-empty
connected boundary Y , equipped with a PL-triangulation. Choose a smooth homology sphere
Hn−2 with non-trivial fundamental group, take a PL-triangulation of H, and consider the
double suspension Σ2H ∼= Sn, with the obvious induced (no longer PL) triangulation. Take
the triangulated connect sum X]Σ2H, obtained by using the interior of a pair of n-simplices
in the triangulated X, Σ2H to take the connect sum (and chosen so that simplex in X does
not intersect the boundary of X). Note that, topologically X]Σ2H is homeomorphic to X, but
now has a triangulation that fails to be PL – there is precisely one 4-cycle in the 1-skeleton
of the triangulation whose link is H (instead of Sn−2). Finally, we let Mn = h(X]Σ2H), an
n-manifold with boundary Nn−1 = h(Y ), and set G = π1(M).

Properties of hyperbolization implies statement (1) in our Theorem, while statement (2)
follows from the fact that the triangulation of Y is PL (applying Davis-Januszkiewicz [15,
Theorem (3b.2)]). The rest of our proof thus focuses on establishing statement (3) in the
theorem – that ∂∞G is not homeomorphic to S n−2.

Step 2 (Capping procedure). To show that ∂∞G 6= S n−2, first identify ∂∞G ∼= ∂∞M̃ . We

use Lemma 8 and show that π1(∂∞M̃ \ F ) 6= 1, where F = {γ+, γ−} consists of two points.

M̃ is a non-compact CAT(−1) manifold with non-empty boundary, each component of which

is isometric to h̃(Y ). To understand ∂∞M̃ , we first define an isometric embedding M̃ ↪→ M̂

into a CAT(−1) space without boundary. It will be easier to analyze M̂ , which is obtained from

M̃ by gluing a certain space Z to each component of ∂M̃ . Next we define Z and describe its
key features.

Let DX be the double of X across Y , with the induced triangulation. We apply a strict
hyperbolization of Charney-Davis [13] to obtain a closed n-manifold h(DX) equipped with a

locally CAT(−1) metric. The universal cover h̃(DX) has boundary at infinity homeomorphic

to Sn−1 (see [15, Theorem (3b.2)]). Take any lift h̃(Y ) of the separating codimension one

submanifold h(Y ) ⊂ h(DX). Then h̃(Y ) separates h̃(DX) into two (isometric) convex subsets.
Denote by Z the closure of one of these convex subsets. Then Z is a non-compact locally

CAT(−1) n-manifold with totally geodesic boundary h̃(Y ).

Lemma 9. The boundary at infinity ∂∞Z of Z is homeomorphic to Dn−1. The inclusion

h̃(Y ) = ∂Z induces, at the boundary at infinity, an identification ∂∞h̃(Y ) = Sn−2 = ∂(Dn−1).

Let us momentarily assume Lemma 9 and finish the proof. Form the CAT(−1) space M̂ by

gluing a copy of Z to each component of ∂M̃ , by isometrically identifying the copy of h̃(Y )

inside Z with the boundary component. We have an isometric embedding M̃ ↪→ M̂ , inducing

an embedding ∂∞M̃ ↪→ ∂∞M̂ . Let γ be a lift, in M̃ ⊂ M̂ of the singular geodesic in M , i.e.
the geodesic whose link is the homology sphere H. The argument in [15, Proof of Theorem

5c.1(iv), pg. 385] applies verbatim to show that ∂∞M̂ − {γ+, γ−} is not simply-connected. If η
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denotes a homotopically non-trivial loop in ∂∞M̂ − {γ+, γ−}, then Lemma 9 allows us to use

the same argument as in Lemma 8 to homotope η into the subset ∂∞M̃ = ∂∞G. We conclude
that ∂∞G− {γ+, γ−} fails to be simply connected. From Lemma 8, we conclude that ∂∞G is
not homeomorphic to S n−2.

The n = 4 case proceeds similarly, but is modeled instead on [15, Section (5a)]. Briefly,
one lets X be a 4-dimensional simplicial complex whose geometric realization is a homology
manifold with non-empty boundary Y , and which contains a singular point in the interior of
X (whose link is, for example, the Poincaré homology 3-sphere H). One then looks at the
universal cover of the hyperbolization W = h(X). We can “cap off” the boundary components

of W̃ as in the last paragraph to obtain Ŵ . Then the arguments in [15, Section 3d] shows

that the fundamental group at infinity π∞1 (Ŵ ) is nontrivial. It follows that π1(∂∞Ŵ ) is also
nontrivial by [14, Theorem 4.1]. Again, using Lemma 9, we can push a homotopically non-trivial

loop in ∂∞Ŵ into the subset ∂∞W̃ = ∂∞G. From Lemma 8, we conclude that ∂∞G is not
homeomorphic to S 2. Finally, even though W is not a manifold, it is homotopy equivalent to
a manifold: just remove a small neighborhood of the singular cone point, and replace it by a
contractible manifold which bounds H. The resulting 4-manifold M has the desired properties.

Step 3 (Reducing Lemma 9). To complete the proof of the theorem, we are left with
verifying Lemma 9. This is again a minor adaptation of the arguments in [15, Sections 3b, 3c].
Choose a basepoint x ∈ ∂Z, and consider the closed metric r-balls BZ(r), B∂Z(r) in the spaces
Z, ∂Z, centered at x, as well as the metric r-spheres SZ(r) and S∂Z(r). The proof of Lemma 9
will rely on the following:

Claim 1: For all r, the metric spheres SZ(r) are manifolds with boundary S∂Z(r).

Claim 2: For points p ∈ S∂Z(r), the complement Lk(p) \BLk(p)(v;π) of the metric ball of radius
π, centered at v ∈ ∂ (Lk(p)) in the link of p, is a cell-like set.

From these two Claims, it is easy to conclude. If one takes a small enough r, then clearly
SZ(r) is homeomorphic to a disk Dn−1. In view of Claim 2 and the discussion in [15, pg. 372],
there is an ε > 0 such that each of the geodesic contraction maps ρsr : SZ(s) → SZ(r) is a
cell-like map when r < s < r + ε. So by Claim 1, the maps ρsr are cell-like maps between
manifolds with boundaries. From the work of Siebenmann [28], Quinn [24], and Armentrout [1]
it follows that each ρsr is a near-homeomorphism (i.e. can be approximated arbitrarily closely
by homeomorphisms), and hence, that all the SZ(r) are homeomorphic to a disk Dn−1, with
boundary ∂SZ(r) = S∂Z(r).

Since we can identify ∂∞Z with the inverse limit lim←−{SZ(r)}r>0, where the bonding maps are

given by the near-homeomorphisms ρsr (where 0 < r < s), the main result of Brown [10] implies
that ∂∞Z is also homeomorphic to the closed disk Dn−1. This confirms the first statement in

Lemma 9. For the second statement, we note that h̃(Y ) = ∂Z is a totally geodesic subspace

of Z, and hence we have an embedding Sn−2 = ∂∞h̃(Y ) ↪→ ∂∞Z = Dn−1. Since ∂Z fails to
(coarsely) separate Z, an elementary argument gives that the image of ∂∞ (∂Z) = Sn−1 also
fails to separate ∂∞Z = Dn−1, and hence coincides with the set ∂Dn−1. This gives the second
statement in Lemma 9. We have thus reduced the proof of Lemma 9 (and hence also of the
theorem) to checking Claim 1 and Claim 2 – which are the last two steps of the proof.

Step 4 (Proof of Claim 1). We first argue that the ball BZ(r) of radius r is a manifold with

boundary. It is clear that points p ∈ Int(M̃) at distance < r from the basepoint have manifold
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neighborhoods. It is also immediate that points p ∈ ∂M̃ at distance < r from the basepoint
have neighborhoods homeomorphic to Rn−1 × R+. Points at distance = r from the basepoint

are either in Int(M̃) or on ∂M̃ .

For points p in Int(M̃), the argument in [15, pg. 372] shows that p has a neighborhood
homeomorphic to Rn−1 ×R+. So the only possible points to worry about are points at distance

= r, and lying on the subset ∂M̃ . But for such a point p, a similar argument works with
no trouble. Let v be the point in Lk(p) pointing from p to the basepoint x, and consider
the closed ball BLk(p)(v;π/2) in the link of p, centered at v, of radius π/2. For any vector

w ∈ BLk(p)(v;π/2), one can look at the geodesic γw emanating from p, in the direction w (γw is
well-defined close to p). If the direction w is at distance < π/2 from v, then for a small interval of

v

BL(v;π/2)

SL(v;π/2)

{0} × Dn−1

{1} × Dn−1 U

Figure 2. Left: The link L = Lk(p). Right: The space I × BLk(p)(v;π/2),

which is identified with a neighborhood X̂ of p after quotienting by the gray
region.

time [0, s(w)], the geodesic γw lies entirely in BZ(r), with γw (s(w)) ∈ SZ(r)∪B∂Z(r). Note that
s varies continuously and s(w)→ 0 as w → SLk(p)(v;π/2). It follows that p has a neighborhood

homeomorphic to the set X̂ constructed as follows: take the product I ×BLk(p)(v;π/2), collapse

the fibers over the subset SLk(p)(v;π/2) to 0, and then collapse the subset {0} ×BLk(p)(v;π/2)
to a single point (which is identified with p) – see Figure 2. By an inductive argument (note

that dim(Lk(p)) = dim(M̃)− 1) one can assume that BLk(p)(v;π/2) is homeomorphic to a disk

Dn−1, with the subset SLk(p)(v;π/2) corresponding to an embedded Dn−2 inside ∂Dn−1 ∼= Sn−2.

Following the construction of X̂ given above, we see that X̂ is homeomorphic to Dn, with
the point corresponding to p lying on ∂Dn. This shows that BZ(r) is indeed a manifold with
boundary, and that the boundary of BZ(r) naturally decomposes as the union of SZ(r)∪B∂Z(r),
where the union is over the common subset S∂Z(r).

Finally, we check that SZ(r) is an (n − 1)-manifold with boundary. For points p ∈ SZ(r)

lying in Int(M̃), it follows easily from [15, pg. 372] that these points have neighborhoods
homeomorphic to Dn−1 with p lying as an interior point. In the case where p ∈ SZ(r) lies on

∂M̃ , we look at the neighborhood X̂ of p constructed above. Within X̂, the subset corresponding
to SZ(r) consists of (the image of) a small neighborhood U of {1} × SLk(p)(v;π/2) ∼= Dn−2

inside the slice {1}×BLk(p)(v;π/2) ∼= Dn−1. Note that the (n−2)-disk SLk(p)(v;π/2) lies in the

boundary sphere of the (n− 1)-disk BLk(p)(v;π/2) (by induction). The image of U thus gives a

copy of Dn−1, with p lying in the boundary of Dn−1. Moreover, the subset of U corresponding
to S∂Z(r) is just a neighborhood of p inside the boundary sphere of Dn−1, i.e. is homeomorphic
to Dn−2. This completes the argument for Claim 1.
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v

BL(v; r)

L \BL(v;π)

B∂L(v; r)

BL(v; r)

∂ B∂L(v; r)

DL\L

Figure 3. The link L = Lk(p) and its double DL.

Step 5 (Proof of Claim 2). We want to show that the complement Lk(p)\BLk(p)(v;π) is cell-

like. The set Lk(p) is homeomorphic to a disk Dn−1, so we can think of the set we are interested
in as lying within the double D (Lk(p)) ∼= Sn−1. Given an r ∈ (0, π), consider the subset
Ur ⊂ D (Lk(p)) ∼= Sn−1 defined to be the union of D (Lk(p)) \ Lk(p) and the set BLk(p)(v; r).

See Figure 3. We will show each such Ur is homeomorphic to Rn−1. Then by a result of Brown
[11] it follows that the union U∞ :=

⋃
r∈(0,π) Ur ⊂ D (Lk(p)) ∼= Sn−1 is also homeomorphic

to Rn−1. But if a subset of Sn−1 is homeomorphic to Rn−1, its complement is automatically
cell-like [18, pg. 114]. Since the complement of U∞ coincides with Lk(p) \ BLk(p)(v;π), this
would establish Claim 2.

To see that each Ur is homeomorphic to Rn−1, we consider their closures Ur. We have
that Ur = Int(Ur), and that Ur can be written as the union of a copy of Lk(p) along with
BLk(p)(v; r), where the union is taken over the common subset B∂Lk(p)(v; r). Let us analyze the
two pieces in this decomposition.

On one of the sides, the subset Lk(p) is homeomorphic to Dn−1, and the common subset
B∂Lk(p)(v; r) is homeomorphic to an embedded (n− 2)-disk Dn−2 inside the boundary sphere

∂Lk(p) ∼= Sn−2. Note that, by varying the parameter r, we see that

Sn−3 ' ∂B∂Lk(p)(v; r) ⊂ ∂Lk(p) ' Sn−2

is bicollared. On the other side, the subset BLk(p)(v; r) is also homeomorphic to Dn−1, and

the gluing disk Dn−2 ∼= B∂Lk(p)(v; r) inside the boundary sphere Sn−2 ∼= ∂BLk(p)(v; r) also has

complement a disk (by the argument in Claim 1). Thus, we see that Ur is obtained by gluing
together two closed (n− 1)-disks, by identifying together two copies of an (n− 2)-disk, where
each copy is nicely embedded in the respective boundary spheres Sn−2 ∼= Dn−1. It follows that
Ur is also homeomorphic to Dn−1. This completes the proof of Claim 2 and the proof of the
theorem. �

Remark 10. Let us make a small comment on approximating cell-like maps by homeomorphisms,
in the case of manifolds with boundary. The attentive reader will probably notice that, in
Siebenmann’s work [28], there are two cases that require special care. In the 5-dimensional case,
he requires the restriction of the map to the boundary to be a homeomorphism (rather than just
a cell-like map). This is due to the fact that, at the time [28] was written, it was unclear whether
or not cell-like maps of (closed) 4-manifolds could be approximated by homeomorphisms—hence
the need of a stronger hypothesis on the boundary map. In view of Quinn’s subsequent proof of
the 4-dimensional case [24], this stronger hypothesis is no longer needed in the 5-dimensional
boundary case. Note that, in our context, the bonding maps, when restricted to the boundary,
are always cell-like (but are not homeomorphisms).



HYPERBOLIC GROUPS WITH BOUNDARY AN n-DIMENSIONAL SIERPINSKI SPACE 11

The other special case has to do with 3-dimensions. Here there is an added hypothesis that
every point pre-image has a neighborhood N which isn’t just contractible, but in addition is
prime (i.e. if N = M1#M2, then one of the Mi is a standard 3-sphere). The only way this could
fail is if one of the Mi were instead a homotopy 3-sphere – but by Perelman’s resolution of the
Poincaré Conjecture, such a manifold is automatically S3. So again, in the 3-dimensional case,
this additional hypothesis is now unnecessary.

5. Remarks on CAT(0) groups

In this section we remark on generalizing the main result from hyperbolic groups to CAT(0)
groups. A proper geodesic space X is called CAT(0) if geodesic triangles in X are at least as
thin as triangles in Euclidean space [8]. A group G is called CAT(0) if there exists a CAT(0)
space X on which G acts geometrically (that is, isometrically, properly, and compactly).

A CAT(0) space X has a visual boundary ∂∞X, and if G acts geometrically on X, then G
acts on ∂∞X by homeomorphisms. In this case ∂∞X is called a boundary of G. With this
terminology we have the following theorem.

Theorem 11. Let G be a CAT(0) group for which Sn−1 is a boundary. If n ≥ 6, then there
exists a closed n-dimensional aspherical manifold W such that π1(W ) ' G.

The proof is almost identical to the proof of Theorem 7 in [4]. We give a short explanation
for how to extend that argument to the CAT(0) case.

Proof of Theorem 11. By assumption G acts geometrically on an X with ∂∞X = Sn−1. Denote
X = X ∪ ∂∞X. We proceed in three steps.

Step 1. BG is homotopy equivalent to a closed aspherical homology n-manifold W such that
W has the disjoint disk property. To show this, it suffices to show that G is a PD(n) group and
to note that CAT(0) groups satisfy the Farrell-Jones conjectures in K- and L-theory. For then
we may use [4, Theorem 1.2], which says that for such a group, BG is homotopy equivalent to a
closed aspherical homology n-manifold M with the disjoint disk property.

We explain why G is PD(n) group. First, we know G is of type FP once we know that there
exists a finite CW complex K ' BG (for then the cellular chain complex of the universal cover

K̃ is a finite length resolution of Z by finitely generated free G modules). A finite CW complex
K ' BG for a group G that acts geometrically on a proper CAT(0) space is shown to exist by
Lück [23]. Now G is a PD(n) group because

Hi(G;ZG) ∼= Hi
c(X) ∼= H̃i−1(∂∞X) = H̃i−1(Sn−1) =

{
Z if i = n
0 else

The first two isomorphisms are described by Bestvina [5]. That this implies G is a PD(n) group
is explained in [9, VIII.10.1].

Step 2. The universal cover W̃ can be compactified N = W̃ ∪∂∞X such that N is a homology
manifold with boundary. To show that N is a homology manifold with boundary it suffices
to show that N is a finite-dimensional locally compact ANR and ∂∞X is a Z-set in N (see
[4, Proposition 2.5]). The pair (X, ∂∞X) is a Z-structure on G by Bestvina [5, Example
1.2(ii)]. Furthermore, by [5, Lemma 1.4] for any other finite model K for BG, there is a natural
Z-structure on (K, ∂∞X), where K = K ∪ ∂∞X. Thus (N, ∂∞X) admits a Z-set structure; in
particular, N is a Euclidean retract, finite dimensional, and Sn−1 is a Z-set inside N .

Step 3. W̃ (and hence also W ) is a manifold. This part of the argument is identical to that
given in [4, Theorem A]. Quinn’s invariant allows one to recognize manifolds among homology
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manifolds with the disjoint disk property. By the local nature of Quinn’s invariant, if (B, ∂B) is
a homology manifold with boundary and ∂B is a manifold, then int(B) is a manifold. �

In light of this result and Theorem 1 above, it is natural to ask the following question.

Question. Let G be a CAT(0) group which admits S n−2 as a boundary. Is G the fundamental
group of an n-dimensional aspherical manifold with boundary?

Examples of G satisfying the hypothesis of this Question are given by Ruane [27]: every
nonuniform lattice Γ ≤ SO(n, 1) is an example. For these examples, an aspherical manifold with
boundary can be obtained by “truncating the cusps” of Hn/Γ.

There are some basic problems with answering this Question with the techniques of this paper.
For example, it is not obvious that peripheral subgroups of a CAT(0) group with Sierpinski
space boundary are CAT(0), or that the double of a CAT(0) group along peripheral subgroups
is CAT(0).
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