PONTRYAGIN CLASSES OF LOCALLY SYMMETRIC
MANIFOLDS

BENA TSHISHIKU

ABSTRACT. Pontryagin classes p; (M) are basic invariants of a smooth manifold
M, and many topological problems can be reduced to computing these classes.
For a locally symmetric manifold, Borel-Hirzebruch [3] gave an algorithm to
determine if p; (M) is nonzero. In addition they implemented their algorithm
for a few well-known M and for ¢ = 1,2. Nevertheless, there remained several
M for which their algorithm was not implemented. In this note we compute
low degree Pontryagin classes for every closed locally symmetric manifold of
noncompact type. As a result of this computation, we answer the question:
Which closed locally symmetric M have at least one nonzero Pontryagin class?
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1. INTRODUCTION

For a manifold M and i > 0, the Pontryagin class p;(M) € H*(M;Q) is a diffeo-
morphism invariant. When these classes are nonzero, they can serve as obstructions
to certain geometric problems (see for example [18]).

In this paper, we are interested in closed locally symmetric manifolds M of
noncompact type. Let G be a semisimple Lie group without compact factors; let
K C G be a maximal compact subgroup; and let I' C G be a cocompact, torsion-
free lattice. The manifold G/K has a G-invariant Riemannian metric and is a
symmetric space of noncompact type. I' acts freely and properly on G/K, and the
closed manifold M = T'\G/K is a locally symmetric manifold of noncompact type.

Question 1.1. For which I'\G/K is p;(T\G/K) # 0 for some ¢ > 07

Throughout this paper all cohomology groups H*(-) will be with Q coefficients
unless otherwise specified.
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The classical approach to determine if p;(T\G/K) # 0 is roughly as follows.
Let U C G¢ be the maximal compact subgroup of the complexification of G. By
the Proportionality Principle (see [10], Section 4.14), p;(I'\G/K) # 0 if and only if
pi(U/K) # 0. In [3], Borel-Hirzebruch relate p; (U/K) to the weights of the action of
K on the Lie algebra Lie(U). From this, showing p;(U/K) # 0 reduces to showing
that a polynomial is nonzero modulo an ideal (see [3] for details). The paper [3]
also contains explicit computations, including computations that p; (Fy/Sping) # 0,
p1(G2/SO4) # 0, and that the first Chern class ¢;(U/K) # 0, where U/K is a
compact Hermitian symmetric manifold and U is not of exceptional type.

The objective of this paper is three-fold:

(1) Give a stream-lined way to determine if p;(T'\G/K) # 0. One feature of our
approach is that it does not use the Proportionality Principle mentioned
above to reduce to computations for the compact dual U/K. Our main
idea is to use the action of I' on the visual boundary 9(G/K) to study
Pontryagin classes. This differs from the approach of Borel-Hirzebruch but
ultimately reduces to the same problem: determining if a polynomial is
nonzero modulo an ideal.

(2) Compute low dimensional Pontryagin classes p;(I'\G/K) for every locally
symmetric manifold of noncompact type, including every exceptional exam-
ple. As mentioned above, for a handful of G these computations follow from
computations done by Borel-Hirzebruch in [3]. Computations for G = Eg g
and G = Eg(_26) were done by Takeuchi [I7]; however, the author was un-
able to find computations for every semisimple Lie group. The purpose
of the present paper is to have a single source for computations for every
NG/K.

(3) Answer Question A priori the answer depends on the choice of both T"
and G, but it follows from the Proportionality Principle that the answer is
independent of T' (here it is important that I" is cocompact). The author’s
interest in Question arose from the work [18], in which Theorem
below is used to address a Nielsen realization problem: if p;(T'\G/K) # 0
for some ¢ > 0, then the natural homomorphism (M) — meDiff(M, )
does not lift to Diff(M, ).

Main results. A complete list of the simple real Lie groups of noncompact type
are contained in Tables 1 and 2 below. We use subscripts instead of parentheses
wherever possible; for example, we use O,, instead of O(n) to denote the orthogonal
group. The examples in Table 1 are complex Lie groups, viewed here as real Lie
groups. For any locally symmetric space M of noncompact type, the universal
cover M is a symmetric space. Up to isogeny the isometry group of M has identity
component equal to a product of groups in Tables 1 and 2. See [8] for further
information.

For G in Table 1, we can conclude p;(T\G/K) = 0 for all ¢ > 0 without any
computation (see Section . This is why we have separated the simple, real Lie
groups into two separate tables. The main work involved in the present paper is
to determine those G in Table 2 for which p;(I'\G/K) = 0 for all ¢ > 0. Here is a

summary of our results.
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G K
Al SL,R SO,
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“SL.C [ SU. CI Sps, R U,
s0,.¢ | so, CII Spy.q Sp, X Sp,
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Eg: N Egll Eg(2) SUg X Slg
E$ B Eelll  Eg(_14) | 5010 X 502
S B E¢IV  Eg(—26) fa
ij 7, E;V Eq77y SUg
G(zc Gy E;VI  Er_5) | s012 X sup
— E7VIL  Er_gs eg X 509
TaBLE 1. Complex EgVIII  Egs 5016
ngncompact simple EgIX  Eg(_ag e7 X Slig
Lie groups F,I Fiw sps X 5liz
F,I1 Fy(—20) 509
Go Ga2) SUs X SlUg

TABLE 2. Real non-
compact simple Lie
groups

Theorem 1.2. Let G be any real, simple, noncompact Lie group and let I' C G be
a cocompact lattice. Then p;(T\G/K) =0 for all i > 0 if and only if G is

(i) one of the Lie groups in Table 1, or
(ii) one of SLyp(R), SU3,,, SOp.1, or Eg(_as).

Theorem and its proof (in Section @ show that the answer to Question
is somewhat subtle. For example, let G = SO, 4 and assume p > ¢. If p,q > 2,
then p; (T\G/K) # 0 if and only if p # ¢. If p = ¢, then po(T\G/K) # 0 as long as
p>4. Ifeither p=g=2orp=¢g=3orp>q=1, then p;(T\G/K) = 0 for all
1> 0.

It turns out that if G is not one of the groups from (i) or (ii) in Theorem [1.2
and I' C G is cocompact, then either p; (T\G/K) # 0 or p2(I'\G/K) # 0. Thus
to answer Question we need only consider low dimensional Pontryagin classes.
To determine if p;(I'\G/K) # 0 for i > 3 using the methods of this paper would be
feasible, but more computationally intensive.

The proof of Theorem [I.2]immediately extends to the case when G is semisimple
to give a complete classification of which I'\G/K have p,(I'\G/K) = 0 for all i > 0.
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Corollary 1.3. Let G =[] G; be a semisimple Lie group with simple, noncompact
factors G;, and let T' C G be a cocompact lattice. Then p;(T\G/K) =0 for alli >0
if and only if each G; is one of the groups from (i) or (ii) in Theorem .

Instead of asking for I'\G/K with a nonzero Pontryagin class, one could ask
for T\G/K with a nonzero Pontryagin number. Specifically, let M be a manifold
with dim M = 4k, and let i4,...,%,, € N such that ¢y +--- + 4, = k. The cup
product p;, (M) U ---Up;, (M) € H**(M) can be evaluated on the fundamental
class [M] € Hy, (M), and the resulting integer

(pis (M) U~ Up;,, (M), [M]) € Z

is called a Pontryagin number. These integers are topological invariants of M by
Novikov’s theorem (see [12], for example). We remark that a manifold can have
zero Pontryagin numbers but have some nonzero Pontryagin classes. For example,
take ' C G = SO, with p,q both odd. As explained in [12] Theorem B, the
Pontryagin numbers of I'\G/K are all zero. On the other hand, we show that if
p > g > 2, then py(I'\G/K) # 0 (see Section [6). For more information about
Pontryagin numbers of locally symmetric spaces, see [I2]. For recent results about
the Euler characteristic of homogeneous spaces, see Mostow [16].

Method of proof. We compute p;(I'\G/K) by the following procedure. Let
n = dim M. The unit tangent bundle T*M — M has a flat Homeo(S™ 1) structure
with monodromy x : I' — Homeo(S"~!) given by the action of I' on the visual
boundary 9(G/K) ~ S"~1. The homomorphism s induces a map of classifying
spaces M ~ BI' — BHomeo(S™ 1) and hence a map

p* : H*(BHomeo(S" 1)) — H*(M).
There are classes ¢; € H* (BHomeo(S™™1)) for which *(¢;) = pi(M) (see Section
2). To determine if p*(g;) = 0, note that p factors p = ay o ag o a3, where
(1.1) I 2% G° 22 G 2% Homeo(S™71).

Here G?° is the group G viewed as a Lie group with the discrete topology. The map
a3 is the inclusion, as is the identity (which is continuous), and «; is the action of
G on its visual boundary.

To understand p* = (a1 0 a2 0 ag)*, we study the individual maps

*

(1.2) | H*(BHomeo(S"™Y)) 5 H*(BG) 22 H*(BG®) 25 H*(M),

Step 1. Computing oj reduces to computing weights of the adjoint action of K on

g = Lie(G) (see Section [d).

Step 2. Computing « reduces to computing the map H*(BGc) — H*(BG) in-
duced by complexification G — G¢. This follows from Chern-Weil theory (see
Section .

Step 3. o is injective on the image of H*(BG) — H*(BG?) by a transfer argument
(see Section [G)).

Structure of the paper. In Section [2] we define the classes ¢; mentioned above
and show that p*(g;) = pi(M). In Section [3[ we recall Borel’s computation of
H*(BK) for K a compact Lie group, and we recall how characteristic classes of
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a representation can be computed in terms of the weights of that representation.
In Sections [4] and [5] we complete Steps 1 and 2, respectively. In Section [6] we
explain Step 3 and combine Steps 1, 2, and 3 to conclude which T'\G/K have
pi(T\G/K) # 0 for some ¢ > 0 and thus prove Theorem

1.1. Acknowledgements. The author would like to thank his advisor B. Farb for
his gracious and ceaseless support, for his encouragement to complete this project,
and for extensive comments that significantly improved a draft of this paper. The
author also thanks the referee for carefully reading this paper and pointing out
several typographical errors.

2. AN ALGORITHM FOR COMPUTING PONTRYAGIN CLASSES

This section has two goals. First we recall the definition of the Pontryagin
classes of topological sphere bundles ¢; € H* (BHomeo(S"_l)). Then we explain
why 1*(q;) = pi(M). This will follow from the construction of a flat Homeo(S™ 1)
structure on the unit tangent bundle 7'M — M.

2.1. Pontryagin classes of sphere bundles. The Pontryagin classes p; € H*(BO,,)
are classically defined as invariants of real vector bundles (see [15]). The following
proposition shows that these invariants can also be defined for topological R™-
bundles.

Proposition 2.1. The inclusion g : O, — Homeo(R") induces a surjection
g H* (BHomeo(R"); Q) — H” (BOn; Q).

Proposition can be proved using results from Kirby-Siebenmann [I1]. The
argument (which the author learned from A. Hatcher) is given in [I§].

From Proposition Pontryagin classes of sphere bundles can be defined as fol-
lows. Define a homomorphism § : Homeo(S™" 1) — Homeo(R") using the Alexan-
der trick: §(f) performs the homeomorphism f on the sphere of radius r for every
r >0, and §(f) fixes the origin. This induces maps between classifying spaces and
hence a map

§* : H*(BHomeo(R")) — H*(BHomeo(S" ™))
The restriction of § to the subgroup O, C Homeo(S"™!) is the standard action
O,, — Homeo(R"), so there is a commutative diagram

*

H*(BHomeo(R™)) H*(BHomeo(S" 1))
(2.1) S T
9 m*(BO,) "

By Proposition there is a class p; € H* (BHomeo(]R")) with ¢*(p;) = pi.
Since Diagramcommutes, 6*(pi) € H*(BHomeo(5™ 1)) is nontrivial. We refer
to the classes ¢; = §*(p;) as the Pontryagin classes of topological sphere bundles.

2.2. Flat structure on the unit tangent bundle. We continue to assume that
G is a semisimple Lie group without compact factors and that K C G is a maximal
compact subgroup. With these assumptions G/K is contractible and has a metric
of nonpositive curvature such that G acts by isometries on G/K. In addition, G
acts on the visual boundary 9(G/K) ~ S"~! (see e.g. [2]). If G has rank 1, then
the action of G on 9(G/K) is smooth, but this is not known in general. Thus,
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even though G/K is an algebraic example of a contractible, nonpositively curved
manifold, the action on 9(G/K) is a priori only an action by homeomorphisms. By
restriction to I' C G, we obtain an action I' — Homeo(S™"~!), and from this action
we can build an S"~!-bundle E — M, where E is the quotient of (G/K) x S"~1
by the diagonal action of T'.

Lemma 2.2. Let M be a complete Riemannian manifold of nonpositive curvature
with universal cover M. The sphere bundle whose monodromy is the action of the

deck group w1 (M) on the visual boundary OM ~ S"~1 is isomorphic to the unit
tangent bundle T'M — M.

Lemma shows that T'M — M is flat. It also explains why the monodromy
p : T — Homeo(S™ 1) factors as claimed in (1.1)): p is the I-action on d(G/K),
which is the restriction of the G-action on 9(G/K).

Proof of Lemma[2.3 Since M has nonpositive curvature, M is contractible, and
the unit tangent bundle 7 : T*M — M is trivial. An explicit trivialization can be
defined as follows. Define a map

o: T'M — oM
by associating a geodesic ray to a vector via the exponential map. Now define
T T'M — MxoM
z = (7(2),9(2)).
Since OM is homeomorphic to S™~!, this gives the desired trivialization.
It is not hard to see that 7 is equivariant with respect to the actions of the deck
group 7 (M) on T*M and M x OM. Note that T M /m1(M) ~ T M. Then the

quotient by the 71 (M)-action induces a bundle isomorphism

/
T'M % M Xy (M) 8M

\/

3. COMPACT LIE GROUPS, CHARACTERISTIC CLASSES, AND REPRESENTATIONS

O

Let K be a compact Lie group and let BK be its classifying space. In this section
we recall Borel’s computation of the cohomology H*(BK) (see Theorem [3.1]). For
a representation p : K — GL,,(C), we recall how to use Borel’s computation to
determine the image of p* : H*(BGL,,(C)) — H*(BK) (specifically the image of
the Chern classes) in terms of the weights of p. For more details, see [3].

3.1. The cohomology of BK. Let K be a compact Lie group. Let S C K be a
maximal abelian subgroup. S is homeomorphic to an r-torus (S1)” for some integer
r, which is called the rank of K. Let Nk (S) denote the normalizer of S in K. The
Weyl group is defined as W = Nk (S)/S.

Theorem 3.1 (Borel [4]). Let K be a compact Lie group with mazimal torus S
and Weyl group W. The inclusion S — K induces an isomorphism

H*(BK;Q) ~ H*(BS; Q)"



PONTRYAGIN CLASSES OF LOCALLY SYMMETRIC MANIFOLDS 7

3.2. Weights, transgression, and characteristic classes. Let K be a compact
Lie group with maximal torus S, and let p : K — GL,,(C) be a representation. The
restriction p| g is a sum of 1-dimensional representations A; : S — C* called the
weights of p. By the identification C* = K(Z,1) and the fact that cohomology is a
represented functor, the weights can be viewed as elements of H'(S;Z). Since we
are interested in cohomology with Q-coefficients, we view the weights as elements
of HY(S) = H'(S;Q).
For the representation p, we are interested in computing the induced map

p* : H*(BGL,(C);Q) — H*(BK;Q)

in terms of the weights A1,..., A\, € H*(S;Q). Let S — ES — BS be the universal
principal S-bundle. The edge map

7: H'(S;Q) — H*(BS;Q)
on the Fs-page of the Serre spectral sequence of this fibration is an isomorphism,

called the transgression. Let w; = —7(\;). The total Chern class ¢(p) € H*(BS; Q)
is defined by

n
(3.1) c(p) = 1+ei(p) + - +ealp) = [J(1+wi).
i=1
The Weyl group W permutes the weights of p, so ¢(p) € H*(BS)W ~ H*(BK).
If p: K — GL,(R) is a real representation and pc : K — GL,(C) is the
complexification, one defines the i-th Pontryagin class p;(p) of p by the formula

pi(p) = (1)’ c2i(pc).

Remark 3.2. The transgression 7 can be given concretely as follows. Identify
H(H;Z) ~ Hom(H,C*), and define Hom(S,C*) — H?(BS): Given ¢ : S — C*,
form the space

EH x C*
E,= —g
which is the quotient of EH x C* by the diagonal action of H, where H acts on
C* by . Now E, has a natural projection to EH/H = BH, and this makes E,
a C* bundle over BH. The first Chern class ¢;(E,) lives in H?(BS;Z), and the
transgression is given by 7(¢) = ¢1(E,).

3.3. The invariant polynomials H*(BS)". Let K be a compact Lie group with
maximal torus S. The ring of invariant polynomials H*(BS)" is well-known (see
[9], Ch. 3). For the exceptional groups, explicit polynomial generators for H*(BS)"
can be computed as follows. Let K be one of exceptional compact Lie groups:
FEs, E7, Eg, Fy,Go. Let V be a fundamental representation of K of minimal di-
mension. Denote A1,...,\q € H'(S) the weights of this representation, so that
7(N\;) € H?(BS). In [13], Mehta shows that power sums

d
L= (M)
i=1
generate the invariant polynomials H*(BS)". In the remainder of this section we
recall the descriptions of H*(BS)W for the different compact Lie groups, and we
record explicit generators of H*(BS)" that will be used in Sections |5 and @
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To express the weights A1, ..., A\q for the exceptional K, we use the descriptions
from Adams [I]. We remark that our expressions for Iy for Eg, Fr, Eg, and Fy agree
with [I3] up to a change of basis. Let Sym(z1,...,z,) C Q[x1,...,z,] denote the
subring of symmetric polynomials.

BSO,,: Let k= |n/2]. As a subring of Q[y1, ..., yx],

H*(BSO,,) ~ H*(BS)" _{ Sym(y, ..., y¢) n=2%k+1
' <Sym(y%,...,y%),yl...yk> n:2k

BU,,:

H*(BU,) ~ H*(BS)" = Sym(y1,...,yn)-
Note that H*(BSU,,) is the quotient of Sym(y1,...,y,) by the ideal generated by
y1+ -+ Y,. Similarly, H* (BS(UP X Uq)) is the quotient of

Sym(y17~ ) ayp) & Sym(zl, .. ~7Zq)
by the ideal generated by y1 + -+ +yp + 21 + - - + 24.

BSp,,: H* (BSp(n)) ~ H*(BS)W = Sym(y3,...,y2).

BEg: Let S C Eg be a maximal torus with Weyl group W. Up to conjugation, we
can assume S C Spin;q C Eg and that S is a maximal torus of Spin,4. This allows
us to identify H*(S) ~ Q{Ji,...,Js} and H?(BS) ~ Q[z1,..., 2] in such a way
that the roots of Eg are

{ +J; + J 1<i<j<s,
1
2

(3.2)
(£J1£---£Jg) even number of —’s

See [1] (pg. 56). W preserves the roots, and H*(BS)W ~ H*(BEy) is generated by

1
ng = Z (Zz+Zg)2k+(Zz_21)2k+227k(21:t:I:zs)%,
1<i<j<8
where the second sum is over all terms with an even number of — signs. According
to [13} (pg 1088), H*(BS)W ~ Q[I27[87]12711471187]2051243130}- We record here
that Iy = 30(27 + - + 23).

BE;: For any embedding SU; — FEjg, the identity component of the centralizer
of SU, is isomorphic to E; (see [I], pg. 49). Choose SU; so that its roots are
+(J; — Jg) in Eg (cf. . Let S C FE; be a maximal torus with Weyl group
W. Since the roots of E7 are orthogonal to the roots of SUsy, we can identify
HYS) ~ Q{J1,...,Js,J7r + Js}. Let z; = 7(J;) in H?>(BS) for 1 <i < 6 and let
zr =71(J7 + Js).

Following [I] (pg. 52), the fundamental representation of E7 is 56-dimensional,
and by restricting this representation to soi12 X sus C e7, one can compute the
weights:

+J; + (L) 1<i<6
3(xJ1£---+Js) odd number of J; have — sign
W preserves these weights, and H*(BS)W ~ H*(BEy) is generated by

6
z .z
Iy, = 2(57 + )+ (5

1
9 —Zi)2k+7 (21i~'~i26)2k,

92k
i=1



PONTRYAGIN CLASSES OF LOCALLY SYMMETRIC MANIFOLDS 9

where the second sum is over all terms with an odd number of — signs. According
to [13} (pg 1086), H*(BS)W ~ Q[IQ,Iﬁ,[g,]lo,]lQ,Ilzl,[lg}. Note that for this
description of Er,

I =6(2f + -+ +23) + 327

A second computation for BE;: We will also need the following description of
H*(BE7). This time choose SUs < Fjg so that its roots are £(J; + -+ + Jg).
Let S C E7 be a maximal torus with Weyl group W. H(S) is the orthogonal
complement of J; + -+ Jg in Q{Jy,...,Js}. One can compute the weights (with
respect to this description of H'(S)) of the fundamental representation of E; by
restricting to SUg C E7 (see [1], pg. 69). The weights are

1
:|:<JZ+JJ—4(J1++J8)>7 1<i<j<s8.

Let 2; = 7(J;) € H?(BS) for 1 < i < 8. (Technically J; does not live in H'(S),
so we really mean the restriction of the weight J; for Fg to a weight for FEy.)
H*(BS)W ~ H*(BE;) is generated by

Lp= Y ((zi-&-zj)—le(zl—i—---—l—Zg))%.

1<i<j<8

As above, H*(BS)V = QlI2, Is, Is, I10, 12, I14, I13], and one computes

1<i<8 1<i<j<8

BEs: For any embedding SUs < Eg, the identity component of the centralizer
of SU3 is isomorphic to Es (see [I], pg. 49). Choose SUs so that its roots are
+(Jo — J7), £(Js — Js), and £(J7 — Jg) (cf.[3.2). Let S C Eg be a maximal torus
with Weyl group W. Since the roots of Eg are orthogonal to the roots of SUs, we
can identify

H'Y(S) ~Q{J1,...,Js5, J6 + J7 + Js}.

Let z; = 7(J;) € H*(BS) for 1 <i <5, and let 26 = 7(Jg + J7 + Jg).

Lie(Eg) = ¢g has two 27-dimensional fundamental representations Uy, Us. One
can compute the weights of U; by restricting to so1g X s02 C ¢g. Following [1] (pg.
53), U = &1+ Mg @ €2 + AT ® ¢! and its weights are

+Ji + 3 (Js + Jr + Js) 1<i<5h
% (:I:J1 +.EJ5 - %(ij + J7 + JS)) even number of J; have — sign
—2(Js + J7 + Js)

W preserves these weights, and H*(BS)W ~ H*(BE}s) is generated by
(3.3)

2\ /1 ko P 1 \*
I, = (—326> —‘y-; <3ZG+Zz) +(326_Z1‘) —|—2kz<i21i-'-iz5—326> .

In particular, I; = I3 = 0 and Iy = 6(23 + 23 + 23 4+ 2} + 22) + 22¢ and I, = & (15)%
According to [13] (pg. 1086), H*(BS)W ~ Q[Is, I, I, Is, Iy, I12].
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A second computation for BEg: We will also need the following description of
H*(BEg). This time choose SUs — FEg so that the roots are

(3.4) {iJ1+"'+J6:|:J7+J8

5 B , :|:(J7—|-J8)} .

Let S C FEg be a maximal torus with Weyl group W. H(S) is the subspace of
Q{J1,...,Js} that is orthogonal to the roots in (3.4).

For this description of eg, we compute the weights of the fundamental represen-
tations Uy, Uy by restricting to sug X sus C eg. As a (sug X sus)-representation,

U=+ X 0N and U=+ M\ @A,

where ¢, denotes the i-exterior power of the standard representation of su,,. Since
a Cartan subalgebra for sug x sus is also a Cartan subalgebra for eg, we can identify
the weights of U; as a sug X sus-representation with the weights of U; as an eg-
representation.

Let u = J1+‘é‘+J6 + J7J2“]8 and v = J1+‘é‘+Jﬁ — J7'5J8. One computes that the
weights of Uy are

Ji+Ji—i(u+v) 1<i<j<6 (corresponding to A2)
Jp k£ figds S(u+v) 1<i<6 (corresponding to A3 ® A})
W preserves these weights. Let z; = 7(J;) € H?(BS) for 1 < i < 6 and let
z7 = 7(J7 — Jg). (As above, by J; we really mean the restriction of the weight

for Eg to a weight for E7.) With respect to this basis H*(BS)V ~ H*(BEs) is
generated by

k k
1 ) €
= 2 (Z”Zﬂ"g(zl*““‘i)) t 2 (Zi‘('zl*‘“”@*f)
1<i<j<6 1<i<6
ec{£1}

As above, H*(BS)WV ~ Ql[I, I, Is, Is, Iy, I12], and one computes

(=2}

Iy =5(z1 + - 4+ 22) + 322 -2 Z 22
1<i<j<6

BFy: Let S C Fy be a maximal torus with Weyl group W. Up to conjugation we can
assume S C Sping C F; and that S is a maximal torus of Sping (see [I], pg. 53).
This allows us to identify H'(S) ~ Q{L1,...,Ls} and H?(BS) ~ Qlz1,...,24].
The 26-dimensional fundamental representation of Fy has the following nonzero
weights (these are the short roots of Fy, see [I] pg. 55).

{ +I1, 1<i<4
1
a(

+Ly £+ Lo+ Ly + Ly)
W preserves these weights, and H*(BS)W ~ H*(BF}) is generated by

4
1
(35) I, = szk + ﬁ (6121 + €229 + €323 + Z4)2k.
=1

The second sum is over all tuples (e1, €2, €3) € {£1}3. According to [13] (pg. 1091),
H*(BS)W = Q[Is, Is, I3, I12]. Note that Iy = 3(22 + 23 + 23 + 23).
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BGy: Let S C G be a maximal torus (its dimension is 2). Let Jy,Jo € H(S)
be simple roots for Ga. Denote z; = 7(.J;) € H*(BS). The Weyl group W is the
dihedral group of order 12 and it permutes the nonzero weights of the 7-dimensional
fundamental representation. These weights are

{ + Jq, :|:(J1 + JQ), :|:(2J1 + Jg)}

See [6] (Lecture 22), for example. H*(BS)"W is generated the polynomials
Loy, = 229 + (21 4 20) % + (221 + 22)2%.
According to [13] (pg. 1094) H*(BS)W ~ Q[I, Is]. Note that
I = 2(321 + 32120 + 23).

4. COMPUTING af : H*(BHoMEO(S" 1)) — H*(BG)

Since the inclusion K — G is a homotopy equivalence, it induces an isomorphism
H*(BG) = H*(BK). To understand o, we study allK : K — Homeo(S"1).

Let T (G/K) be the space of rays through the origin in T, x (G/K). The action
of K on G/K induces an action on T (G/K). The exponential map defines a K-
equivariant homeomorphism

5: T (G/K) — 0(G/K).

The K-action on T.x(G/K) can be described as follows. The adjoint action of K
on g = Lie(G) decomposes into invariant subspaces £ @ p, where £ = Lie(K) and
p ~ T.x(G/K). This implies the following lemma. For more details, see [I8].

Lemma 4.1. The action of K C G on 0(G/K) is induced by a linear representation
t: K — Aut(p).

We refer to the representation ¢ : K — Aut(p) ~ GL,(R) as the isotropy repre-
sentation. Let r : GL,(R) — Homeo(S™ 1) be the GL,,(R)-action on the space of
rays through the origin in R". By Lemma o |K =7 o¢. Since the map

r* : H*(BHomeo(S" 1)) — H*(BGL,(R))
is understood via Diagram ([2.1)), it remains only to understand
*: H*(BGL,(R)) — H*(BK).

As described in Section [3:2] ¢* can be computed using the weights of .. This
will be carried out in Sections - as follows. Let S C K be a maximal
torus. The isotropy representation ¢ : K — Aut(p) is a real representation, so we
complexify to get a representation (¢ : K¢ — Aut(pc). On the maximal abelian
subgroup H C K¢, we obtain weights \; : H — C*. To compute the weights
explicitly, we pass to the Lie algebra h of H and view the weights as elements
of h* = Hom(h,C). After computing the weights of .c, we use Equation (3.1))
to express the total Chern class ¢(ic) as a polynomial in H*(BH). Finally, since
S < H induces an isomorphism H*(BH) — H*(BS), we obtain the Pontryagin
classes p;(t) = (—1)%c2;(1c) as polynomials in H*(BS)W ~ H*(BK) ~ H*(BG).
This computes af since aj(g;) = pi(¢).

Below, V,, will denote the standard representation of gl,, (C), sl,,(C), so,,(C), or
5po, (C) (for n = 2k).
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4.1. Isotropy representation for SL,(R). Upon complexification, we need to
study the isotropy representation of SO,,(C) C SL,,(C). The adjoint representation
of sl,,(C) is isomorphic to the kernel of the contraction V,,  V.* — C. As a s0,,(C)-
representation,

Vi @ Vi ~ A%(V,,) 4 Sym?(V,,).

A2(V,,) is the adjoint representation of so,,(C). The representation Sym?(V},) is not
irreducible because s0,,(C) preserves a symmetric bilinear form B : Sym?(V;,) — C.
The kernel of B is the isotropy representation p.

There is a standard form B for which the diagonal subgroup H C SO(B) ~
S0O,,(C) is a Cartan subgroup (see [0], pg. 268). For this choice, we have a standard
basis h* = (L1, ..., Li), where k = [n/2]. If n is even, the weights of p are £L; + L;
for 1 <i,j < k. If n is odd, we have the additional weights +L; for 1 <i < k.

As elements of H?(BH) ~ Qly, - . .,yx], we have the following the total Chern
classes for the isotropy representation. If n is even, then

(4.1) c(uwe) = H(l +yi +y) (Ui —y) (1 =y + ) (L —yi — ;)

and if n is odd, then

(4.2) c(ec) = [T —w) (U +u) [T +yi+u) (4 yi =) (1= g+ ;) (1 —ys —v)-

i 2]

4.2. Isotropy representation for SU, ;. Let n = p + ¢. Upon complexification
we need to study the isotropy representation of K¢ C SL,(C), where K¢ is the
block diagonal subgroup

K¢ = (GL,(C) x GL4(C)) N SL,(C).

As described in Section the adjoint representation of sl,(C) is a subspace of
Vo, ® V. As a tc-representation

Va@Vy=(eV, +V,0 V) +(V, @V, +V,@V,).

The adjoint representation of €¢ is a codimension-1 subspace of the first summand.
The second summand is the isotropy representation p.

The diagonal subgroup H C K¢ coincides with the diagonal subgroup of SL,,(C),
so we identify b* as the quotient of (Ly,...,L,) by the subspace generated by
Ly + -+ L,. The weights of the isotropy representation are +(L; — L;) for
1<i<pandp+1<j<p+gq.

As an element of H*(BH) C Q[y1-..,Yp, 21, - -, 24), the total Chern class for
the complexified isotropy representation is

(4.3)  clwc) = H T+ (i —2) (1= (v — %)) = H (1= (yi — 2)?).
1552 15520

4.3. Isotropy representation for Sp,,(R). Upon complexification we need to
study the isotropy representation of GL,(C) C Sp,,(C), where GL,(C) is the

) for A € GL,(C).

subgroup of matrices of the form

(A~
As a gl,,(C)-representation, the standard representation of sp,,, (C) decomposes
Van = Vi + V¥, The adjoint representation of sp,,, (C) is isomorphic to Sym?(V'),
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and as a gl,, (C)-representation
Sym?*(V) =~ (V,, ® Vi) + (Sym?(V,,) + Sym?(V;})).

V,, ® V;* is the adjoint representation of gl,,(C) and Sym?(V;,) 4+ Sym?(V;*) is the
isotropy representation.

Let H C GL,,(C) be the diagonal subgroup and identify h* = (L4, ..., L,) using
the standard basis. The weights of the isotropy representation are +(L; + L;) for
1 <i,j <n. As an element of H2(BH) ~ Q[yi, ..., yn], the total Chern class of
the complexified isotropy representation is

cte) = [lic;(L+yi +y) (1= (yi +y;) TL (L +2y:) (1 - 2y:)

4.
4 = Hi<j (1_(%"’1‘/]')2) L (1_4%'2)'

4.4. Isotropy representation for SO, ,. Let n = p+ ¢ and a = [p/2] and
b = [¢/2]. Upon complexification, we need to study the isotropy representation of
SO, (C) x SO4(C) C SO,(C).

The adjoint representation of s0,(C) is A%*(V,), and as a s0,(C) x s0,(C)-
representation,

N2 (Va) = (A (V,) + A%(Vy)) + V, ® V.

A2(V,) + A%(V,) is the adjoint representation of s0,(C) x s0,(C), and V,, ® V, is the
isotropy representation.
Let H C SO,(C) x SO4(C) be the standard Cartan subgroup, and identify
b* = (L1,...,La, Last1,-..,Latp). In this basis, the weights of the isotropy repre-
sentation are
P, q even +L; £ L;
peven,qodd £L;+L;, =£L;
p Odd7 q even :|:Lz + Lj, :|:LJ
P Odd7 q odd :l:Lz + Lj, :tLl, :tL]
where 1 <i<aanda+1<j<a+0d.
As an element of H*(BH) ~ Q[y1,- .-, Yas 21, - - - , 2], We have the following total
Chern classes. If p and ¢ are both even, then

clic) = I +yi+2z) (1 +yi —2)(1 =i+ 2)(1 —yi — zj)

5 = Tygicy (1~ 4501~ - 5).

If p is even and ¢ is odd, then

a

(4.6) c(ic) = H(l —v) T (0= @i+2)°) (10— (i —2)%).

i<a

b

INIA
.
IAIN

If p is odd and ¢ is even, then

b

(4.7) ce)=JJ0=2) T (0= wi+2)*) (10— (wi—2)).

=1 i<a

i<b

INIA
Al

1
1
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If p and q are both odd, then

a b
@8)  cte) =TI -v) IO -2 TI (0= +2)) (1= (wi —2)°)
i=1 j=1 1

1<a

b

IAIA
<.
IAIN

4.5. Isotropy representation for Sp, ,. Let n = p+q. After complexifying, we
need to study the isotropy representation of Spy,(C) x Spy,(C) C Spy, (C).

The adjoint representation of sp,,, (C) is Sym?(Va,,), and as a 5P, (C) X 5py, (C)-
representation,

Sme(V%) = (Sym2(V2p) + SymZ(ng)) + Vap @ Vag.

Sym?(Va,) + Sym?(Va,) is the adjoint representation of 5P2, (C) X 8py, (C), and
Vap ® Vo, is the isotropy representation.

Let H C Spy,(C) x Spy,(C) be the standard Cartan subgroup, and identify
b* = (L1,...,Lp, Lpt1,..., Lptrq). The weights of the isotropy representation
are £L; = L;, where 1 < ¢ < pand 2p+1 < j < 2p+¢q. As an element
of H*(BH) ~ Qy1,-..,Yp, 21,---,%], the total Chern class of the complexified
isotropy representation is
(4.9) cte) = I C+vi+2)0 4 —2)0 =i+ 2)(1 —ys — ).

1<i<p
1<j<q

4.6. Isotropy representation for SO3,,. Define SO3,, as the subgroup of GLa, (C)
that preserves the Hermitian form and bilinear form defined by

1, _ 0o I,
In,n—< _In> and B"_<In 0 ),

respectively. We complexify and study the isotropy representation of GL,,(C) C
SOz, (C), where GL,,(C) is the subgroup of matrices of the form ( A (A1)~ )

for A € GL,(C).

As a gl,,(C)-representation, the standard representation of s0s,(C) decomposes
Van = Vp, + V,. The adjoint representation of s0,(C) is A%(Va,), and as a gl,,(C)-
representation,

N (Vay) =V, @ Vi 4 (A% (V,,) + AP(V,))).
V, ®@V;* is the adjoint representation of gl,,(C), and A%(V,,)+A%(V,*) is the isotropy
representation.

Let H C GL,(C) be the diagonal subgroup and identify h* = (Ly,..., L,). The
weights of the isotropy representation are £(L; + L;) for 1 <i < j < n. As an
element of H2(BH) ~ Qly1,. - .,Yn], the total Chern class is

(4.10) cle) =T+ @i +u) (0= i +v)) =[] (01— (Wi +v,)°)-

i<j i<j
4.7. Isotropy representation for SU},,. After complexifying, we need to study
the isotropy representation of Sp,,, (C) C SLg,(C). As described in Section

the adjoint representation of sly,(C) is contained in Vi, ® V5. As a sp,, (C)-
representation

Von @ Vi, = Sym? (Vay,) + A2 (Vap).
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Sym?(Vay,) is the adjoint representation of sp,, (C). The representation A%(V5,,) is
not irreducible because by definition sp,, (C) preserves an antisymmetric bilinear
form J : A%2(Va,) — C. The kernel of J is the isotropy representation p.

Let H C Sp,,, (C) be the standard Cartan subgroup, and identify b* = (Ly,..., L,).
The nonzero weights of the isotropy representation are +L; = L; for 1 <i < j < n.
As an element of H?(BH), the total Chern class of the isotropy representation is

(4.11) c(uc) = H Mty +y) I+ y —y) =y +y) (1 —yi —y5)-

4.8. Isotropy representation for real forms of Fs. Let h*(es) be the dual to
the Cartan subalgebra of es. As in [1] (pg. 56), we identify b = (Ji, ..., Js).

In the remainder of this section, we use \!, to denote the i-th exterior power of
the standard representations of the real Lie algebras su,, so,, and sp,,.

FEg(s)- The maximal compact subgroup K C Egg) has Lie algebra soi6. As an

K-representation, eg decomposes
eg = 5016 B AT

where AT is the positive spin representation of so16 (see [I], chapter 6). Then the
isotropy representation of K C Fg is the spin representation. Let h*(s016) denote
the dual to the Cartan subalgebra of so16. We identify h*(so16) = (L1,..., Lg).
The weights of the isotropy representation are

1
5(:l:L1j:L2:|:-~-:tL8)
where the number of + signs is even.

Let S C K be a maximal torus. As an element of H*(BS) ~ Q[y1, ..., ys], the
total Chern class of the complexified isotropy representation is

(4.12) c(uc) = H (1 - %(61y1 +ot 683/8)) )

where the product is over all tuples (ey, ..., es) € {£1}® that have an even number
of —’s.

Eg(—24). The maximal compact subgroup K C Eg(_24) has Lie algebra e7 x suz. As
a K-representation, eg decomposes

es = (e7 @ sux) & (VM)

where V is the 56-dimensional representation of E;. See [I], pg. 54.

Since K C Fjg have the same rank, we can identify the (dual) Cartan subalgebras
b*(es) = (Ji,...,Js) and h*(K) = (J,..., Jo, Z57%5) @ (L578).

The roots for e7 x suy are +(J7 — Jg) together with all the roots of eg that are
orthogonal to J; — Jg. The roots of eg that are not roots of e7 x suy correspond to
the weights of the isotropy representation p =V ® AJ. Then the weights of p are

+J; £ (L) & (Lg s 1<i<6
:tJliZ---:th :l: J75J8

even number of J; with — sign

Let S C K be a maximal torus. Define y; = 7(J;) € H*(BS) for 1 <4 < 6 and
yr = 7(J7 + Js) and ys = 7(J7 — Jg). The total Chern class for the complexified
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isotropy representation c(ic) € H*(BS)W is
(4.13)

1
cie) =TT (1= (st er- 5 +es- D)) 1 (1—2(61y1+---+66y6+68yg)>

The first product is over s = 1,...,6 and all tuples (¢, €7, €g) € {£1}>. The second
product is over the tuples (e1,. .., €6, €3) € {£1}7 with an even number of —1’s.

4.9. Isotropy representation for real forms of F-.

E7(7). The maximal compact subgroup K C FEr(7) has Lie algebra sug. Following

M (pg. 69), as a K-representation, e; decomposes
e7 = suUg P )\é.

Here p = )} is the isotropy representation, and the weights are L;, + L;, + L;, + L;,
for 1 <iy <---<iy <8.

Let S C K be a maximal torus. We identify H*(BS) with the quotient of
Q[y1, - - -,ys] by the ideal generated by y; + - - - + ys. The total Chern class of the
complexified isotropy representation is

(414) C(L’C) = H (1 - (yi1 + Yiy, T Yis + yi4))'

1<i1<i2<i3<14<8
E7(_5). The maximal compact subgroup K C E7(_5) has Lie algebra so12 X sus.
Following [I] (pg. 52), ¢7 decomposes as a K-representation as
er = (5010 D sup) & AT @A

where AT is the positive spin representation of K. Here p = AT ® A\ is the
isotropy representation. Identify h*(K) ~ (L1,...,Ls) ® (L7) in the standard way.
The weights of the isotropy representation are %(elLl + -+ esLg) = Ly, where
(€1,...,€6) € {1} has an even number of —1’s.

Let S C K be a maximal torus. As an element of H*(BS) ~ Q[y1, - . ., ys]®Q[y7],
the total Chern class for the complexified isotropy representation is

(4.15) cie) = H (1 - i(€1y1 + -+ €ys + y7)2> )

where (€1, ...,¢65) € {£1}° has an even number of —1’s.

E7(_25)- The maximal compact subgroup K C E7(_25) has Lie algebra eg X 502. In
a similar way to [I] (pg. 52), one shows that e; decomposes as a K-representation:

er = (96 65502) & Uy ®£2 ® U, ®§_2
where Uy and U, are the 27-dimensional representations of Eg. Identify
h*(es) = (J1,..., 5, Je +Jr + Js) and bh*(er) = <J1,...,J6,J7+Jg>

as subspaces of h*(es) (see Section [3). The orthogonal complement of h*(es) in
h*(e7) is 1-dimensional and generated by —2Jg + J7 + Js. We have

h*(eg x s02) = (J1,...,J5,Js + J7 + Jg) B (=2Js + J7 + Js).
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The weights of the isotropy representation are the roots of e7 that are not roots of
¢ X 505. These are +=(J; + Jg), £J; + Jg for 1 <i <5, and

1
5(61J1 +--+esds +es(Js — Jr — JB))

where (1, .. .,€5) € {£1}° has even number of —1’s. To write these roots as weights
of eg X 509, note that

Jr+Js = 2 [2(Js + Jr + Js) + (—2Js + J7 + J5)]

Wl

and
Js = %[(J6 + J7 + Js) — (—2J6 + Jr + Js)].
The weights of the isotropy representation are
[ ]
i% [2(J6 + J7 + Js) + (—2J6 + J7 + Js)],
e for 1 <i<5h,

1
+J;, + g [(Jﬁ + Jr + Jg) — (*2J6 + J7 + Jg)]

o for (e1,...,€5) € {£1}° with an even number of —1’s,

1 1
2<61J1+"'+65J5+66'3[—(J6+J7+J8)—2(—2J6+J7+Jg)]>

Let S C Eg x SOz be a maximal torus. Let z; = 7(J;) € H?(BS) for 1 <i <5,
and let zg = 7(Js+J7+Jg) and let z; = 7(—2Js+J7+Jg). As elements of H?(BS),
the weights of the isotropy representation are

o (226 + 27),
o +2, + %(26 —z7) for 1 <i <5, and
o Lerz++esztese %(—Z(; —2z7)), where (e1,...,€) € {£1}° has even
number of —1’s.
The total Chern class is

cic) = (1—35Q22% +20)°) [T (1 - (z + 235)?) (1 - (2 — 25%)°)
I1 (1 —i(az 4 +eszm+ 667_265227)2> :

The first product is over 1 < i < 5. The second product is over (eq, ..., €g) € {£1}°
with an even number of —1’s.

(4.16)

4.10. Isotropy representation for real forms of Fjg.

Eg(6) The maximal compact subgroup K C Egg) has Lie algebra sp,. As a K-

representation, eg decomposes as
g =5p, W
where W C A{ is the kernel of the contraction map A§ — AZ. It is the irreducible

representation of K with highest weight Ly + Lo + L3 + Ly. So p = W and the
nonzero weights of the isotropy representation are

:‘:Liﬂ:Lj 1<i<j <A1
€1l 4+ - +esly (61,...,64) S {:l:l}4.
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Let S C Sp, be a maximal torus. As an element of H*(BS) ~ Q[y1,-..,v4], the
total Chern class is
(4.17)

cie) = H (1—(yi + yj)z) (1—(y; — yj)z) H (1= (e1y1 + €2y2 + €3y3 + y4)2).
1<i<j<4

The second product is over all tuples (eg, €, €3) € {£1}>.

Eg(2) The maximal compact subgroup K C FEg 2y has Lie algebra sug x sus. As a

K-representation, ¢g decomposes as
6 = (sug D suy) © (\s @A),

With respect to the standard basis for h*(sug X sus), the isotropy representation
p = A3 ® M has weights L;, + L;, + L;, & Ly, where 1 <y < iy < i3 < 6.

Let S C K be a maximal torus. As an element of Q[y1,...,y7] - H*(BS) the
total Chern class is

(4.18) c(we) = H (1= (yir + Yin +9is +y7)%).

1§i1 <i2<13§6

Eg(—14) The maximal compact subgroup K C Eg_14) has Lie algebra s019 x s02.

According to [I] (pg. 53), as a K-representation ¢g decomposes as
¢ = (5010 +502) B (AT @+ A”®E?)

where £ : SOy — C* denotes the identity representation of SOs (or rather the
induced Lie algebra representation), and £* : SOy — C* denotes the k-th power of

€.
With respect to the standard basis h*(so19 x s02) = (L1,...,Ls) ® (L), the

isotropy representation p = At ® €3 + A~ ® £ 3 has weights
1
§(€1L1 + -+ esLs) + 3eq L,

where (€1, ,€5) € {£1}° has an even number of —1’s.
Let S C K be a maximal torus. As an element of H*(BS) ~ Q[y1, . . ., y5]®Q[ys),
the total Chern class of the isotropy representation is

(4.19) c(ie) = H (1 - i(€1y1 +-+esys + 6y6)2) )

with the product over the tuples (e1,...,e5) € {£1}° with an even number of —1’s.

Eg(—26) The maximal compact subgroup K C FEg(_26) has Lie algebra f4. Following

M (pg. 95), as a K-representation, e decomposes
e =1 & U

where U is the 26-dimensional fundamental representation of f4. With respect to
the standard basis b*(f4) = (L1,...,Ly4), the isotropy representation p ~ U has
weights £L; for 1 <i <4 and §(+Ly + Ly + Ly + Ly).

Let S C Fy be a maximal torus. As an element of H*(BS) ~ Q[y1, y2, Y3, Y],
the total Chern class of the isotropy representation is

(420)  c(ec) = [T(1 - 9D II (1 - 3(612/1 + €2y + €3y3 + y4)2) :

i=1 (e1,€2,63)€{£1}3
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4.11. Isotropy representation for real forms of Fj.

Fjy(4) The maximal compact subgroup K C Fjy(4) has Lie algebra suy X sp;. As a

K-representation, f4 decomposes as
fa = (suz ®sps) & Ay QW

where W C A? is the kernel of the contraction map A3 — A} (it is an irreducible
representation of Sps; of dimension 14).

Since K C Fy(4) have the same rank, we can identify b*(f4) = (J1, J2, Js, J4) and
[]*(SUQ X 5]33) = <L1> S5 <L2, L3,L4>.

The roots of Fy are

+J; 1<:<4
+J; + J 1<i<j<4
xS £ I+ 3+ Jy)

According to [7] (pg. 390), the roots of sus x spy C f4 are

+(J1 — J2), i(Jl + JQ), +J3, +Jy, £J3+ Jy,
%(i(J1 +J2>iJ3iJ4)

We can identify these roots with the roots of suy x sp4 inside h*(suz x spg) by the
identification

Jl - J2 — 2L1
Ji+Jo — 2Ls
J3+Jy < 2L3

J3 - J4 — 2L4

Under this identification, the weights of the isotropy representation p = W ® A} will
be the roots of f4 that are not roots of sus x sp;. Then the weights of the isotropy
representation are +Lq £ L; for ¢ = 2,3,4 and &Ly £+ Lo &+ L3 £+ L, (for all 16 sign
choices).

Let S C K be a maximal torus. As an element of H*(BS) ~ Q[y1]®Q[y2, y3, ya],
the total Chern class for the isotropy representation is

4

(4.21) c(wc) = H (1 — (1 +yi)2) (1 —(y1— yz‘)Q) H (1 — (y1 + €292 +€3y3 +e4y4)2)
i=2

where the second product is over all tuples (ez, €3, €4) € {£1}3.

Fy(—20) The maximal compact subgroup K C Fy_sg) has Lie algebra sog. Following

1] (pg. 51), fa decomposes as a representation of K as
f4 =509 D A

where A is the spin representation of K. The isotropy representation p = A has
weights %(iLl + -+ Ly).
Let S C K be the maximal torus. As an element of H*(BS) ~ Q[y1,--.,y4],

the total Chern class of the isotropy representation is

1
(4.22) c(ue) = H (1 - 1(61y1 + €212 + €3y3 + y4)2> :
(€1,€2,e3)e{£1}3
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4.12. Isotropy representation for real forms of G3. The maximal compact
subgroup of Gy(g) is K = SUz x SUz. As a K-representation, ga decomposes

g2 = (sup x sup) + Sym*(V) @ V

where V is the standard representation of SUs, and Sym?(V) is the 2nd symmetric
power. The weights of p = Sym?(V) ® V are +L; & Ly and +£3L; & Ly. (Compare
with Lecture 22 of [6] or pg. 393 of [7].)

Let S C SU3 x SU; be a maximal torus. As an element of H*(BS) ~ Qly1, y2],
the total Chern class is

(4.23) c(ec) = (1= (y2+3y1)*) (A — (2 + 1)) (1 = (y2 — 11)*) (L = (2 — 351)*).
5. COMPUTING «} : H*(BG) — H*(BGY)

The following theorem allows us to compute as : H*(BG) — H*(BG?) for G a
real, semisimple Lie group. See Milnor [14], Theorem 2.

Theorem 5.1 (Milnor). Let G be a real, simple, connected Lie group. Assume that
its complexification G is simple. Then sequence

H*(BGe; Q) > H*(BG;Q) 25 H*(BGY;Q)

induced by the maps G° — G — G is “evact” in the sense that the kernel of o3 is
the ideal generated by the image of i* : H*(BG¢) — H*(BG) for k > 0.

Theorem [5.1] applies to all the groups G in Table 2. If G is one of the complex
Lie groups from Table 1, then G¢ ~ G x G is not simple, so Theorem does
not apply. In this case, we have the following theorem, whose proof comes from
Chern-Weil theory (see Milnor [14] Lemma 11).

Theorem 5.2. Let G be a complex, simple Lie group with finitely many compo-
nents. Then o} : H'(BG;Q) — H(BG?;Q) is zero fori > 0.

By Theorem 5.2} if G is one of the groups from Table 1, then o is zero in positive
degrees and so p;(I'\G/K) = 0 for ¢ > 0. This proves Theorem for the groups
in Table 1.

In the remainder of this section we use Theorem[5.1]to compute a3 for all the G in
Table 2. Let G be one of the groups in Table 2 with maximal compact subgroup K.
Let G¢ be the complexification of G and let U be the maximal compact subgroup
of Ge. Let S € K and S’ C U be maximal tori such that complexification G — G¢
sends S into S’. We have the following diagram of inclusions, and an induced
diagram on cohomology.

G

Ge H*(BG)

H*(BGc)

T H*(BK) ~——— H*(BU)
v ~ i:
J* ,
T H*(Q\S)W<***H*(BS,)W
§——¢ v(
H*(BS) H*(BS')
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In the diagram on the right, the top two vertical arrows are isomorphisms because
K — G and U — G¢ are homotopy equivalences. The middle two vertical arrows
are isomorphisms by Theorem Thus to compute the map * it is enough to
compute j*. We do this in the remainder of this section.

5.1. Computing o3 for G = SL,(R). Here K = SO,, and U = SU,,. For 0 €
R/27Z, let
9_( cos(f) sin(6) )

—sin(f) cos(0)
Let k = [n/2]. The map S — S’ sends

0
Y1 D
(5.1) — D1
L (1)
(1)
where
67;91
D= ,
eiek
and the 1 in (5.1]) appears only if n is odd. Identify
I (BS')W/ - Sym(zy...,2,)
and

Sym(y?,...,y? n=2k+1
}F@$W:{ 2(12 v
(Sym(yt,. .- wp)syr--ye) n=2k
From 1) we conclude that the image of j* : H*(BS/)W/ — H*(BS)V is Sym(y3, ..., y?).

5.2. Computing a3 for G = SU,, ,. Here K = S(U, x U,) and U = SU,,, and
the inclusion S < S’ is an isomorphism. Identify

H*(BS/)W/ ~ Sym(xl RN ‘T;DJrq)
(T1 4+ Tpaq)

and

H*(BS)W ~ Sym(yl "'7yp) ®Sym(zla"'7zq)
(y1+---+yp+21+~--+zq)
The image of j* : H*(BS’)W/ — H*(BS)W is Sym(y1, .-, Ups 21, - - - » 2q)-

Corollary 5.3. Let p,q > 2 and let G = SU,,. Then o : H*(BG) — H*(BG?)
is injective on the linear subgroup generated by Zi<j Yiy; and (Zyz)2

Proof. For 1 <i <p (resp. 1 <i <gq), let o7 (resp. 07) denote the i-th elementary
symmetric polynomial in {yi,...,yp} (resp. {z1,...,%2,}), viewed as elements of
H*(BS)Y ~ H*(BG). Similarly, let ¢/"* denote the i-th elementary symmetric

polynomial in {y1,...,Yp, 21,-..,24}. Let Z denote the ideal
I=(c¥7%... ,azfq).
The following relations are easy to verify.

Y.z _ Y z Y,z _ Y Yy _z z
(5.2) 0" =o0{+0j, and 03" =03+0j0]+o0;5.
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2
Note that (0)* = (X v:)” and 0§ = 3=, _; %iy;. By Theorem ﬂ, to prove the
corollary it is enough to show that no nontrivial linear combination c¢-oj +d- (c})?
belongs to Z. The elements of Z that have total degree 2 all have the form

(ac) +boi) - o} +m-o¥”
where a, b, m are scalars. By simple linear algebra, one checks that if
c 0§ +d-(0f)* = (ao{ + bo7) - of* +m - 0}7,

then m = a = b = 0. This implies ¢ = d = 0 because ¢ and (0})? are linearly
independent in H*(BS)". Hence no nontrivial linear combination c¢- o3 + d - (¢)?
belongs to Z. [

Corollary 5.4. Let p > 2 and let G = SU, 1. Then ob : H*(BG) — H*(BG?) is
nonzero on » ;. Yiy;, and

. 2
a3 (D w)” = a5 (D vy)-
1<j
Proof. We use the same notation as in the proof of Corollary Since ¢ = 1 in
the present case, the relations in (5.2)) simplify to the following relations.

(5.3) o} =0{+0f, and oY =0} +o0ol0}.

Since the elements o, 0% are all linearly independent in H 2(BS)W | it is a simple
matter of linear algebra to show that o is not in Z, and hence is not in the kernel
of aj.

To see that aj((0})?) = a3(cY), note that the first equation in (5.3) implies that

Y UE (U2 L Y2
o] 077 = (o)) +oio] €.

Then 0§ — (c¥)? = 04* — 0¥ -o¥* belongs to Z (the right hand side obviously does).
This implies that o3 and (o})? have the same image under oj. O

5.3. Computing o} for G = Sp,,(R). Here K = U,, and U = Sp(n), and the
inclusion S < S’ is an isomorphism. Identify

H*(BSYW' ~Sym(z?,...,22) and H*(BS)" ~ Sym(y1,...,yn)-

The image of j* : H*(BS")W' — H*(BS)W is Sym(y2,...,y2).
Corollary 5.5. Let G = Sp,,,(R). Then az(Zyi)2 #0.

Proof. Let o; (resp. w;) denote the i-th elementary symmetric polynomial in {y1,...,yn}
(resp. {y?,...,y2}). Let Z denote the ideal (w1, ...,wy,).

By Theorem [5.1} to show 0% = (Zyi)Q is not in ker a3, it is enough to show
02 ¢ T. Note that w; = 0? — 205 and that the only elements of Z of degree 2 are

scalar multiples of w;. Since o7 is obviously not a multiple of 07 — 205, we conclude
2
o1 ¢ T. O
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5.4. Computing a; for G = SO, 4. Here K = 50, x SO, and U = SO,,14. Let
m = [(p+q)/2], let a = [p/2], and let b = [¢/2]. Identify

H*(BS') ~ Qlz1,..., 2] and  H*(BS) >~ [y1, ... Yps 21, - - - s 24)-

It is not hard to see that the image of j* : H*(BS")W' — H*(BS)W contains
Sym(y?, ... ,yg, 2., zg)

Corollary 5.6. Let p,q > 2 and let G = SO, 4. Then a3( Y y?) #0.
Proof. The proof is the same as in Corollary The image of

HY(BS")W' ~ HY(BG¢) — HYBG) ~ H*(BS)W
is generated by multiples of Y. y? + > 212-, and Y y? does not have this form. O
Corollary 5.7. Let p > 4 and let G = SO, ,. Then o : H*(BG) — H*(BG?) is
injective on the linear subgroup generated by ZKJ. yfy? and (nyf

Proof. The proof is identical to the proof of Corollary [5.3] after replacing y; and z;
by y? and z? O

5.5. Computing «o; for G = Sp, ,. Here K = Sp(p) x Sp(q) and U = Sp(p + q),
and the inclusion S — S’ is an isomorphism. Identify

H*(BS"YW ~ Sym(z?,... ,x12)+q)
and

’7q

H*(BS)W ~ Sym(y?,. .. 7yﬁ) ® Sym(z3,...,22).

The image of j* : H*(BS )W — H*(BS)W is Sym(y2, ... ,yfﬂ 2., zg) We have
the following Corollaries and whose proofs are identical to the proofs for
Corollaries [5.6] and respectively.

Corollary 5.8. Let p,q > 1 and let G = Sp,, ,. Then ag(ny) #0.

Corollary 5.9. Let ¢ > 1 and p > 2, and let G = Sp,, ,. Then a3 is injective
on (Zyi)Z. If p,q > 2, then a3 is injective on the linear subgroup generated by

S ies v2y2 and (X y2).

5.6. Computing o for G = SOj3,. Here K = U, and U = SO3,, and the
inclusion S < S’ is an isomorphism. Identify

H*(BS") ~Qlz1,...,z,) and H*(BS) ~Q[y1,---,Ynl-
The image of
§*: H(BS")YW' — H*(BS)" = Sym(y1, ..., yn)

contains Sym(y?,...,y2). We have the following corollary, whose proof is identical
to the proof of Corollary

Corollary 5.10. Let G = SO3,,. Then ag(Zyi)Q # 0.
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5.7. Computing o} for G = SUj3,. Here K = Sp,, and U = SUy,,. Identify

H*(BSI)W/ ~ Sym(mh v 7x2n)
(l'1+...+:r2n)

and
H*(BS)Y ~Sym(yf, ..., y5).
It is not hard to see that j* : H*(BS")"' — H*(BS)W is surjective.

Corollary 5.11. Let G = SU;,. Fori > 0, the map o : H'(BG) — H'(BGY) is
zero.

5.8. Computing o3 for G a real form of Eg.

Egsy Here Lie(K) = 5016 and U = Eg, and the inclusion S < S’ is an isomorphism.
As in Section [3] we identify

HY(S") ~ (J1,...,Js) and H(S)~(Li,...,Lg).

Under H'(S") — H!(S) we have J; — L;. Let z; = 7(J;) € H?(BS') and let
y; = 7(L;) € H*(BS). In Section we explained that

H*(BSI)WI ~ Q[Iz, Is, I12, I14, Itg, I20, I24, I30)].

Under j* : H*(BS’) — H*(BS) the polynomial I maps to a multiple of y2+- - -+y2.
By Theorem m the elements of H®(BS)" in the kernel o are multiples of

8
2
Wi+ +u3) = (Z?f‘) +2| > vy
i=1 1<i<j<8
This implies the following corollary.

Corollary 5.12. Let G = Eg(gy. With the notation above, Oz;(Z?zl yf) #0.

Eg(_24) Here K = E7 x SU and U = Ejg, and the inclusion S — S’ is an isomor-
phism. Identify H'(S") ~ (Ji,...,Js) and

HYS) ~ (J1,...,J, Jr + J3) @ (Jr — Jg).

Let z; = 7(L;) € H*(BS') for 1 <i < 8. Let y; = 7(L;) € H?>(BS) for 1 <i < 6,
let y7 = 7(J7 + Jg) and ys = 7(Ly — Lg). In Section [3| we explained that

H*(BS/)W/ ~ Q[Iz, Is, L2, I14, I1g, I20, I24, I30)],

and Iy = 30(23 + -+ + 23). Under j* : H*(BS') — H?(BS), z; — y; for 1 <i <6,
y7;y8 (1/7;1/87 SO

27 ,and zg —

75(L2) =30(y; + -+ + ) + 15(y7 + v3).

By Theorem every element of the kernel H4(BEg(_24)) — H*(B(Esg(—24))°) is
a scalar multiple of j*(I2). This implies the following corollary.

Corollary 5.13. Let G = Eg(_a4). With the notation above, o (y2) # 0.
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5.9. Computing a5 for G a real form of F-.

E7(7y Here Lie(K) = sug and U = Er, and the inclusion S — S’ is an isomorphism.
We identify H!'(S’) as the subspace of (Ji,...,Js) orthogonal to Jy + --- + Jg,
and we identify H'(S) as the subspace of (L1, ..., Lg) orthogonal to Ly + - -+ Lg.
Then H'(S") — H!(S) is the obvious map J; — L;. Let z; = 7(J;) € H?>(BS') and
y; = 7(L;) € H?(BS). In Section [3| we explained that

H*(BS"W' ~ Qll2, I, Is, 1o, 12, 14, T8,

and computed Iy = 3 [7 (3 22) + 2 (3 ziz;)] for this copy of Er C Es. Under

j*: H*(BS') — H*(BS)

I % {7(2 i) +20) yiyj)} =-9 (Z yiyi) '

The equality follows because of the relation > y? = =23 y,y; in H*(BS)". By
Theorem every element of the kernel of

o« H¥(BEq (7)) — H®(B(Ex7)°)

is a scalar multiple of (Z y?)2 This implies the following corollary.
Corollary 5.14. Let G = Ey(7y. With the notation above, o’ (Y- y}) # 0.

Er7(_5) Here Lie(K) = 5012 x sup and U = E7, and the inclusion S — S’ is an

isomorphism. As in Section [3] we identify
HY(S"Y~ (J1,...,Je, Jr + Js) and H'(S) =~ (Ly,...,L¢) @ (Ly).
Under H'(S") — H'(S) we have
{ Ji = L 1<i<6
Jr+Jg — 2L;

Let z; = 7(J;) € H*(BS’) for 1 <i <6 and let z7 = 7(J7 + Jg). Let y; = 7(L;) €
H?(BS). In Section [3| we explained that

H*(BS"Y"W' ~Qlly, I, Is, T10, L1, T4, I1s).
Under j* : H*(BS') — H*(BS),
Iy = 6(yf + 93 + 3 + i + 3 + g +207).
In particular, by Theorem [5.1] every element of the kernel of
a3 : HY(BEqy(—5)) — H'(B(Er(-5))°)
is a scalar multiple of j*(I3). This implies the following corollary.

Corollary 5.15. Let G = Eq(5). With the notation above, o5(y3) # 0.

E7(_95) Here Lie(K) = ¢s x s02 and U = Er, and the inclusion S — S’ is an
isomorphism. Identify H'(S") ~ (Ji,...,Js, J7 + Jg) and
HY(S) ~ (J1,...,J5, o + Jr + Jg) © (2J5 — J7 — Jg).

Let z; = 7(J;) € H3(BS') for 1 <i <,6, and let z; = 7(J; + Jg). For 1 <i <5,
let y; = 7(J;) € H*(BS), and let yg = 7(Js + J7 + Jg) and y7 = 7(2Js — J7 — Jg).
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In Section [3] we explained that
H*(BS"W' ~QlI, s, Is, 10, I12, I1a, T1s),

where Iy = 6(27 + -+ + 22) + 322. Under j* : H*(BS') — H%*(BS), z + y; for
1<i<5, 25— 1/6;1/77 27— 2ys;ry7, SO

7 (1) = 6(y7 + 3 + 93 + i +y2) + 205 + o7
By Theorem j7*(I3) generates the kernel of
Oé; : H4 (BE7(725)) — H4 (B(E7(,25))6).
In particular, we have the following corollary.
Corollary 5.16. Let G = Eq(_25). With the notation above, as(y?) # 0.

5.10. Computing o3 for G a real form of Es.
Eg(s) Here Lie(K) = sp, and U = Eg. Identify H'(S) ~ (Ly, ..., L) and

HY S C (J1,...,Jg,Jr — Jg)

as the subspace orthogonal to the roots in (3.4). Under sp, — ¢g < es the Cartan
subalgebra h(sp,) C sp, is contained in the image of the Cartan subalgebra for
sug X suy C sug. Under h*(eg) — h*(sp,), we have

J; L, 1<:1<3
Jigz — —L; 1<i<3

J7 (g L4

Jg = —L4

It is then easy to determine the restriction of this map to h*(es).
Let z; = 7(J;) for 1 <i < 6 and let 27 = 7(J;—Jg) in H?(BS'). Let y; = 7(L;) €
H?(BS) for 1 <i < 4. From Section H*(BS’)W/ ~ Q[l2, I5, Is, Is, Iy, I12], where

=50+ +2)+32 -2 >z

Under j* : H*(BS') — H*(BS),
I = 12(y7 +y5 +y5 +yi).
By Theorem j*(I) and j*(I3)? generate (as a vector space) the kernel of
oy : H*(BEg)) — H"(B(Eg))°)
for k = 4,8. In particular, we have the following corollary.

Corollary 5.17. Let G = Eg(). With the notation above, ag(zyf) # 0.

FEg(2) Here Lie(K) = sug x sup and U = Eg, and the inclusion S < S’ is an isomor-
phism. We identify H'(S") C (Ji,...,Js, J7 — Jg) as the subspace of (Jy,...,Js)
orthogonal to the roots in . We identify H!(S) as the subspace of (L1, ..., Lg)®
(L7) orthogonal to Ly + -+ + Lg. The map H'(S’) — H'(S) is given by J; — L;
for1§i§6andJ7—J8|—>2Li.

Let 2z; = 7(J;) € H*(BS') for 1 < i < 6 and let 2; = 7(J; — Jg). Let y; =
7(L;) € H*(BS) for 1 <i < 7. In Section we explained that

H*(BS/)W/ ~ Q[127 I5; I6,187 Igﬂ I12}’
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where

Iy =50z 4 - +22)+322 -2 Z 2iZ;
1<i<j<6

Under j* : H*(BS') — H*(BS),

L=byi+-+u)+ 1207 -2 >
1<i<j<6

Since Y- y? = =23 y;y; in H*(BSUg), we can re-write this polynomial
5 (I2) = 6(yf + - + g + 247).-
By Theorem [5.1] the kernel of
o3 : H(BEq(2) — H'(B(Es()’)

is generated by scalar multiples of j*(I3). In particular, we have the following
corollary.

Corollary 5.18. Let G = Eg(2). With the notation above, o(y3) # 0.

Eg(—14) Here Lie(K) = so10 x s02 and U = Eg, and the inclusion S — S’ is an

isomorphism. As in Section [3] we identify
HY (S~ (J1,....J5, Jo + Jr +Jg) and H'(S)=~(Ly,...,Ls) ® (Lg).

Under H'(S") — H'(S) we have J; — L; for 1 < i <5 and Js + J7 + Jg — Lg.
Let 2z, = 7(J;) € H*(BS') for 1 < i <5 and let w = 7(Js + J7 + Jg). Let
y; = 7(L;) € H*(BS). In Section [3] we explained that

H*(BS")W' ~Qlls, Is, Is, Is, Iy, I12).
Under H*(BS') — H*(BS),
Iy = 6(yT +y5 + 93 + i +y3) + 3 3.
In particular, by Theorem [5.1] every element of the kernel of
ab s HY(BEg(—14)) — H*(B(Eg(-14))°)
is a scalar multiple of j*(I3). This implies the following corollary.

Corollary 5.19. Let G = Eg(_14). With the notation above, as(yd) # 0.

Eg(—26) Here K = Fy and U = Ep. Identify

HY(S)~(Ly,...,Ly) and HYS')=(J1,...,J5,J6 + Jr + Jg).

)
Let z; = 7(J;) € H3(BS') for 1 <i <5 and let 26 = 7(Js + Jr + Jg). For 1 <i <4,
let Yi = T(Lz) S HQ(BS)
Under H*(BS’) — H*(BS) we have z5,26 — 0 and z; — y; for i = 1,...,4. By
the Equations and , it is easy to see that j* is surjective.

Corollary 5.20. Let G = Eg(_ag). Fori >0, the map o : H'(BG) — H'(BG®)
18 zero.
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5.11. Computing o5 for G a real form of Fj.

Fygy. Here Lie(K) = suy x sp; and U = Fy, and the inclusion S — S’ is an

isomorphism. As in Section [3| we identify H'(S’) ~ (Ji,...,Js) and we identify
Hl(S) ~ <L1> () <L2,L3,L4>. Let z; = T(Jl) S H*(BSI) and Yi = ’T(Ll) € H*(BS)
fori =1,...,4. In Section we described the isomorphism H*(S’) — H*(S),
and so under j* : H*(BS') — H*(BS),

Z1 = Y1t Y2
. Z2 = Y2 — Y1
. Z3 Yzt Ya
24 Yz — Y4

In Sectionwe explained that H*(BS’)W/ ~ Q[Is, Is, Is, I12], where
Iy = 3(2% 4 22 + 22 + 22).
Under j* : H*(BS’') — H*(BS),
L/3 = (y1+y2)* + (Y2 —91)° + (y3 +ya)® + (y3 — ya)?
= 2(yi +y3 + 3+ i)

By Theoremthe elements of H*(BS)" that are in the kernel of o are all scalar
multiples of y? + - -+ + y3. The following corollary will be used in Section @

Corollary 5.21. Let G = Fy4). With the notation above, a3(y3) # 0.

Fy(—20). Here Lie(K) = sog and U = Fj, and the inclusion S — S’ is an isomor-
phism. As in Section

HY(S") ~ (J1,...,Js) and H(S) ~(Li,...,Ly).
Under HY(S') — HY(S) we have J; — L;. Let z; = 7(J;) € H*(BS') and y; =
7(L;) € H?(BS) for i = 1,...,4. In Section [3| we explained that H*(BS")W' ~
QlI2, Is, Is, I12], where I = 3(z% + 23 + 23 + 2%). By Theorem [5.1] the elements of
H8(BS)W that are in the kernel of a are all scalar multiples of

j*(12)29~[(§:y?)+2( > vyl

1<i<j<4

This implies the following corollary.

Corollary 5.22. Let G = Fy_s0). With the notation above, o ( Zl<i<j<4 yfy?) #+
0. o

5.12. Computing o3 for G a real form of G,.

G2(2) Here K = SU; x SUs and U = G5, and the inclusion S — S’ is an isomor-
phism. H(S") ~ (Jy, Jo) and H(S) ~ (L1, Ly), and under H'(S") — H'(S)

J1 = 2L1
Jo +— —3L1+ Lo

Let z; = 7(J;) in H%(BS') for i = 1,2 and y; = 7(L;) in H?(BS) for j = 1,2.
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In Section [3| we explained that H*(BS")W' ~ Q[I2, Is], where
Iy = 2(327 + 32120 + 23).

Under j* : H*(BS') — H*(BS), Iy — 2(3y? + y3). By Theorem 3y? + y3
generates the kernel of a3 : H*(BGq2)) — H*(B(G2(2))°). In particular, we have
the following corollary.

Corollary 5.23. Let G = Gy2). With the notation above, a3(yi) # 0.

6. CONCLUSION

Recall that G is a simple Lie group from Table 2 and I' C G is a cocompact
lattice. Our goal in this section is to find nonzero elements in the image of the
composition

H*(BHomeo(S" 1)) <% H*(BG) 2% H*(BG®) = H*(BT).

In Section 4| we showed that ai(q;) = pi(t) = (=1)%c2i(tc), and we computed
the polynomial ¢(tc). The kernel of o3 is generated as an ideal by the image of
i* : H”Y(BG¢c) — H>Y(BG) by Theorem and i* was computed in Section
Finally, a3 is injective by the following proposition.

Proposition 6.1. LetT' C G be a cocompact lattice. Then the image of H*(BG) —
H*(BG?) injects into H*(BT).

The proof of Proposition [6.1] uses a transfer argument and can be found in
Section 2.3 of [B]. We can thus combine the computations from Sections [4] and [5| to
determine if p;(I'\G/K) # 0.

6.1. Pontryagin classes for SL, (R)-manifolds.

Theorem 6.2. Let G = SL,(R) and let ' C G be a cocompact lattice. Then
p;(T\G/K) =0 fori > 0.

Proof. In Section we computed the total Chern class ¢(ic) of the isotropy rep-
resentation. By Equations (4.1) and (4.2), c(ic) is a symmetric polynomial in
{y},...,y2}, where k = [n/2]. This implies that c(:c) is in the image of

H*(BSL,(C)) — H*(BSL,(R)),
by Section Then a3 (c(uc)) = 0 by Theorem [5.1 Hence
pi(M) = aj0505(q:) = (=1)" ajaz(c(ec)) = 0. -
6.2. Pontryagin classes for SU,, ;,-manifolds.

Theorem 6.3. Let p,qg > 1 and (p,q) # (1,1). Let G=8SU,, and letT' C G be a
cocompact lattice. Then p1(I'\G/K) # 0.

Note that SU; 1 =~ SO5,;. This case is covered in Theorem @
Proof of Theorem[6.3. From Equation ([4.3)), one computes

p() =q (Z yf) +p (Z Zf) -2 iz

Using the relation > y; + Y. 2z; = 0 in H*(BS)" ~ H*(BG), and the relation

as (ny—i—z,zf) =0
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from Section [5.2] it follows that
05 pi() = (- p+2) 03 (X ) +20- )03 (Y wy).
If g = 1, then a3 (Y 4:)* = a3 (X wiy;) by Corollary 5.4 and so
aspi(t) = (p+1) a5 (D viys),

which is nonzero (again, see Corollary [5.4)).

If ¢ > 2, then o3 ( > yi)2 and o} ( > yiyj) are linearly independent by Corollary
and it follows that a3 p1(¢) # 0. Hence p; (M) = ajad p1(t) # 0 by Proposition
6.1] ([l

6.3. Pontryagin classes for Sp,, (R)-manifolds.

Theorem 6.4. Fizn > 2. Let G = Sp,,,(R) and let T' C G be a cocompact lattice.
Then p1 (T\G/K) # 0.

Proof. From Equation (4.4]), one computes
i) =(n+3)> ¥ +2> iy
By Section a3 (> y?) = 0. Using the relation () yi)2 =3y + 23 vy,

a3 p1(0) =205 wiws) = a5 ( Y i)’

which is nonzero by Corollary Hence p1 (M) = ajas p1(t) # 0 by Proposition
6. 1] t

6.4. Pontryagin classes for SO,, ,-manifolds.

Theorem 6.5. Let p,q > 2. Let G = SO, , and let I' C G be a cocompact lattice.
Then p1(T\G/K) # 0 if and only if p # q.

Theorem 6.6. Fiz p > 4. Let G = SO, , and let I' C G be a cocompact lattice.
Then po(T\G/K) # 0.

Remark. SOg2 ~ SLa(R) x SLo(R) is not simple and SOz 3 ~ SL4(R) is covered by
Theorem [6.2

Theorem 6.7. Let G = SO, 1. LetT' C G be a cocompact lattice. Then p;(I'\G/K) =
0 fori>0.

Proof of Theorem[6.5. Let a = [p/2] and b = [¢/2].
Case 1. Assume p = 2a and g = 2b are both even. From Equation (4.5)) one

computes
p1(L) = 2b(ny) + 2a(sz2-).
By Section a3 (Y y?) +a5(X27) =0, and so
aspi(t) =2(b—a) az( ) _u7).

By Corollary Oz;(ny) # 0. The assumptions that p # ¢ and that p,q are
both even imply that o p1(¢) # 0. Hence p1(M) = afab pi(t) # 0 by Proposition
0.1}
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Case 2. Assume p = 2a and ¢ = 2b+ 1. From Equation (4.6) one computes

pr() = 2o+ 1)( D ?) +2a( D 22).

Similar to Case 1,
azpi(e) = (26— 2a+ 1) a3 (Y i),
which is nonzero and so p1 (M) = afab pi(¢) # 0.

Case 3. Assume p = 2a + 1 and ¢ = 2b. Using Equation (4.7), in an entirely
similar fashion to Case 2,

aspi(t) = (2b—2a— 1) a5 (> v7),
which is nonzero, and this implies py (M) # 0.

Case 4. Assume p = 2a+ 1 and ¢ = 2b + 1. From Equation (4.8)) one computes

p1(t) = (2b+1 Zyz 2a+1)(Zz]2).

azpi(e) =2(b—a) a3 (D ui),
which is nonzero since p # ¢ and p and ¢ are both odd. Then p;(M) # 0 in this
case. (|

Then

Proof of Theorem[6.6. We separate the cases when p is even and when p is odd.
Case 1. Assume p = 2a is even. From Equation (4.5 one computes

pa(t) = (2;) Syl ( )Zz +(20)2 3 g2y (20)2 Y 22224 (40> —6) 3 g2

By the computation in Section

a§(ny+Zz§-‘) =0 and aé(nyy,% +szzf+2yfz]2) =

From these relations, it follows that
(6.1) a; p2(t) = —6 a2 ZZJ

From the fact that o3 (Y y? + Y 212) = 0, it follows that

(6.2) a5 (Do wi=d) = as(Dou?)

By Corollary 043(23/1»2)2 # 0 for p > 4, so we conclude from 1) and |D
that ab pa(¢) # 0. Then pa(M) = afad p2(1) # 0 by Proposition

Case 2. Assume p = 2a + 1 is odd. The total Chern class of the isotropy repre-
sentation is given in Equation . Let A = [[7_,(1 — ) [Tj=,(1 = 23). From
the computation in Section (combined with Theorem , it is immediate that
a(A) = 1. Then the computation of o} p2(¢) is the exact same is in Case 1. Again

we conclude ps (M) # 0. O

Proof of Theorem[6.7. If G = SO, 1, then b = 0 and the total Chern class is a
symmetric polynomial in {y?,...,52}. In Section we saw that all such polyno-
mials are in the image of H*(BG¢) — H*(BG), and hence in the kernel of b by
Theorem This implies p;(M) =0 for all ¢ > 1. O
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6.5. Pontryagin classes for Sp, ,-manifolds. It is worth noting the similarity
between Sp,, , and SOz 24. On the level of cohomology,

H*(BSp,,,) ~ Sym(yi,...,y;) ® Sym(z7,. .., 27),

while
H*(BSOQP,Z(]) = <Sym(y%7 s 7%2;)7?41 e yp> ® <Sym(zf, ceey Zg)a Z10 Zq>-

Note also from Sections and the weights of the isotropy representation for
both are +y;  2; for i = 1,...,p and j = 1,...¢. Then in both cases the total
Chern class of the isotropy representation is

c(ee) = [+ +2) 1+ wi — 2) (1 — i + 2)(1 — i — 2).
Finally, by Sections [5.4] and for G = Sp,, , or G = SOg, 2,
Im [j* : H*(BG¢) — H*(BG)] = Sym(y3, . .., y;, 2,0, zg),

so the relations used to compute o p;(t) for SOq; 24 also compute a; p;(t) for Sp,, .
From these observations and from the proofs of Theorems [6.5] and we have the
following two theorems. (One should replace the use of Corollaries [5.6] and [5.7] in

the proofs of Theorems and by Corollaries and )

Theorem 6.8. Let p,q > 1 such that (p,q) # (1,1). Let G =Sp, , and let ' C G
be a cocompact lattice. Then p1(T\G/K) # 0 if and only if p # q.

Note that Sp; ; ~ SOy 1, which is treated in Theorem

Theorem 6.9. Fizp > 2. Let G = Sp,,, and let I' C G be a cocompact lattice.
Then p2(I'\G/K) # 0.

6.6. Pontryagin classes for SO;, -manifolds.

Theorem 6.10. Fizn > 3. Let G = SO}, and let T C G be a cocompact lattice.
Then p1(I'\G/K) # 0.

Remark 6.11. We only consider n > 3 because SO; ~ C and SO} is not simple.
Proof. From Equation (4.10), one computes

pi()=(m—=1)> 7 +2) vy,

By the computation in Section a3 (> y?) = 0. Using the relation (Y yi)2 =
(> y2) + 2> yiy;, it follows that

o3 pi(0) =205( Y i) = as( D w)”,

which nonzero by Corollary Then p; (M) = afad p1(t) # 0 by Proposition
6.1] ([l

6.7. Pontryagin classes for SUj, -manifolds.

Theorem 6.12. Let G = SU;, and let T' C G be a cocompact lattice. Then
pi(T\G/K) =0 fori > 0.

Proof. By Corollary o is zero in positive degrees. (]
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6.8. Pontryagin classes for Fg-manifolds.

Theorem 6.13. Let G = Ejgig) and let I' C G be a cocompact lattice. Then
p1(I\G/K) = 0 and p2(I'\G/K) # 0.

Proof. From Equation (4.12), one computes
pi() = 16(yf + -+ 53)
and

8
pa(1) = 126 (Zy?>+244 > vy

i=1 1<i<j<8
2
By Theorem and the computation of Section Z?:l y? and (Zf:l yf)
generate the kernel of
aj : H*(BEgy)) — H*(B(Eyg))°)
for k =4,8. Then o p1(¢) =0 and

oy pa() =403 (3o ut) +122 a3 [(Dv?)]

=0

By Corollary [5.12, a} pa(c) = 4 o3 (X yit) # 0, and so pa(M) = ajad p2(1) # 0 by
Proposition [6. ] ([l

Theorem 6.14. Let G = Eg(_a4) and let I' C G be a cocompact lattice. Then
pi(IN\G/K) # 0.
Proof. From Equation (4.13)), one computes

pr(e) =12(y7 + -+ + y5) + 6y7 + 1443.

By Theorem and the computation of Section 2(y? +- - +y2) +y2 generates
the kernel of

g H4(BE8(—24)) — H* (B(Es(—24))6)-
Then
a3 p1(e) = 14 03 (y5)
is nonzero by Corollary[5.13} and so p1 (M) = aja3p1(2) # 0 by Proposition[6.1] O

6.9. Pontryagin classes for F;-manifolds.

Theorem 6.15. Let G = Ey¢q) and let I' C G be a cocompact lattice. Then
p1(I\G/K) = 0 and p2(I'\G/K) # 0.

Proof. From Equation (4.14)), one computes
pi() =595 (32 u2) +1210 (3 iy )

pa(t) = 52360 (Y ui) + 220660 (Y yly;) + 336 790 (3 viy?)

+ 684 810 (X yiysun) + 1392444 (3w ywye) -
By Theorem [5.1] and the computation of Section [5.9] for k£ = 4,8, the kernel of

s : H*(BS)"W ~ H"(BEq 1)) — H*(B(Eq(r))°)

and
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is generated by (3 y?) and (3 y?)2 Since Y~ y? and Y y,y; are linearly dependent
in H*(BSUg), it follows that a3 p1(:) = 0. Using relations among the symmetric

polynomials and that ag(z yf)2 = 0, we find that

as pa(t) = =348 109 o3 (D w),

which is nonzero by Corollary Then po(M) = alab pa(t) # 0 by Proposition
6.1} (]

Theorem 6.16. Let G = FEr(_5) and let I' C G be a cocompact lattice. Then
P(T\G/K) #0.
Proof. From Equation (4.15)), one computes

7
pi(t) = 8(2%2)
i=1

By Theorem and the computation of Section the kernel of
oy : HY(BEq(_5)) — H*(B(E7(_3)°)
consists of scalar multiples of I = y? + --- + y2 + 2y2, and so
a; pi(t) = 8a3(I —y7) = —8 a3(y7)

which is nonzero by Corollary Then py (M) = afab p1(t) # 0 by Proposition
6.11 ([l

Theorem 6.17. Let G = E7(_g5) and let I' C G be a cocompact lattice. Then
p(I\G/K) #0.
Proof. From Equation , one computes

pi() = 6(yi + -+ y3) + 25 + 343
From Section the kernel of

o« H(BEq7(_a5)) — H*(B(E7(_25))°)

is generated by

6(yT +y5 + 3 + i +y5) + 245 + 7
Then

a; pi(t) = 2 a3(y7).

By Corollary as(y?) # 0, and so p1(M) = ojajb pi(t) # 0 by Proposition
6,11 ([l

6.10. Pontryagin classes for Fg-manifolds.

Theorem 6.18. Let G = Egi) and let ' C G be a cocompact lattice. Then
p1(I\G/K) =0 and p2(I'\G/K) # 0.

Proof. From Equation (4.17)), one computes
p1(e) = 14(y5 + 95 + 3 + i)

pa(t) =91 (Z yf) + 166 (Z yfy?) .
From Section I =y?+y2+9y3 +y? and I? generate the kernel of
a3 H*(BEg) — H*(B(Eg(_14))°)

and
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for k = 4,8. Then a3 p1(¢) = 0 and

as pa(t) =8 a3 (Z yf) +83 a3 (Z vl + 223/?1/?) :

=0

By Corollary fo%s (Z yf) # 0, and so pa(M) = ajaj pa(t) # 0 by Proposition
6.11 O

Theorem 6.19. Let G = Eg;z) and let ' C G be a cocompact lattice. Then
p(M\G/K) #0.

Proof. From Equation (4.18)), one computes

6 6
pr(t) =10(>_w7) +2052 +8( > wiy;) =6(D_ui) +2043.

i=1 1<i<j<6 i=1
In Section [5.10} we computed that

6
I=3 yi+2y;

i=1
generates (as a vector space) the kernel of

a3 HY(BEg2)) — H*(B(Eg2)°).
Then

a3 p1(t) = a3 (61 +8y7) =8 a3 (y7).

By Corollary [5.18] a3(y2) # 0. Then p; (M) = ajab pi(M) # 0 by Proposition
6.1} (]

Theorem 6.20. Let G = Eg_14) and let I' C G be a cocompact lattice. Then
p(M\G/K) #0.

Proof. From Equation 7 one computes
pr(e) = 4(yF + 3 + 3 +yi +y3) + 144 ug.
By Theorem and the computation of Section [5.10
I=3(yi+-+y3) + v
generates the kernel of
aj H4(BE6(,14)) — H4(B(E6(714))6)'

Since py(¢) # ¢ - I for any scalar ¢, we conclude that p;(¢) is not in ker o. Hence
p1(M) = afab p1(t) # 0 by Proposition O

Theorem 6.21. Let G = Eg_6) and let I' C G be a cocompact lattice. Then
pi(T\G/K) =0 fori > 0.

Proof. By Corollary o is zero in positive degrees. (]



36 BENA TSHISHIKU

6.11. Pontryagin classes for F;-manifolds.

Theorem 6.22. Let G = Fyy4) and let ' C G be a cocompact lattice. Then
p(M\G/K) #0.
Proof. From Equation (4.21)), one computes

p1(t) = 14y? + 10y3 + 10y2 + 10y3.
By Theorem and the computation in Section Z?:l y? generates the kernel
of

a; H4(BF4(720)) - H4(BF2(—20))-
Then

O[* ( — 4o 2 10 * (2 2 2 2
s pi(e) =4as(yi) +10 as(yi +y5 + 5 +v) .
=0

By Corollary ab p1(t) = 4as(y?) # 0, so p1(M) = ajas p1(t) # 0 by Proposi-
tion 0

Theorem 6.23. Let G = Fy_g0) and let ' C G be a cocompact lattice. Then
p(D\G/K) = 0 and p>(T\G/K) # 0.

Proof. From Equation (4.22), one computes

pi(t) =20y +--+yi) and pa(c Z(Zy) g > vy

1<i<j<4

2
By Theorem [5.1| and the computation in Section |5.11 Z?:l y? and (Z?Zl yf) =
> yf +2> y; y; generate the kernel of

ab : H*(BFy(_20)) — H*(BF}_s)
for k = 4,8, respectively Then o p1(¢) = 0 and

a3 pa(t *042 (Zyﬂr?ZyzyJ)—*az (D v2u?) = —as (Y wie?).

Then afp2(¢) # 0 by Corollaryn, and so pa(M) = afalp2(t) # 0 by Proposition
6.1} (]

6.12. Pontryagin classes for GG;-manifolds.
Theorem 6.24. Let G = Gyg), and let I' C G be a cocompact lattice. Then
1 (M\G/K) #0.
Proof. From Equation (4.23), one computes
ab : HY(BGy)) — HY(BGS )
Then
b pi(e) = a3 (8yf + 1247 +4y3) = 8 a5 (yi) +4 a5 (3yi +3) = 8 as(y).
—_—

=0

By Corollary [5.23] H, aj(yi) # 0, and so p1 (M) = ojas p1(t) # 0 by Proposition
6.1} (]
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