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On groups with S2 Bowditch boundary

Bena Tshishiku and Genevieve Walsh

Abstract. We prove that a relatively hyperbolic pair (G,P) has Bowditch boundary
a 2-sphere if and only if it is a 3-dimensional Poincaré duality pair. We prove this by
studying the relationship between the Bowditch and Dahmani boundaries of relatively
hyperbolic groups.
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1. Duality for groups with Bowditch boundary S2

The goal of this paper is to study the duality properties of relatively
hyperbolic pairs (G,P). This builds on work of Bestvina–Mess [4], who
show that the duality properties of a hyperbolic group G are encoded
in its Gromov boundary ∂ G; for example, a hyperbolic group G with
Gromov boundary ∂ G ' Sn−1 is a PD(n) group. By analogy, one might
hope for a similar result for relatively hyperbolic pairs (G,P) with the
Gromov boundary replaced by the Bowditch boundary ∂B(G,P). This
would follow immediately from [4] if the Bowditch boundary gave a Z-
set compactification of G, but unfortunately this is not the case, and [4]
does not imply that (G,P) is a duality pair whenever ∂B(G,P) ' Sn−1.
Instead we work with the Dahmani boundary ∂D(G,P) (see §2), which does
give a Z-set compactification. Our main theorem determines the Dahmani
boundary when ∂B(G,P) ' S2.

Theorem 1.1. A relatively hyperbolic group (G,P) with Bowditch boundary
∂B(G,P) ' S2 has Dahmani boundary ∂D(G,P) ' S a Sierpinski carpet.

As a corollary, we find that if ∂B(G,P) is a 2-sphere then the same is
true for the Dahmani boundary of the double of G along P (see §4.1 for the
definition).
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Corollary 1.2. Let (G,P) be a relatively hyperbolic pair, and let Gδ denote
the double of G along P. If ∂B(G,P) ' S2, then ∂D(Gδ,P) ' S2.

From Corollary 1.2 we obtain the following corollary, which is our main
application. A finitely presented group G is an oriented Poincaré duality
group of dimension n (a PD(n) group) if for each G-module A there are
isomorphisms Hi(G;A) → Hn−i(G;A) for each i, induced by cap product
with a generator of Hn(G;Z). A relative version of this definition was
introduced by Bieri–Eckmann [5]. We will only need a special case: a
group pair (G,P) is a PD(3) pair if each P ∈ P is the fundamental group
of a closed surface and the double of G along P is a PD(3) group; c.f. [5,
Cor. 8.5].

Corollary 1.3. Let (G,P) be a torsion-free relatively hyperbolic pair with
Bowditch boundary ∂B(G,P) ' S2. Then (G,P) is a PD(3) pair.

The converse is also true.

Theorem 1.4. Let (G,P) be a relatively hyperbolic pair. If (G,P) is a PD(3)
pair, then ∂B(G,P) ' S2.

Remark. As a motivating example of Corollary 1.3, suppose G is the
fundamental group of a hyperbolic 3-manifold M with k cusps and ` to-
tally geodesic boundary components. Then (G,P) is a relatively hyper-
bolic, where P consists of conjugates of the boundary and cusp subgroups
{P1, . . . , Pk+`}. On the one hand, (G,P) is a PD(3) pair because M is
a K(G, 1) and manifolds satisfy Poincaré duality. (Alternatively, remove
neighborhoods of the cusps and take the double.) On the other hand, Corol-
lary 1.3 gives a geometric-group-theoretic proof since ∂B(G,P) ' S2 (see
e.g. [28, 31]). A different, homological proof of Corollary 1.2 and Theorem
1.4 is given in Manning-Wang [24, Corollary 4.3].

Relation to the Wall and Cannon conjectures. The Wall conjecture [32]
posits (in dimension 3) that any PD(3) group is the fundamental group
of a closed aspherical 3-manifold. Similarly, one would conjecture that if
(G,P) is a PD(3) pair, then G is the fundamental group of an aspherical
3-manifold with boundary, where P is the collection of conjugacy classes of
the boundary subgroups.

Conjecture 1.5 (The relative Cannon conjecture). Let (G,P) be a relatively
hyperbolic group pair with G torsion-free. If ∂B(G,P) ' S2, then G is the
fundamental group of a finite volume hyperbolic 3-manifold M . Furthermore,
the peripheral groups are the fundamental groups of the cusps and totally
geodesic boundary components of M .
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Theorem 1.6. If the Wall conjecture is true, then the relative Cannon
conjecture is true.

Compare with [21], which is similar. A slightly different theorem that
the Cannon conjecture implies the relative Cannon conjecture when the
peripheral subgroups are Z2, is given in [17] with a completely different
proof. Our version follows from Theorem 1.1, Corollary 1.2, and a result
of Kapovich and Kleiner on the uniqueness of peripheral structures [22,
Theorem 1.5]. Martin and Skora [25] conjecture that convergence groups
can be realized as Kleinian groups, which encompasses the Cannon and
relative Cannon conjectures.

We now explain the rough outline for Theorem 1.1.

(1) In general there is a continuous surjection c : ∂D(G,P) → ∂B(G,P).
We collect some facts about the topology on ∂D(G,P) and this map
in Proposition 2.7. In the case of Theorem 1.1, we have a map
c : ∂D(G,P) → S2 such that c−1(z) is either a single point or a circle
for each z ∈ S2.

(2) In Lemma 3.1 we identify conditions on a map X → S2 that are
sufficient to conclude that X is a Sierpinski carpet. This gives a
characterization of the Sierpinski carpet, which may be of independent
interest.

(3) We verify that the conditions of Lemma 3.1 are satisfied for the map
c : ∂D(G,P) → S2. One of the difficult parts is to show that if
∂B(G,P) ' S2, then if ∂D(G,P)P is the quotient of ∂D(G,P) obtained
by collapsing all but one of the peripheral circles to points, then
∂D(G,P)P is homeomorphic to the closed disk.

Remark. It would be interesting to know a version of Theorem 1.1 when
∂B(G,P) ' Sn−1 for n > 3, i.e. that in this case ∂D(G,P) is an (n − 2)-
dimensional Sierpinski carpet. The methods of this paper show that this
is true if one knows that each P ∈ P admits a Z-boundary ∂ P ' Sn−2.
When n = 3 this is automatic because the peripheral subgroups are always
surface groups.

Section outline. In §2 we collect some facts about the Bowditch and
Dahmani boundaries of a relatively hyperbolic group and their relation. In
§3 we prove Theorem 1.1, and in §4 we prove Corollaries 1.2 and 1.3 and
Theorems 1.4 and 1.6.

Acknowledgements. The authors thank Francois Dahmani for helpful
conversations about his work, and thank Craig Guilbault for help with Z-
structures. The authors are grateful to the referee for carefully reading the
paper, catching errors, and offering helpful observations that significantly
improved the paper. The authors also acknowledge support from NSF
grants DMS 1502794 and DMS 1709964, respectively.
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2. Relatively hyperbolic groups and their boundaries

We will assume throughout that G is finitely generated and thus so are the
peripheral subgroups [27].

There are different notions of boundary for a relatively hyperbolic group.
The most general definition is due to Bowditch [8]. Another boundary was
defined by Dahmani [11] in the case when each peripheral subgroup admits
a boundary, i.e. for each P ∈ P there is a space ∂ P so that P ∪ ∂ P is
compact, metrizable, and P ⊂ P ∪ ∂ P is dense. In this section we describe
the Bowditch and Dahmani boundaries. Our description of Dahmani’s
boundary differs slightly from that in [11] because we use the coned-off
Cayley graph instead of the collapsed Cayley graph. This is required in
order to allow P to contain more than one conjugacy class, as discussed
in [11, §6]. Everything in this section will be done for general relatively
hyperbolic groups, although the case with one conjugacy class of peripheral
subgroups is the most rigorous case in [11]. In the next section we will
specialize to the case ∂B(G,P) ' S2.

2.1. Relatively hyperbolic groups and the Bowditch boundary. Be-
low G is a group and P is a collection of subgroups of G that consists of a
finite number of conjugacy classes of G. Some authors use P to refer to a
collection of conjugacy representatives, but we do not use this convention.
This causes a minor notational conflict since the notion of PD(n) pair (as
discussed in the previous section) is reserved for a group with respect to a
finite collection of subgroups. However, this should not cause any confusion
as we can pick any set {P1, . . . , Pd} of conjugacy class representatives to be
this finite collection.

For a subgroup P < G and a ∈ G, we denote aP := aPa−1 for the (left)
action of G by conjugation.

The coned–off Cayley graph. Fix a relatively hyperbolic group (G,P),
and let P1, . . . , Pd be representatives for the conjugacy classes in P. Let S
be a generating set for G that contains generating sets Si for each Pi. Then
the Cayley graph Γ(G) = Γ(G,S) naturally contains the Cayley graphs
Γ(Pi, Si) for each i = 1, . . . , d. If P ∈ P and P = aPia

−1, then we denote
by Γ(P ) ⊂ Γ(G) the subgraph aΓ(Pi, Si); note that Γ(P ) is isomorphic to a
Cayley graph for P since Γ(aPi, aSi) ' Γ(Pi, Si) ' aΓ(Pi, Si). We form the

coned off Cayley graph Γ̂ = Γ̂(G,P, S) by adding a vertex ∗P for each P ∈ P
and adding edges of length 1/2 from ∗P to each vertex of Γ(P ) ⊂ Γ(G).

An oriented path γ in Γ̂ is said to penetrate P ∈ P if it passes through the
cone point ∗P ; its entering and exiting vertices are the vertices immediately
before and after ∗P on γ. The path is without backtracking if once it
penetrates P ∈ P, it does not penetrate P again.
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Definition 2.1. The triple (G,P, S) is said to have bounded coset penetration
if for each λ ≥ 1, there is a constant a = a(λ) such that if γ and γ′ are (λ, 0)

quasi-geodesics without backtracking in Γ̂ and with the same endpoints,
then

(i) if γ penetrates some P ∈ P, but γ′ does not, then the distance between
the entering and exiting vertices of γ in Γ(P ) is at most a; and

(ii) if γ and γ′ both penetrate P , then the distance between the entering
vertices of γ and γ′ in Γ(P ) is at most a, and similarly for the exiting
vertices.

Relative hyperbolicity and Bowditch boundary. The pair (G,P) is called

relatively hyperbolic when Γ̂(G,P, S) is hyperbolic and satisfies bounded
coset penetration [15]. To equip (G,P) with a boundary, Bowditch [8] used
an equivalent definition: (G,P) is relatively hyperbolic if there exists a fine
δ-hyperbolic graph K with a G-action so that there are finitely many orbits
of edges and P is the set of infinite vertex stabilizers. A graph is fine if each
edge is in finitely many cycles of length n, for each n. Then the Bowditch
boundary is defined as ∂B(G,P) := ∂ K ∪ V∞(K), where V∞(K) ⊂ V (K)
is the set of vertices of K with infinite valence. If the G-action on K
is geometric, then P = ∅ and this recovers the Gromov boundary of a
hyperbolic group ∂ G = ∂ K.

An alternate definition of relatively hyperbolic is that G acts geometri-
cally finitely on a proper geodesic metric space [8, Definition 1]. In partic-
ular, this implies that for each P ∈ P, the action of P on ∂B(G,P) \ {∗P }
is properly discontinuous and cocompact. For the many equivalent notions
of relative hyperbolicity, see [19].

If (G,P) is relatively hyperbolic, then the coned-off Cayley graph Γ̂ is

a fine hyperbolic graph [10]. In this case V∞(Γ̂) ' P, so we can describe
∂B(G,P) as

∂B(G,P) = ∂ Γ̂ ∪
(
∪P∈P {∗P }

)
. (1)

Topology on the Bowditch boundary. For a finite subset A ⊂ V (Γ̂) and

v ∈ ∂ Γ̂∪V (Γ̂), let M(v,A) denote the collection of points w in ∂B(G,P) so
that there exists a geodesic from v to w that avoids A. This forms a basis
for the topology on ∂B(G,P), see [8, Section 8]. In particular, a subset

U ⊂ ∂B(G,P) is open if for each v ∈ U , there exists a finite set A ⊂ V (Γ̂)
so that M(v,A) ⊂ U . A different basis for the topology is the collection of
the sets M(λ,c)(v,A) of points connected to v by a (λ, c) quasi-geodesic that
avoids A (see [8] and [31, §3]).

2.2. Z-structures on groups. Before we discuss the Dahmani boundary
it will be useful to have the notion of a Z-structure on a group [3].
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This concept generalizes both (i) a CAT(0)-metric space with its visual
boundary, and (ii) the Rips complex of a hyperbolic group with its Gromov
boundary [4]. See [1] for more about Z-structures.

Definition 2.2 ([3]). A Z-structure on a torsion-free group Γ is a pair of
spaces (X̄, Z) such that

(1) The space X̄ is a Euclidean retract, i.e. X̄ is compact, metrizable, finite
dimensional, contractible, and locally contractible.

(2) The subspace Z ⊂ X̄ is a Z-set, i.e. for all ε, there exists a map
fε : X̄ → X̄ \ Z that is ε close to the identity.

(3) The space X̄ \ Z admits a proper, cocompact Γ action.

(4) For any compact K in X̄\Z, and any open cover U of X̄, each translate
gK is contained in some Ug ∈ U for all but finitely many g ∈ Γ.

If (X̄, Z) is a Z-structure on Γ, then the space Z is called a Z-boundary of
Γ. In general, a Z-boundary is not unique; however, the following theorem
gives a uniqueness result for the Z-boundary of a PD(n) group when n ≤ 3.

Theorem 2.3 ([4]). Let G be a torsion-free group that admits a Z-structure
(X̄, Z). Then G is a PD(2) or a PD(3) group, respectively, exactly when
Z ' S1, or Z ' S2, respectively.

Theorem 2.3 follows directly from the proof of [4, Cor. 1.3], together
with the fact that a homology manifold that is a homology k-sphere is
homeomorphic to Sk when k ≤ 2 [3, Rmk. 2.9]. See also [3, Thm 2.8] for a
generalization.

2.3. The Dahmani boundary and its topology. Fix a relatively hyper-
bolic group (G,P). Assume that each P ∈ P admits a Z-boundary ∂ P . As
a set, the Dahmani boundary is

∂D(G,P) = ∂ Γ̂ ∪
(
∪P∈P ∂ P

)
. (2)

If P acts on ∂ P for each P ∈ P and if ∂ P = ∂ P ′ whenever P and P ′ are
conjugate, then G naturally acts on ∪P∈P ∂ P , and so G acts on ∂D(G,P).

There is a natural map c : ∂D(G,P) → ∂B(G,P) that is the identity

on ∂ Γ̂ and sends ∂ P to ∗P . This map is studied more in §2.4 and will be
important in §3.

Topology on the Dahmani boundary. The topology on ∂D(G,P) has a
basis consisting of two types of open sets (3) and (4) below. The first type

is a neighborhood basis {U ′x} of points x in ∂ Γ̂. For x ∈ ∂ Γ̂, and for an
open set Ux ⊂ ∂B(G,P) containing x, define U ′x ⊂ ∂D(G,P) by

U ′x = (Ux ∩ ∂ Γ̂) ∪
(
∪∗P∈Ux ∂ P

)
. (3)
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The second type is a neighborhood basis about points x ∈ ∂ P . To describe
it we first introduce some terminology.

Definition 2.4. For P ∈ P and a vertex v ∈ Γ(P ) ⊂ Γ(G), the shadow of

v with respect to P , denoted Sh(v, P ), is the set of endpoints in ∂ Γ̂ ∪ Γ̂ of
(non-backtracking) geodesic arcs and rays beginning at v that immediately
leave Γ(P ) (and do not pass through ∗P ).

Furthermore, we define ShB(v, P ) as the intersection of Sh(v, P ) with

∂B(G,P) ⊂ ∂ Γ̂ ∪ Γ̂, and we define ShD(v, P ) ⊂ ∂D(G,P) as the preimage
of ShB(v, P ) under c. Note that by definition, ShB(v, P ) ⊂ ∂B(G,P)\{∗P }.

Observation 2.5. For each P ∈ P,⋃
v∈Γ(P )

ShB(v, P ) = ∂B(G,P)\{∗P } and so
⋃

v∈Γ(P )

ShD(v, P ) = ∂D(G)\∂ P.

We now define a neighborhood basis {U ′x} for x ∈ ∂ P . For x ∈ ∂ P and
a neighborhood Ux of x in P ∪ ∂ P , define U ′x ⊂ ∂D(G,P) by

U ′x = (Ux ∩ ∂P ) ∪
(
∪v∈Ux ShD(v, P )

)
(4)

We recap the above discussion.

Definition 2.6. [11, Defn 3.3] Let (G,P) be a relatively hyperbolic group.
Assuming each P ∈ P admits a boundary the Dahmani boundary, ∂D(G,P)
is the set (2) with topology generated by open sets of the form (3) and (4).

Dahmani [11, Thm 3.1] proves that ∂D(G,P) is compact and metrizable.
Remark. There is a slight difference between our definition of the

topology on ∂D(G,P) and the definition in [11]. Instead of using endpoints
of geodesics (as in our definition of Sh(v, P )), Dahmani uses endpoints of
quasi-geodesics that are geodesics outside of a compact set. However, these
give the same topology. One way to see this is to note that ShB(v, P )
has the form M(v,A) (c.f. §2.1) where A is the finite set of vertices in
Γ(P ) ∪ {∗P } that are adjacent to v. (Note that the distance between any

two vertices in P is 1 in Γ̂.) Bowditch [8, §8] proves that this gives a basis
for the topology on ∂B(G,P). Furthermore, Bowditch shows that this is
equivalent to the topology on ∂B(G,P) defined using M(λ,c)(v,A), defined
above. It follows that the topology we defined is equivalent to Dahmani’s
definition.

2.4. Comparing the Bowditch and Dahmani boundaries. Consider
the collapsing map

c : ∂D(G,P)→ ∂B(G,P) (5)



8 B. Tshishiku and G. Walsh

that sends each peripheral boundary ∂ P to the corresponding point ∗P and
is the identity on ∂ Γ̂.

Proposition 2.7. Let (G,P) be a relatively hyperbolic group. Assume that
each P ∈ P admits a boundary ∂ P .

(i) For P ∈ P, the inclusion ∂ P ↪→ ∂D(G,P) is an embedding.

(ii) The subset
⋃
P∈P ∂ P ⊂ ∂D(G,P) is dense, and {∂P : P ∈ P} is a null

family (i.e. for each r > 0 there are finitely many P ∈ P with diameter
greater than r).

(iii) The collapsing map c is continuous and c
∣∣
∂ Γ̂

is an embedding (i.e. a
homeomorphism onto its image).

Proof. Both (i) and (ii) follow from the definition of the topology on
∂D(G,P). The subspace topology on ∂ P ⊂ ∂D(G,P) agrees with the
standard topology on ∂ P by definition of the open sets (4). Also,

⋃
P∈P ∂ P

is dense because each of the open sets (3) and (4) generating the topology
on ∂D(G,P) contain points of some peripheral boundary. Finally, {∂ P :
P ∈ P} is a null family. This is because for r > 0, we can cover ∂D(G,P)
by open sets V1, . . . , Vk of the form (3) or (4), each with diameter at most
r, by compactness. Note that by definition for each Vi there is at most one
peripheral circle that intersects Vi nontrivially but is not contained in Vi.
It follows that there are at most k peripheral circles with diameter ≥ r.

Next we prove (iii). To show that c is continuous, we fix an open set
U ⊂ ∂B(G,P) and show c−1(U) is open. By definition of the topology, we
can write U as U = ∪x∈UM(x,Ax). Since each M(x,Ax) is an open set
containing x, the preimage c−1

(
M(x,Ax)

)
is of the form (3) and hence is

open. Thus c−1(U) = ∪x∈U c−1
(
M(x,Ax)

)
is open, which implies that c is

continuous. To see that c
∣∣
∂ Γ̂

is an embedding, it suffices to show that c
∣∣
∂ Γ̂

is a closed map. This follows from the fact that c is a closed map, which is
true for any continuous map between compact metric spaces. �

3. Proof of Theorem 1.1 (∂D(G,P) = S when ∂B(G,P) = S2)

Throughout this section we assume ∂B(G,P) ' S2. Our goal is to show
that this implies that ∂D(G,P) is a Sierpinski carpet. Recall the outline
of the proof of Theorem 1.1 given in the introduction. In the previous
section we completed Step 1; in §3.2 and §3.3 we complete Steps 2 and 3,
respectively. Before these steps, we explain why the Dahmani boundary
is always defined when ∂B(G,P) ' S2, i.e. why the peripheral subgroups
admit boundaries.
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3.1. Boundaries for peripheral subgroups. Fix P ∈ P. To define a
boundary ∂ P on P , consider the action of P on

Ω := ∂B(G,P) \ {∗P },

which is cocompact and properly discontinuous. Bowditch [6, Section 2]
defines a metric dΩ on Ω that makes the action of P on Ω geometric. Then
K = ker

[
P → Isom(Ω)

]
is finite, and P/K contains a finite-index subgroup

P ′ that is a closed surface group (in particular P ′ is torsion free); this
was observed in [13, Theorem 0.3]1. It follows that P acts geometrically
on a model space X, either E2 or H2. Define ∂ P := ∂ X as the CAT(0)
boundary.

Next we topologize Ω := Ω∪∂ P . By the classification of surfaces, there
is a P ′-equivariant homeomorphism Ω→ X. This extends to a map Ω→ X,
and we topologize Ω so that this map is a homeomorphism.

The pair (X, ∂ X) is the standard Z-structure on P . It turns out that
(Ω, ∂ P ) is an alternate description of this Z-structure. Axioms 1–3 of
a Z-structure are immediate. Axiom 4 follows from Proposition 3.4 and
Observation 2.5 that the shawdows cover Ω. See also the proof of Theorem
3.3. Alternatively, one can use a very general “boundary swapping”
argument [18, Theorem 1.3] to conclude that Ω can be topologized so that
(Ω, ∂ P ) is a Z-structure on P . We will use our concrete description of the
topology on Ω in what follows.

For later use, we choose a quasi-isometry P → Ω by taking the orbit of
a point. Specifically, choose a geodesic ray γ0 in Γ̂ that starts at ∗P , goes
through the identity vertex e ∈ Γ(P ), and ends at some point 0 ∈ ∂ Γ̂ ⊂ Ω.
(Recall that the boundary of a hyperbolic space consists of equivalence

classes of geodesic rays, so here γ0 is a representative for 0 ∈ ∂ Γ̂.) Then we
identify P with the orbit P.0. For g ∈ P , g.0 is the endpoint of the geodesic
gγ0 in Γ̂ starting at ∗P and going through the vertex of g in Γ(P ).

3.2. Identifying a Sierpinski carpet. The following lemma gives a
criterion that will allow us to identify ∂D(G,P) as a Sierpinski carpet.

Lemma 3.1. Let X be a compact metric space. Assume that there exists a
continuous surjection π : X → S2 such that

(i) there exists a countable dense subset Z = {z1, z2, . . .} ⊂ S2 so that the
restriction of π to π−1

(
S2 \ Z

)
is injective, and

(ii) for each k, the space Xk obtained from X by collapsing each Ci to a point
for i 6= k is homeomorphic to a closed disk D2.

1 According to the MathSciNet review of [13], the print version of this paper has an
error. This has been fixed in an updated version (arxiv:0401059). The fact we are using is
independent of this issue.
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Then X is homeomorphic to a Sierpinski carpet.

We remark that assumption (i) implies that π
∣∣ : π−1(S2 \ Z) → S2 \ Z

is a homeomorphism. Indeed π
∣∣ is a continuous bijection, and since π is

a continuous map between compact metric spaces, π (and hence π
∣∣) is a

closed map. Note also that (ii) implies that

(iii) for each k, the preimage Ck := π−1(zk) is an embedded circle.

Example 3.2. We illustrate the theorem with a non-example. Consider
X = [0, 1]2 \

⋃∞
i=1Di, where Di is a dense countable collection of open

disks, with pairwise disjoint closures, that includes the collection of disks
pictured in Figure 1. The space X is not homeomorphic to the Sierpinski
carpet because the disks pictured in Figure 1 have diameter bounded from
below, so {Di} is not a null family. Nevertheless, X satisfies conditions
(i) and (iii) above: the set X \

⋃∞
i=1Di is homeomorphic to S2 \ Z, where

Z ⊂ S2 is countable and dense, and by collapsing each ∂ Di to a point
we obtain a continuous surjection X → S2 satisfying (i) and (iii). Note
however that condition (ii) from Lemma 3.1 is not satisfied. Indeed the
space X1 obtained from collapsing all the Di except the outer disk is not
Hausdorff, and hence not homeomorphic to the closed disk.

x

Figure 1. A collection of disjoint disks with diameter bounded from below.

Proof of Lemma 3.1. First observe that the Sierpinski carpet X = S
satisfies the assumptions (i)–(iii) with π : S → S2 the map the collapses
each peripheral circle to a point. Condition (ii) follows from Moore’s
theorem about upper semicontinuous decompositions of the plane [14, pg
3].

To prove the lemma, it suffices to show that any two compact metric
spaces X,X ′ with surjections to S2 that satisfy (i)–(iii) are homeomorphic.
For k ≥ 0, let X(k) be the space obtained by collapsing each circle Ci to a
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point for i > k (i.e. we collapse all but the first k circles). There are maps
pk : X(k) → X(k − 1), and X = limX(k) is the inverse limit. Similarly,
we express X ′ = limX ′(k). To show X is homeomorphic to X ′, we’ll show
that the inverse systems {X(k), pk} and {X ′(k), p′k} are isomorphic.

First we describe the topology of X(k). By (ii), each Xk is homeomor-
phic to D2, or equivalently S2 \ D, where D is an open disk. From this,

it’s not hard to see that X(k) ' S2 \
⋃k

1 Di, where Di are open embedded
disks with disjoint closures. For example, in the case k = 2, consider the
following diagrams.

X(2)

X1 X2

X(0)

�� ��

�� ��

X(2)

D2 D2

S2

'
�� ��

�� ��

Assumption (i) implies that X(2) → X(0) is a homeomorphism away
from C1 ∪ C2, and so X(2) \ (C1 ∪ C2) is homeomorphic to an open
annulus S1 × (0, 1). Furthermore, by assumption (ii), X(2) → Xi is
a homeomorphism in a neighborhood of Ci, so it follows that X(2) is
homeomorphic to an annulus.

Note also that the restriction pk+1

∣∣ : X(k+ 1) \Ck+1 → X(k) \ {zk+1} is
a homeomorphism. This follows from the definitions and assumption (i).

We construct compatible homeomorphisms φk : X(k) → X ′(k) induc-
tively. For k = 0, let Z = {zi} and Z ′ = {z′i} ⊂ S2 be the countable
dense subsets associated to X,X ′. By [2, Thm 3] there exists a homeo-
morphism φ0 : X(0) ' S2 → S2 ' X ′(0) so that φ0(Z) = Z ′. Without
loss of generality, we assume that φ0(zi) = z′i for each i. For the induc-
tion step, suppose we’re given a homeomorphism φk : X(k)→ X ′(k) and a
commutative diagram

X(k) X ′(k)

X(0) X ′(0)

//
φk

�� ��
//

φ0

By the choice of φ0, it follows that φk(zk+1) = z′k+1. Then φk restricts

to a homeomorphism φk
∣∣ : X(k + 1) \ Ck+1 → X ′(k + 1) \ C ′k+1. Since

X(k) is compact, φk is uniformly continuous, so φk
∣∣ extends uniquely to a

homeomorphism

φk+1 : X(k + 1)→ X ′(k + 1)
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such that φk+1 ◦ pk+1 = p′k+1 ◦ φk+1. This shows that the inverse systems
{X(k), pk} and {X ′(k), p′k} are isomorphic, so then the inverse limits X,X ′

are homeomorphic. �

3.3. Collapsing the Dahmani boundary to a disk. In this section we
show that ∂D(G,P) and the collapse map c : ∂D(G,P) → ∂B(G,P) ' S2

satisfy the assumptions of Lemma 3.1, which allows us to conclude that
∂D(G,P) is a Sierpinski carpet. The main result is as follows.

Theorem 3.3. Let (G,P) be relatively hyperbolic with ∂B(G,P) ' S2. Fix
P ∈ P, and let ∂D(G,P)P be the quotient of ∂D(G,P) obtained by collapsing
∂ Q to a point for each Q ∈ P \ {P}. Then ∂D(G,P)P is P -equivariantly
homeomorphic to the disk Ω (c.f. §3.1).

Remark. An analogous theorem to Theorem 3.3 holds more generally
for relatively hyperbolic groups with ∂B(G,P) ' Sn whose peripheral
subgroups have Z-boundaries (so Ω has a natural Z-set compactification)
with a similar proof.

The proof of Theorem 3.3 will rely on the Proposition 3.4 below, which
is a general fact about the shadow of points in the Bowditch boundary.
The proof of Proposition 3.4 is technical, so we postpone it to the end of
the section.

Proposition 3.4. Let (G,P) be a relatively hyperbolic group such that each

P ∈ P admits a boundary ∂ P . For each P ∈ P, and v ∈ Γ(P ) ⊂ Γ̂, the
shadow ShB(v, P ) ⊂ Ω is bounded in the Bowditch metric on Ω.

We note that since P acts isometrically on Ω and ShB(g · v, P ) =
g · ShB(v, P ), in fact ShB(v, P ) is bounded uniformly for v ∈ Γ(P ).

Proof of Theorem 3.3. There is a homeomorphism

H : ∂D(G,P)P \ (∂ P )→ ∂B(G,P) \ {∗P },

since, by definition, the domain and codomain are equal as sets, and
the identity map is a homeomorphism by Proposition 2.7. Set Ω :=
∂B(G,P) \ {∗P } and Ω := Ω ∪ ∂ P ' D2 as in §3.1. Then H extends
(via the identity map ∂ P → ∂ P ) to a bijection H : ∂D(G,P)P → Ω,
which is equivariant. To prove the theorem, we need only show that H is
a homeomorphism.

Since ∂D(G,P)P is compact and Ω is Hausdorff, it suffices to show that
H is continuous; furthermore, since H is a homeomorphism, we only need
to show continuity of H at each ξ ∈ ∂ P . Fixing ξ ∈ ∂ P , it suffices to show
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that for every neighborhood U of ξ in Ω, there exists a neighborhood W of
ξ ∈ ∂D(G,P) so that H(W ) ⊂ U .

Since ShB(v, P ) ⊂ Ω is bounded for each v ∈ Γ(P ) (by Proposition
3.4), there is a neighborhood ξ ∈ V ⊂ P ∪ ∂ P such that if v ∈ V , then

ShB(v, P ) ⊂ U . Indeed let V̂ consist of the vertices vg in P such that the
endpoint of g.γ0 is in U , and far enough from the frontier of U such that
the shadow ShB(vg, P ) fits in U . Then V is the interior of the closure of

V̂ in P ∪ ∂ P . Now the set W0 = (V ∩ ∂ P ) ∪
(
∪v∈V ShD(v, P )

)
is open in

∂D(G,P) (c.f. (4)), and it is saturated with respect to fP , so W := fP (W0)
is open in ∂D(G,P)P and H(W ) ⊂ U . This completes the proof. �

In summary, we have proved Theorem 1.1, modulo a proof of Proposition
3.4. To see this, suppose that ∂B(G,P) ' S2. Then there is a surjection
∂D(G,P) → S2 which satisfies the assumptions of Lemma 3.1 by Proposi-
tion 2.7 and Theorem 3.3. Then by Lemma 3.1, ∂D(G,P) is homeomorphic
to the Sierpinski carpet S .

We remark that our understanding of the shadows allows us to prove
that the complement of a point in the Bowdtich boundary admits an
equivariant Z-set compactification (when the peripheral groups admit an
equivariant Z-set compactification.)

3.4. Shadows in the Bowditch boundary (Proof of Proposition 3.4).
Before we begin the proof we need some additional notions and notations
from [8]. When (G,P) is relatively hyperbolic group pair, there exists a
proper hyperbolic metric space X on which G acts geometrically finitely.
There are many models for such a space X, e.g. [8, §3] or [16], and the
existence of such an X is one definition of a relatively hyperbolic group
pair. The main fact we will need is that the nerve of a system of horoballs
in X is quasi-isometric to Γ̂.

From X one can obtain a fine hyperbolic graph K = K(X) by consid-
ering the nerve of an appropriate collection of horoballs {H(P )}P∈P in X
[8, §7]. The graph K has vertex set V (K) ' P.

Lemma 3.5. The graph K is quasi-isometric to Γ̂.

Proof. First we claim that Γ̂ is quasi-isometric to the graph Λ that has
vertex set {∗P : P ∈ P} and an edge between ∗P and ∗P ′ if there exists an

arc (i.e. a path with distinct vertices) between them in Γ̂ of length at most

2 such that the intermediate vertices are in Γ(G) ⊂ Γ̂. The definition of Λ
is a special instance of the “K(A,n)” construction in [8, §2]. To define a

quasi-isometry Λ → Γ̂, note that both Λ and Γ̂ are quasi-isometric to the
subset {∗P : P ∈ P} in each with the associated metrics, since every vertex
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of Γ̂ is within distance 1/2 of some ∗P . Then by composing, there is a map

φ : Λ→ Γ̂ (6)

that is the identity on {∗P : P ∈ P}. This is a quasi-isometry because

dΛ(∗P1 , ∗P2) ≤ dΓ̂(∗P1 , ∗P2) ≤ 2dΛ(∗P1 , ∗P2). Notice that for any edge in Γ̂,
it either meets an element of V∞, goes between two vertices at distance 1/2
from the same element of V∞, or goes between two vertices which are at
distance 1/2 from two different elements of V∞.

For any X on which (G,P) acts geometrically finitely, Λ and K = K(X)
are quasi-isometric because both are connected graphs with vertex set P
and with a cocompact G action; c.f. [8, Lem. 4.2]. �

It will be useful to choose a quasi-isometry

π : Γ̂→ K. (7)

For this, it suffices to choose a coarse inverse ψ : Γ̂→ Λ to the map φ in (6)
(then we can compose with any quasi-isometry Λ→ K that is the identity
on vertices). To define ψ, we choose for each v ∈ Γ(G) an element Pv ∈ P
so that v is adjacent to ∗Pv . If we fix P ∈ P, then we can define Pv as the
unique subgroup (with ∗Pv

adjacent to v) that’s conjugate to P . Then ψ is
equivariant.

There is a homeomorphism ∂B(G,P)→ ∂ X [8, §9]. Furthermore, if we
label the parabolic fixed points Π in ∂ X by the peripheral group P ∈ P
which fixes it, then the homeomorphism from ∂B(G,P) = ∂ Γ̂ ∪ V∞(Γ̂) to

∂X is the identity on V∞(Γ̂). Since the fixed points of the conjugates of any
peripheral subgroup are dense in ∂X, it follows that once we fix the image
of some ∗P (that is, label one of the peripheral fixed points of ∂X) there is
exactly one equivariant homeomorphism between ∂B(G,P) and ∂X. This
allows us to canonically identify Ω = ∂X \ {∗P } with ∂B(G,P) \ {∗P }.

Bowditch [6, Section 2] puts a metric dΩ on Ω that makes the P action
geometric. If two points x, y ∈ Ω are close in this metric, the center z ∈ X
of the ideal triangle in X with vertices x, y and ∗P is “close to” Ω, which
means that there is a horofunction h : X → R about ∗P with h(z)� 0.

Proof of Proposition 3.4. Recall from §3.1 that we’ve chosen P ↪→ Ω as the
P -orbit of the endpoint 0 ∈ Ω of a given geodesic ray γ0. We take the space
X with horoballs/horospheres H(P ), S(P ), and the fine hyperbolic graph
K = K(X) as discussed in the preceding paragraphs.

Step 1 (From geodesics in Γ̂ to geodesics in X). Suppose, for a
contradiction, that the shadow of e ∈ Γ(P ) is unbounded. Then there

exist geodesics γn in Γ̂ from ∗P through e ∈ Γ(P ) with endpoints ξn ∈ Ω ⊂
∂B(G,P) such that dΩ(0, ξn)→∞.
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The image π(γn) under the quasi-isometry π : Γ̂ → K in (7) is a
quasi-geodesic. Each π(γn) can be described as a sequence of horoballs
H(Pn,1), H(Pn,2), . . . in X, where Pn,1 = P and adjacent horoballs in this
sequence are distinct.

Claim. After passing to a subsequence we can assume H(Pn,2) = H(P2)
is constant.

Proof of Claim. We show there are only finitely many possibilities for
the first vertex of π(γn) that differs from ∗P . Recall that π sends a vertex

v ∈ Γ(G) to one of the adjacent cone vertices ∗Pv ∈ Γ̂ (such Pv is conjugate
to P ), and is the identity on the cone vertices. Enumerate the vertices
along the path γn as (vn,1, vn,2, . . .). By assumption vn,1 = ∗P and vn,2 = e.
By definition π(vn,1) = π(vn,2) = ∗P .

The first vertex of π(γn) that differs from ∗P will be π(vn,3). There are
two possibilities: either (a) vn,3 is a cone point ∗P2 or (b) vn,3 is a vertex
of the Cayley graph Γ(G). In case (a), π(vn,3) = ∗P2 , and since ∗P2 is
adjacent to e, there are finitely many such choices. In case (b), π(vn,3) is
the cone point adjacent to vn,3 whose stabilizer is conjugate to P . Since
vn,3 is adjacent to e and there are finitely many such vertices in Γ(G) (as
G is finitely generated), this shows there are finitely many possibilities for
π(vn,3). �

From π(γn), we can construct a quasi-geodesic in X as follows. Let
H(Pn,1), H(Pn,2), . . . be the sequence of horoballs along π(γn) as defined
above. For i ≥ 1, choose a geodesic arc αn,i between H(Pn,i) and H(Pn,i+1)
that has endpoints on the horospheres S(Pn,i) and S(Pn,i+1). Then choose
a geodesic arc βn,i between the endpoint of αn,i and the starting point of
αn,i+1. The concatenation αn,1 ∗ βn,1 ∗ αn,2 ∗ βn,2 ∗ · · · is a quasi-geodesic
with constants depending only on the quasi-geodesic constants for γn [8,
Lem. 7.3,7.6]. Since the γn have uniform constants, the quasi-geodesic
αn,1 ∗ βn,1 ∗ · · · is a bounded distance (with bound uniform in n) from a

geodesic γ′n in X. If γn represents a point ξn ∈ ∂ Γ̂, then γ′n represents
the same point on ∂ X, with respect to the natural homeomorphism
∂B(G,P)→ ∂ X that takes ∗P to itself.

Since the quasi-geodesics π(γn) all have the same first three vertices,
there is a bounded subset of the horosphere S(P ) that contains γ′n ∩ S(P )
for each n. This is because the quasi-geodesic in X corresponding to π(γn),
described above, contains a geodesic segment connecting the horoballs
H(P ) and H(P2), and any two geodesics between a pair of horoballs lie
within a bounded distance from one another, c.f. [8, §9].

Step 2 (Centers of ideal triangles). Let (ξn) be the sequence of endpoints
of the γ′n in Ω. Since dΩ(0, ξn)→∞ by assumption, and the P -action on Ω
is cocompact, we can chose pn ∈ P (with distance from e in Γ(P ) going to
infinity) so that dΩ(0, pn(ξn)) is bounded. Then by passing to a subsequence
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we can assume that pn(ξn) converge in Ω, and in particular form a Cauchy
sequence. By choosing N sufficiently large, we can ensure that if n,m > N ,
then dΩ

(
pn(ξn), pm(ξm)

)
is small enough to ensure that if zn,m ∈ X is the

center of the ideal triangle formed by the triple ∗P , pn(ξn), pm(ξm), then
zn,m is disjoint from H(P ).

For each n,m > N , we define two quasi-geodesics ηnn,m and ηmn,m between
∗P and zn,m. Each is a union of two geodesic segments: for i = n,m,
the quasi-geodesic ηin,m follows piγ′i until it nears zn,m and then follows a

geodesic to zn,m. Note that ηin,m is a (1, 2cin,m)-quasi-geodesic, where cin,m
is the distance from piγ

′
i to zn,m. The constant cin,m is bounded in terms

of the hyperbolicity constant, so the collection of quasi-geodesics ηnn,m and
ηmn,m for all n,m > N are all (1, c)-quasi-geodesics for some c.

Since zn,m /∈ H(P ), the quasi-geodesics ηin,m and ηin,m exit H(P ) for
i = n,m. Furthermore, the distance between the sets ηnn,m ∩ S(P ) and
ηmn,m ∩ S(P ) is roughly comparable to the distance between pn and pm in
Γ(P ). This is because γ′n and γ′m intersect S(P ) in a bounded region, the
intersection of ηin,m with S(P ) is within the pi translate of this bounded
region, and the P action on the horosphere defines a quasi-isometry between
the word metric on Γ(P ) and the horospherical metric on S(P ), c.f. [6, §1].

Step 3 (Intrinsic and extrinsic distance in the horosphere S(P )). In this
step we’ll fix k, ` > N and consider the quasi-geodesics ηkk,` and η`k,`. On the

one hand, ηkk,` and η`k,` are a bounded distance from one another, so must
exit the horoball at a bounded distance. On the other hand, the distance
between ηkk,` ∩ S(P ) and η`k,` ∩ S(P ) is comparable to the distance between
pk and p` in Γ(P ), which we can make as large as we want by choosing
`� k. This tension leads to a contradiction, as we now make precise.

There is a constant R so that if γ is a geodesic and γ′ is a (1, c)-quasi-
geodesic with the same endpoints, then the Hausdorff distance between
γ, γ′ is less than R. Similarly, any two (1, c)-quasi-geodesics γ′, γ′′ with the
same endpoints as γ are contained in a 2R neighborhood of one another.
It follows that at each time t the distance between γ′(t) and γ′′(t) is less
than R′ := 4R+ c.

According to [6, §1], the distance in (X, ρ) between two points in S(P ) is
comparable to the intrinsic metric σ on S(P ): there are constants K,C, ω so
that σ(x, y) ≤ Kωρ(x,y) +C. Since (S(P ), σ) and Γ(P ) are quasi-isometric,
it follows that we can find D > 0 so that if p, q have distance at least ωD

in Γ(P ), and x ∈ S(P ), then ρ(px, qx) > R′.
Choose k > N and `� k so that the distance between pk and p` in Γ(P )

is greater than ωD (this is possible because the sequence pn is unbounded in
Γ(P )). Consider the (1, c)-quasi-geodesics ηkk,` and η`k,` between ∗P and zk,`.

On the one hand, the distance between ηkk,`∩S(P ) and η`k,`∩S(P ) is less than

R′ because ηkk,` and η`k,` are (1, c)-quasi-geodesics with the same endpoints.
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On the other hand, the distance between ηkk,` ∩ S(P ) and η`k,` ∩ S(P ) is

greater than R′ because pk, p` have distance greater than ωD in Γ(P ). This
contradiction implies that the shadow of a point is bounded. �

4. Corollaries to Theorem 1.1

4.1. Dahmani boundary of the double (Proof of Corollary 1.2).
First we recall the definition of the double Gδ of G along its peripheral
subgroups. We use notation similar to [21].

Definition 4.1. Let (G,P) be a relatively hyperbolic pair, and let P1, . . . , Pd
be representatives for the conjugacy classes in P. Define a graph of groups
D(G,P) as follows: the underlying graph has two vertices with n edges
connecting them. The vertices are labeled by G, the i-th edge is labeled by
Pi, and the edge homomorphisms are the inclusions Pi ↪→ G. The funda-
mental group of the graph of groups D(G,P) is called the double of G along
P, denoted Gδ.

Note that if G is torsion-free, so is Gδ.

Proof of Corollary 1.2. Assume that (G,P) is a torsion-free relatively hy-
perbolic group pair with ∂B(G,P) ' S2. First we remark that (Gδ,P)
is relatively hyperbolic by work of Dahmani [12, Thm 0.1]. Furthermore,
[12, §2] describes the Bowditch boundary for graphs of groups: the result
is a tree of metric spaces where the edge spaces are the limit sets of the
amalgamating subgroups. (Dahmani doesn’t use this terminology – see in-
stead Swiatkowski [30, Defn 1.B.1].) In the case of Gδ with ∂B(G,P) = S2,
∂B(Gδ,P) is a “tree of 2-spheres”, where each 2-sphere has a countable
dense collection of points along which other 2-spheres are glued as in the
figure below. The Dahmani boundary inherits the structure of a tree of
metric spaces from the tree structure on ∂B(Gδ,P) via the collapsing map
(5) applied to Gδ. Each vertex space is a copy of ∂D(G,P), which is a Sier-
pinski carpet by Theorem 1.1. The edge spaces that meet a given vertex
space are the peripheral circles ∂ P for P ∈ P. An important part of the
definition of a tree of metric spaces is that the edges spaces that meet a
given vertex space must form a null family. This holds generally for the pe-
ripheral boundaries of a Dahmani boundary (Proposition 2.7); it also holds
in our specific case because the peripheral circles of a Sierpinski carpet are
a null family [9, 33]. It follows from [30, Lem 1.D.2.1] that ∂D(Gδ,P) ' S2.
This completes the proof of Corollary 1.2. �
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Figure 2. The Bowditch boundary ∂B(Gδ,P) is a “tree of 2-spheres”.

4.2. Duality and the Bowditch boundary (Corollary 1.3 and its
Converse).

Proof of Corollary 1.3. By a criterion of Bieri–Eckmann [5, Cor 8.5], to
show that (G,P) is a PD(3) pair, it is enough to show that the double
Gδ is a PD(3) group and that the peripheral subgroups P ∈ P are PD(2)
groups. The latter is true because the peripheral subgroups act properly
and cocompactly on ∂B(G,P) \ {∗P } ' R2, c.f. [13, Thm 0.3] and the
assumption that our group is torsion-free. To see Gδ is a PD(3) group,
we use Corollary 1.2 to conclude ∂D(Gδ,P) ' S2. Since ∂D(Gδ,P) is a
Z-boundary for Gδ [11, Thm 0.2], and Gδ is torsion free, it follows that
Gδ is a PD(3) group by the argument of Bestvina–Mess [4, Corollary 1.3
(b,c)]. (See Theorem 2.3 above.) �

Proof of Theorem 1.4. Let (G,P) be a relatively hyperbolic group pair
which is also a PD(3) pair. It follows that G is torsion-free and again
by [5, Cor 8.5], the subgroups in P are surface groups, and the double of G
along P is a PD(3) group. By [12, Thm 0.1] (Gδ,P) is relatively hyperbolic,
so Gδ admits a Z-structure with Z-boundary ∂D(Gδ,P) by Dahmani [11].
It follows that ∂D(Gδ,P) ' S2, c.f. Theorem 2.3. By Proposition 2.7, there
is a dense collection of embedded circles in ∂D(Gδ,P) such that when we
form the quotient by collapsing these circles, we obtain ∂B(Gδ,P). As each
embedded circle in S2 bounds a disk on either side, the result is a tree of
2-spheres glued along points. By [6, Theorem 0.1] and [7, Theorem 9.2],
each of these cut points correspond to a peripheral splitting. Furthermore,
by the description of the boundary of an amalgamated product given in
[12, section 2], this tree of two-spheres is formed by gluing the Bowditch
boundaries of the vertex groups along the limit sets of the amalgamating
groups, which are the fixed points of the peripheral subgroups in this case.
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Thus, the Bowditch boundary of each vertex group (relative to P) is S2,
hence ∂B(G,P) ' S2. �

4.3. The Wall and relative Cannon conjectures (Proof of Theorem
1.6). Let (G,P) be a relatively hyperbolic group pair with G torsion-free
and ∂B(G,P) ' S2. We may assume P is non-empty. Choose represen-
tatives of the conjugacy classes of the peripheral subgroups P1, . . . , Pd and
denote our group pair by (G, {Pi}). Corollary 1.3 implies that the dou-
ble Gδ is PD(3) group. Assuming the Wall conjecture, we conclude that
Gδ = π1(M) for some closed aspherical 3-manifold.

Let M ′ → M be the cover corresponding to G < Gδ. Since G is
finitely generated, by Scott’s compact core theorem [29], there is a compact
submanifold N ⊂ M ′ such that the inclusion induces an isomorphism
π1(N) ' π1(M ′) ' G. Let N0 be N without its torus boundary components.
To prove the theorem, we explain why N0 admits a complete hyperbolic
metric with totally geodesic boundary, and that the boundary subgroups
and cusp subgroups are exactly the peripheral subgroups of (G,P).

Claim. (i) Any Z × Z subgroup of π1(N) is conjugate into one of the
boundary subgroups. (ii) The boundary subgroups are malnormal, i.e., if
Pi ∩ gPj 6= {1} for any two boundary subgroups Pi and Pj , then Pi = Pj
and g ∈ Pi.

To prove the claim, first note that any Z × Z subgroup of a relatively
hyperbolic group is contained in one of the peripheral subgroups. To see
this, consider a geometrically finite action of G on a hyperbolic space, and
use the classification of isometries [20, Prop. 4.1]. Now the claim follows
once we explain that the boundary subgroups of N and the peripheral
subgroups P1, . . . , Pn are the same, up to conjugacy. (This justifies our
notation in (ii).) This follows from the uniqueness of the PD(3)-pair
structure for pairs (G, {P1, . . . , Pn}), where the subgroups P1, . . . , Pn do
not coarsely separate G [22, Thm 1.5]. In our case Pi < G does not coarsely
separate because ∂ Pi ⊂ ∂D(G,P) does not separate as the peripheral circles
of a Sierpinski carpet do not separate; they are exactly the non-separating
circles. Malnormality of the peripheral subgroups in torsion-free relatively
hyperbolic groups is exactly [27, Prop. 2.37]. This finishes the proof of the
claim.

Since every Z× Z subgroup is peripheral, N0 admits a complete hyper-
bolic metric. To see this, observe that if N0 has no higher genus boundary
components, this is Thurston’s hyperbolization [26, Theorem B]. Suppose
N0 has higher genus boundary components. Then there are no essential
annuli since this would yield a free homotopy between two curves on the
boundary, impling that the group elements are conjugate. Malnormality
implies that this conjugation can be done in the surface group, so the annu-
lus is not essential. Thus the double of N0 along the higher genus boundary
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components is hyperbolic [26, Theorem B], and the involution of the double
fixes the boundary components of N0. Since this is realized by an isometry
[23, Theorem 1.44], N0 admits a hyperbolic metric with totally geodesic
boundary components.
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curve in Sn(n 6= 4). Fund. Math., 79(2):107–112, 1973.

[10] F. Dahmani. Les groups relativement hyperboliques et leurs bords. Thesése de
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Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2001.

[24] J. Manning and O. Wang. Cohomology and the Bowditch boundary.
arXiv:1806.07074, Dec. 2018.

[25] G. J. Martin and R. K. Skora. Group actions of the 2-sphere. Amer. J. Math.,
111(3):387–402, 1989.

[26] J. W. Morgan. On Thurston’s uniformization theorem for three-dimensional
manifolds. In The Smith conjecture (New York, 1979), volume 112 of Pure Appl.
Math., pages 37–125. Academic Press, Orlando, FL, 1984.

[27] D. Osin. Relatively hyperbolic groups: intrinsic geometry, algebraic properties,
and algorithmic problems. Mem. Amer. Math. Soc., 179(843):vi+100, 2006.

[28] K. Ruane. CAT(0) boundaries of truncated hyperbolic space. Topology Proc.,
29(1):317–331, 2005. Spring Topology and Dynamical Systems Conference.

[29] G. P. Scott. Compact submanifolds of 3-manifolds. J. London Math. Soc. (2),
7:246–250, 1973.

[30] J. Swiatkowski. Trees of metric compacta and trees of manifolds.
https://arxiv.org/abs/1304.5064, March 2016.

[31] H. C. Tran. Relations between various boundaries of relatively hyperbolic groups.
Internat. J. Algebra Comput., 23(7):1551–1572, 2013.

[32] C. T. C. Wall. List of problems. In Homological group theory (Proc. Sympos.,
Durham, 1977), volume 36 of London Math. Soc. Lecture Note Ser., pages 369–
394. Cambridge Univ. Press, Cambridge-New York, 1979.

[33] G. T. Whyburn. Topological characterization of the Sierpiński curve. Fund. Math.,
45:320–324, 1958.

Bena Tshishiku, Harvard University, Cambridge, MA

e-mail: tshishikub@gmail.com

Genevieve Walsh, Tufts University, Medford, MA

e-mail: genevieve.walsh@tufts.edu

mailto:tshishikub@gmail.com
mailto:genevieve.walsh@tufts.edu

	Duality for groups with Bowditch boundary S2
	Relatively hyperbolic groups and their boundaries
	Proof of Theorem 1.1 (`39`42`"613A``45`47`"603AD(G,P)=S when `39`42`"613A``45`47`"603AB(G,P)=S2)
	Corollaries to Theorem 1.1
	References

