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Realization problems for diffeomorphism groups

Kathryn Mann and Bena Tshishiku

Abstract. We discuss recent results and open questions on the broad theme
of (Nielsen) realization problems. Beyond realizing subgroups of mapping class

groups, there are many other natural instances where one can ask if a surjection
from a group of diffeomorphisms of a manifold to another group admits a
section over particular subgroups. This survey includes many open problems,
and some short proofs of new results that are illustrative of key techniques;

drawing attention to parallels between problems arising in different areas.

1. Introduction

One way to understand the algebraic structure of a large or complicated group
is to surject it to a simpler group, then measure what is lost. In other words, given
G, we take an exact sequence 1 → K → G → H → 1 and study how much H
differs from G. This difference can be measured through the obstructions to a
(group-theoretic) section φ : H → G, as well as the obstructions to sections over
subgroups of H.

In the case where G is the group of homeomorphisms or diffeomorphisms of a
manifold M , this question has a long history and important interpretations, both
from the topological point of view of flat bundles, and the dynamical point of view
through group actions of M . This article is intended as an invitation to section
problems for diffeomorphism groups; illustrating applicable techniques and listing
open problems. To introduce this circle of ideas, we begin with the classical case of
surface bundles and diffeomorphism groups of surfaces.

The flatness problem for surface bundles. Let Σ be a smooth, oriented
closed surface and let E → B be a fiber bundle with fiber Σ, base a manifold B, and
structure group the group Diffr(Σ) of orientation-preserving Cr diffeomorphisms of
Σ, for some fixed r ≥ 0. Such a bundle is said to be flat or foliated of class Cr if it
admits a Cr foliation transverse to the fibers whose leaves project to the base as
covering spaces. Equivalently, E → B is flat if its structure group can be taken to
be Diffr(Σ) with the discrete topology. In a flat bundle, parallel transport along
the leaves of the foliation defines a holonomy representation φ : π1(B)→ Diffr(Σ).

It is a basic problem to determine when a surface bundle is flat; and even in the
case where the base is a surface, it is a open question whether every surface bundle
admits a flat structure. A foundational result of Earle–Eells [EE67] states that,

c©0000 (copyright holder)

1
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when χ(Σ) < 0, a Σ-bundle E → B is determined up to bundle isomorphism by
its monodromy representation ρ : π1(B)→ Mod(Σ). Here Mod(Σ) := π0(Diffr(Σ))
denotes the mapping class group of Σ (which is independent of r). Thus, E → B
admits a Cr flat structure if and only if its monodromy lifts to Diffr(Σ), as in the
diagram below. In this case, the lift agrees (up to conjugacy) with the holonomy φ
mentioned above.

Diffr(Σ)

π1(B) Mod(Σ)

99ρ̃

��
π

//
ρ

The flat bundle question motivates the following problem. Let Σb
g,m denote

a compact surface of genus g with b boundary components and m marked points.
Define Diffr(Σb

g,m) as the group of orientation-preserving diffeomorphisms of Σ

that preserve the marked points as a set, and define Diffr∂(Σbg,m) < Diffr(Σbg,m) as
the subgroup of diffeomorphisms that restrict to the identity on the boundary ∂Σ.
The mapping class group Modbg,m := π0 Diffr∂(Σbg,m) can be viewed as the group of

diffeomorphism of Σbg,m modulo isotopies that fix the boundary and the punctures1.
It is a classical fact, stemming from work of Munkres, Smale and Whitehead in
the 50s, that π0(Diffr(Σbg,m)) is independent of the regularity r. See discussion in
[FM12, §1.3.2].

Problem 1.1 (Generalized Nielsen realization). Let Γ be a finitely-generated

group, 0 ≤ r ≤ ∞, and let ρ : Γ→ Modbg,m be a homomorphism. Does there exist a

homomorphism ρ̃ : Γ→ Diffr∂(Σbg,m) so that π ◦ ρ̃ = ρ?

If the answer is yes, we say ρ is realized by Cr diffeomorphisms, or by home-
omorphisms in the case r = 0. (We will use both Diff0(M) and Homeo(M) as
notation for the homeomorphism group of a manifold M .) The map ρ̃ is called a
section of Diffr(Σbg,m)→ Mod(Σbg,m) over ρ, so we will also often refer to this and
related questions as section problems. Earle–Eells’ result generalizes to surfaces with
boundary and marked points [ES70, Hat11], and from the bundle perspective,
marked points correspond to preferred sections.

As is well known, Problem 1.1 was answered positively for finite, cyclic groups
by Nielsen [Nie43]. Nielsen’s original motivation was different from ours – the
question he answered (positively) was: if f is a diffeomorphism of Σ such that
fn is isotopic to the identity, is f isotopic to some g ∈ Diff∞(Σ) with gn = id?
Problem 1.1 for finite groups Γ ⊂ Modg eventually became known as Nielsen’s
problem. Fenchel [Fen48] gave a positive answer for finite solvable groups, and the
general result for finite groups is due to Kerckhoff [Ker83], with alternate proofs
by Tromba, Gabai and Wolpert [Tro96, Gab91, Wol87] appearing later. Going
forward in this paper we will focus on realization problems for infinite groups.

The case Γ = Modg for ρ̃ with image in Homeo(Σg) was posed by Thurston in
Kirby’s problem list [Kir97, Prob. 2.6]. This follows an earlier theorem of Morita
[Mor87], who showed that (for g ≥ 18), there is no realization of Modg (or any finite

index subgroup of Modg) in Diff2(Σg). Later, Franks–Handel [FH09] showed that

there is no realization of Modg in Diff1(Σg); this does not generalize to finite index
subgroups, but covers several other cases of large infinite subgroups. We sketch

1following standard convention, we denote Mod0
g,0 by Modg
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both Morita’s and the Franks–Handel proof later on. In [Mar07, MS08] Markovic
and Markovic–Saric answered Thurston’s question, showing that there is no lift of
Modg to Homeo(Σg) provided g ≥ 2. However, their proof uses torsion elements in
an essential way, so does not generalize to finite index subgroups or to many of the
cases covered by Franks–Handel. Indeed, for “most” infinite subgroups Γ < Modbg,m
Problem 1.1 remains completely open (see discussion in [Far06a, §6.3]).

One source of difficulty in Problem 1.1 is our poor understanding of finitely-
generated subgroups of diffeomorphism groups. For instance, the following problem
is open.

Problem 1.2. Give an example of a finitely-generated, torsion free group Γ,
and a surface S, such that Γ is not isomorphic to a subgroup of Homeo(S).

Of course, it suffices to give an example for Homeo∂(D2) as this embeds in
Homeo(S) – and in fact in the identity component Homeo0(S) – for any other
surface. Indeed, the difficulty in the problem is understanding the algebraic structure
of Homeo0(S); replacing Homeo(S) by Mod(S) renders it a reasonable exercise.
Problem 1.2 is also completely open for homeomorphism groups of manifolds of
higher dimension. In general the regularity of diffeomorphisms can make a great
difference, and Problem 1.2 has been recently solved for C2 diffeomorphisms with
the solution to the Zimmer conjecture [BFH16], with examples given by higher
rank lattices. However, we are far from a complete understanding of the algebraic
structure of groups that can and cannot act.

Nielsen realization problems in higher dimensions. Problem 1.1 can be
posed for manifolds M with dimM ≥ 3. Does Diffr(M)→ π0

(
Diffr(M)

)
admit a

section? Which finitely-generated subgroups can be realized? Unlike in the surface
case, the group π0(Diffr(M)) is not always finitely generated and its algebraic
structure may depend on r. Spheres are a particularly interesting class of examples:

Question 1.3 (A. Kupers). For n ≥ 5, the group π0(Diff∞(Sn)) is the group
of homotopy (n+ 1)-spheres, a finite abelian group. Can this group be realized by
diffeomorphisms of Sn?

Some cases are covered by Schultz [Sch79]. Other instances of Nielsen realization
problems for finite subgroups of mapping class groups are discussed by Block–
Weinberger in [BW08], who prove several non-realizability results and give a good
survey of the state of the art. See also [Zim85]. Examples of non-realizability
results for infinite, finitely-generated subgroups for higher-dimensional manifolds
are given in [Tsh15]; see Theorem 2.10 below.

Beyond mapping class groups. When M is a closed manifold, the path-
component of the identity Diffr0(M) ⊂ Diffr(M) is simple, provided that r 6=
dim(M) + 1. For r > 0, this is a deep result of Mather [Mat74, Mat75], and
for r = 0 it follows from [And58] and [EK71] (it is open for r = dim(M) + 1).
Thus, realization problems for subgroups of mapping class groups are essentially
the only section problems for these groups. However, when M has boundary, there

is an obvious map Diffr(M)
R→ Diffr(∂M). This may not be surjective, but is when

restricted to the identity components Diffr0(M) → Diffr0(∂M). In [Ghy91], Ghys
asked in which cases this map admits a section. In parallel with Problem 1.1, we
ask:
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Problem 1.4. Let Γ be a finitely-generated group, 0 ≤ r ≤ ∞, and let ρ : Γ→
Diffr0(∂M) be a homomorphism. In which cases does there exist a homomorphism
ρ̃ : Γ→ Diffr0(M) so that R ◦ ρ̃ = ρ?

Rephrased in terms of flat bundles, Problem 1.4 asks whether a flat (∂M)-bundle
E is the boundary of a flat M -bundle.

As a further variant on Problems 1.1 and 1.4, one can also restrict to subgroups of
Diffr(M) and pose the same family of questions. For real-analytic diffeomorphisms,
Problem 1.1 for Γ = Modg was answered negatively in [CC08]. Bowden [Bow11]
discusses Problem 1.4 for the boundary map on the group of surface symplecto-
morphisms Symp(Σ1

g) → Diff0(S1), and Epstein–Markovic discuss the boundary
map from quasi-conformal homeomorphisms of the disk to quasi-symmetric homeo-
morphisms of the circle. Interestingly, this latter problem is also related to Nielsen
realization for the mapping class group of a surface; see Section 3.4 below.

Germs and holonomy of foliations. Considering foliations rather than
foliated bundles leads to a class of related problems. Let Diffr(Rk, 0) denote the
group of diffeomorphisms of Rk fixing the origin, and Gr(k) the group of germs at
the origin of elements of Diffr(Rk, 0). Analogous to the holonomy of a flat bundle,
when a manifold M admits a transversely-Cr codimension-k foliation F , each leaf L
has a holonomy representation π1(L)→ Gr(k). Thus, understanding the structure
of Gr(k) and its finitely-generated subgroups plays an important role in the study
of the structure of foliations. However, the algebraic structure Gr(k) is not well
understood. For instance, the following problem is open.

Question 1.5. Suppose φ : Gr(n)→ Gs(m) is an isomorphism. Is it necessarily
true that m = n, r = s, and φ is an inner automorphism?

The corresponding (positive) result for isomorphisms Diffr(M)→ Diffs(M), where
M is a compact manifold, is a theorem of Filipkiewicz [Fil82].

Finitely-generated subgroups of Gr(n) are also poorly understood. Navas
[DNR14] asked whether every finitely-generated subgroup of G0(2) is isomorphic
to a subgroup of Diff0(R2). While it is expected that the answer is negative, the
question was motivated by a positive result in the case of R1; see [DNR14, §1.1.3].
Generalizing Navas’ question above, we ask the following related (broad) question
and realization problem:

Problem 1.6. Which finitely-generated groups are subgroups of Gr(n)? What
are obstructions to lifting a representation ρ : Γ→ Gr(n) to Diffr(Rn, 0)?

Further motivation for this problem comes from Thurston’s stability theorem
[Thu74] and the study of foliations. Thurston’s theorem is one answer to the first
part of the question above for G1(n); it states that finitely-generated subgroups
of G1(n) with trivial derivative at 0 necessarily have the property that they admit
surjective homomorphisms to Z. (In other words, G1(n) is a locally indicable group.)
Thurston’s motivation for this result was a generalization of the Reeb stability
theorem for foliations; and indeed foliation theory and the structure of groups
of germs are intimately linked, as representations into Gr(n) arise naturally from
the holonomy of leaves of codimension n, transversely Cr foliations. For a further
introduction to the relationship between groups of diffeomorphisms, foliations, germs,
and their classifying spaces see Tsuboi’s survey paper [Tsu84].
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While foliation theory is not the focus of this paper, we will see numerous
applications of Thurston stability in other contexts – including approaches to
Problem 1.1 – below in §3. One is optimistic that any further answer to the first
part of Problem 1.6 would have a similarly wide range of applications.

Organization of paper. In order to draw parallels between the various prob-
lems described above, we have organized this paper by technique (broadly categorized
as dynamical or cohomological) rather than by results. In §2 we discuss examples
where cohomology of groups and classifying spaces has been successfully used to
obstruct lifting problems. §3 contains a discussion of dynamical techniques used to
provide other obstructions. In §4 we give some positive results for Problem 1.1, i.e.
interesting groups that can be realized by diffeomorphisms. Questions and problems
have been attributed to their authors when known, although we did not make an
exhaustive attempt to trace them to their original sources.

Acknowledgements. The authors would like to thank B. Farb, N. Salter and
A. Kupers for feedback on this work. Theorem 3.1 came up in discussion with F. Le
Roux. Thanks also to the referee for carefully reading the paper and offering many
helpful suggestions. K.M. was partially supported by NSF grant DMS 1606254, and
B.T. was partially supported by NSF grant DMS 1502794.

2. Cohomological techniques

In this section we take an algebro-topological approach to lifting problems. In
its most basic form, the general approach is as follows: Given a surjection π : G→ H
and a homomorphism ρ : Γ→ H, a lift ρ̃ as in the figure on the left below induces
maps on group cohomology as indicated on the right.

G

Γ H

99
ρ̃

��
π

//
ρ

H∗(G)

H∗(Γ) H∗(H)
ww

ρ̃∗ OO
π∗

oo
ρ∗

Classes in the kernel of π∗ serve as obstructions to lifts. Specifically, if c ∈ kerπ∗,
and ρ is a representation such that ρ∗(c) 6= 0 ∈ H∗(Γ), then no map ρ̃ can make
the diagram commute.

While this approach (or variations of it) can be successful, in general it can be
difficult to find a class c that works, and the absence of cohomological obstructions is
not sufficient to guarantee the existence of a lift. For an example, compare Theorems
2.16 and 3.9 below. However, one benefit of the cohomological approach (when it
works) is that often one can conclude that no realization exists even after passing
to a finite-index subgroup of Γ.

2.1. The Euler class as an obstruction. We begin with a simple example
of the strategy introduced above. Fix h ≥ 2. Then π1(Σh) is a discrete, subgroup
of PSL(2,R), which acts on S1 by Möbius transformations. Let ρ : π1(Σh) →
PSL(2,R)→ Homeo+(S1) denote this homomorphism.

Proposition 2.1. Fix g ≥ 1, and let Σ1
g be a genus g surface with 1 boundary

component. Then the action ρ of π1(Σh) on ∂Σ1
g ' S1 does not extend to a

representation into Homeo0(Σ1
g).
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Here, as always, Homeo0 denotes the identity component of the group. As we
remark after the proof, the situation is much more subtle (and the proposition false)
if Homeo0 is replaced by Homeo in the statement above.

The proof of Proposition 2.1 is easy when framed in the language of characteristic
classes and classifying spaces. For the reader unacquainted with this theory, we
summarize the main properties we need before giving the proof. See [Mor01, Ch.
4] for more details.

Classifying space basics. Every topological group G has a classifying space
BG that classifies principal G-bundles. If G < Homeo(X), then BG also classifies
X-bundles with structure group G. If G has the discrete topology (indicated by
Gδ), then BGδ ∼ K(G, 1) is an Eilenberg–Maclane space for G (a connected CW-
complex with fundamental group G and contractible universal cover). In particular
BDiff(Σg) classifies Σg-bundles and BDiff(Σg)

δ classifies flat Σg-bundles.
The classifying space construction G 7→ BG is functorial: a continuous homo-

morphism G→ H induces a continuous map BG→ BH. Furthermore, if G→ H
is a homotopy equivalence, then BG→ BH is also a homotopy equivalence, and a
short exact sequence 1→ K → G→ H → 1 induces a fibration BK → BG→ BH.

In the special case where G = Homeo(S1), the inclusion SO(2) ↪→ Homeo+(S1)
induces a homotopy equivalence, so the classifying space BHomeo+(S1) is homotopy
equivalent to B SO(2) ∼ CP∞. As such H∗(BHomeo(S1);Z) is a polynomial ring
Z[e] generated by a class e ∈ H2(BHomeo(S1)) which has the following property:
a circle bundle E → B classified by a map fE : B → BHomeo(S1) admits a
continuous section if and only if f∗E(e) = 0.

Proof of Proposition 2.1. If ρ extends to ρ̃ : π1(Σh)→ Homeo0(Σ1
g), then

there is a diagram that commutes up to homotopy:

BHomeo0(Σ1
g)

Σh BHomeo+(S1)
Bρ

77
Bρ̃

��
Bπ

//

Let e(ρ) := Bρ∗(e) ∈ H2(Σh) be the Euler class of ρ. On the one hand, e(ρ) is
the Euler class of the unit tangent bundle T 1Σh → Σh, which is nonzero because
χ(Σh) 6= 0. On the other hand, Homeo0(Σ1

g) is contractible, so BHomeo0(Σ1
g) is

also contractible, and this implies that π∗(e) = 0. Thus ρ̃ does not exist. �

The above argument shows that no action ρ : π1(Σh) → Homeo+(S1) with
e(ρ) 6= 0 extends to Homeo0(Σ1

g) for g ≥ 1. There are many such actions, even among
representations into PSL(2,R). However, one can produce actions ρ : π1(Σh) →
Homeo(S1) with e(ρ) 6= 0 that do extend to Homeo(Σ1

g) for any g ≥ 2. This uses a

“stabilization” argument [Bow11]: start with any ρ′ : π1(Σh′)→ Homeo(S1), present

π1(Σh′) = 〈a1, . . . , bh′ |
∏h′

i=1[ai, bi] = 1〉, and choose ρ̃′(ai), ρ̃
′(bi) ∈ Homeo(Σ1

g)

extending ρ′(ai) and ρ′(bi) on ∂Σ1
g (technically we want extensions that are a

trivial product on a collar neighborhood of ∂Σ1
g). Then f :=

∏h
i=1[ρ̃′(ai), ρ̃

′(bi)]

belongs to the group HomeoN(∂)(Σ
1
g) of homeomoprhisms that are the identity on a

neighborhood of ∂Σ1
g. This group is perfect [Fis60] [FM12, §5.1], so we can write
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f−1 =
∏n
j=1[xj , yj ]. Let h = h′ + n, and extend ρ′ to

ρ : π1(Σh) = 〈ai, bi, xj , yj |
h′∏
i=1

[ai, bi]

n∏
j=1

[xj , yj ] = 1〉 → Homeo+(S1)

by mapping xj and yj to the identity. By design, e(ρ) = e(ρ′), and ρ extends to
Homeo(Σ1

g). Note that e(ρ) ∈ Z determines the class [f ] ∈ π0

[
HomeoN(∂)(Σ

1
g) ∩

Homeo0(Σ1
g)
]
' Z. In particular xi, yi ∈ Homeo0(Σ1

g) is possible only if e(ρ) = 0.
This is consistent with Proposition 2.1.

Question 2.2. Given a representation ρ : π1(Σh′) → Homeo+(S1) as above,
what is the minimal stabilization genus h required to extend the action to Homeo+(Σ1

g)?

Are there examples where this answer is different in the C0 and C∞ cases?

The Milnor-Wood inequality (Theorem 2.6 below) gives bounds on the value
of the Euler class ρ∗(e) ∈ H2(Σh;Z) for a flat bundle. Since none of the examples
obtained by stabilization are maximal, we ask:

Question 2.3. Does there exist a representation ρ : π1(Σh)→ Homeo(S1) with
maximal Euler class that lifts to Homeo(Σ1

g)?

Since Diffr0(D2)→ Diffr0(S1) is a homotopy equivalence for all r, the argument
in the proof of Proposition 2.1 gives no obstruction to extending any action on S1

to an action on the disk. (Indeed for r = 0, any group action can be extended by
“coning off” the circle to the disk. However, we will see examples of group actions
by C1 diffeomorphisms that cannot be lifted to Diff1(D2) in Section 3.) Geometric
actions of surface groups provide interesting examples to study:

Problem 2.4. The action of PSL(2,R) by Möbius transformations on S1 extends
to a smooth action on D2, so the representations π1(Σh)→ PSL(2,R)→ Diff∞(S1)
discussed above extend to Diff∞(D2).

(a) Classify all extensions of these actions. (Are there any exotic ones?)
(b) If k > 1 divides 2h − 2, then π1(Σh) embeds as a lattice in the central

extension of PSL(2,R) by a cyclic group of order k, which also acts naturally
on the circle. (This action is simply the lift of the natural Möbius action
of PSL(2,R) to the k-fold cover of S1, which is also a circle.) Does such
an action of π1(Σh) on S1 extend to Diff∞(D2)?

The actions described in (b) are called geometric and share many properties
with Fuchsian actions, including strong topological rigidity [Man15b, MW17]. It
would be interesting to know if they have obstructions to extensions over the disc.

Surface braid groups and point-pushing. There is a surjection Modbg,m →
Modbg that forgets the marked points. The kernel is described by an exact sequence

(2.1) π1(Diff(Σ))→ Brm(Σ)
P−→ Modbg,m → Modbg → 1,

where Brm(Σ) is the surface braid group, defined as the fundamental group π1(Confm(Σ))
of the space of unordered configurations of m points on Σ. The homomorphism P
is called the point-pushing homomorphism; see [FM12] for further details.

Theorem 2.5 (Bestvina–Church–Souto [BCS13]). The homomorphism P in
(2.1) is not realized by C1 diffeomorphisms when Σ is closed, g ≥ 2 and m ≥ 1.
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We sketch Bestvina–Church–Souto’s argument, which relies on the fact that the
Euler class introduced above is a bounded cohomology class [Mil58, Woo71].

Theorem 2.6 (Milnor-Wood inequality). Let Σg be a closed oriented surface
of genus g ≥ 1, and let [Σg] ∈ H2(Σg;Z) be the fundamental class. For any
ρ : π1(Σg)→ Homeo(S1), the Euler class e(ρ) ∈ H2(Σg;Z) ' Z satisfies

2− 2g ≤ e(ρ) ≤ 2g − 2.

Furthermore, if ρ factors through r : GL+
2 (R)→ Homeo(S1) acting on rays through

the origin in R2, then |e(ρ)| ≤ g − 1.

Proof of Theorem 2.5. We sketch a proof in the case m = 1. In this case
Br1(Σg) ' π1(Σg). If P is realized by diffeomorphisms we have the following
diagram.

(2.2)

Diff1(Σg,1) GL+
2 (R)

π1(Σg) Modg,1 Homeo(S1)

//D

;;
P̃

��
//

P

��
r

//
α

Here D is induced by the action on the tangent space at the marked point and r is
the homomorphism from Theorem 2.6. The homomorphism α was originally defined
by Nielsen; it comes from the isomorphism Modg,1 ' Aut(π1Σg) together with the
action on the Gromov boundary ∂π1(Σg) ' S1 (or equivalently the boundary of

the compactification of the universal cover Σ̃ ' H2). See §3 for a description. The
left-hand triangle commutes, but the right-hand square does not. However, it does
commute up to homotopy on the level of classifying spaces [BCS13, §3]. The proof
concludes by comparing the image of the Euler class e ∈ H2(BHomeo(S1)) when
pulled back to H2(Σg) ' Z along the outer paths in the diagram.

On the one hand, the composition α ◦ P factors as π1(Σg) → PSL(2,R) →
Homeo(S1), and it follows that e(α ◦ P ) ∈ H2(Σg) is the Euler number of the unit
tangent bundle T 1Σg → Σg (as in the proof of Proposition 2.1). Thus e(α ◦ P ) =
2 − 2g. On the other hand, by the Milnor-Wood inequality (see Theorem 2.6),

|e(r ◦D ◦ P̃ )| ≤ g − 1. This contradiction implies that P̃ does not exist. �

Topologically, P : π1(Σg) → Modg,1 is the monodromy of the trivial bundle
with respect to the diagonal section ∆ ⊂ Σ × Σ. Theorem 2.5 implies that this
bundle has no flat connection such that the diagonal is parallel, i.e. a leaf of the
foliation. See also [MV08].

Question 2.7 (Realizing point-pushing by homeomorphisms). Can P : π1(Σg)→
Modg,1 be realized by homeomorphisms? What about by homeomorphisms of the
blow up of Σg,1 at the marked point (i.e. by homeomorphisms of Σ1

g that may be
nontrivial on the boundary). If one tries to run the above proof of Theorem 2.5,
one must replace GL+

2 (R) with Homeo(S1) in (2.2), and then the Milnor–Wood
inequality does not provide any contradiction.

Question 2.8 (Disc pushing). If we replace the marked point by a boundary
component, there is a “disk-pushing” subgroup D : π1(T 1Σg) ↪→ Mod1

g analogous to
the point-pushing subgroup P : π1(Σg) ↪→ Modg,1. IsD realized by diffeomorphisms?
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The proof of Theorem 2.5 does not adapt to this case because the Euler class on
Mod1

g is trivial.

Question 2.9 (Handle pushing). Consider an inclusion Σ1
g ↪→ Σg+1 obtained

by gluing on a genus-1 handle. This induces a homomorphism Mod1
g → Modg+1. Is

the composition H : π1(T 1Σg)
D−→ Mod1

g → Modg+1 realized by diffeomorphisms?
This homomorphism can be interpreted as “handle-pushing”. This problem is harder
than disk-pushing since a realization does not have an obvious invariant submanifold
(e.g. a point or a disk as before).

The second author proved the following generalization of Theorem 2.5 to many
other locally symmetric manifolds [Tsh15].

Theorem 2.10 (Tshishiku). Let G be a real simple noncompact Lie group.
Assume G is not isogenous to SO(n, 1) for any n ≥ 3. Then there exists a lattice
Γ < G so that for the associated locally symmetric space M = Γ\G/K, the point-
pushing homomorphism P : π1(M)→ Mod(M, ∗) is not realized by diffeomorphisms.

The outline is the same as the proof of Theorem 2.5, but it uses different obstruc-
tions, including Pontryagin classes, Chern–Weil theory, and Margulis superrigidity.

Question 2.11. Let M be a finite volume hyperbolic 3-manifold. Is the point-
pushing homomorphism P : π1(M)→ Mod(M, ∗) realized by diffeomorphisms?

2.2. The MMM classes and Morita’s nonlifting theorem. In this sec-
tion, we discuss the question of whether or not the surjection π : Diff∂(Σb

g,m) →
Modbg,m is split, i.e. whether or not the entire mapping class group is realized by dif-
feomorphisms (this is a special case of Problem 1.1). There are a few low-complexity
examples when π does split; for example when Σ = Σ1 is a closed torus or when
Σ = Σ1

0,3 is a disk with 3 marked points; these examples will be discussed more in
§4. The first negative result was proved by Morita [Mor87], originally with the
assumption g ≥ 18.

Theorem 2.12 (Morita nonlifting). Let Σg be a closed surface of genus at
least 2. Then the surjection π : Diffr(Σg) → Modg does not split for any r ≥ 0.
Furthermore, if g ≥ 10 then π has no C2 splitting over any finite-index subgroup of
Modg.

We sketch Morita’s proof using the following theorem on the cohomology of
Modg. See [Wah13] for an exposition of the proof.

Theorem 2.13 (Morita, Harer stability, Madsen–Weiss). In degrees ∗ ≤ 2(g −
1)/3, the cohomology H∗(Modg;Q) is a polynomial algebra generated by certain
tautological classes ei ∈ H2i(Modg;Q). As a characteristic class of a Σg-bundle
E →M over a manifold M , the class ei is defined as

ei(E) =

∫
Σ

e(T vE)i+1 ∈ H2i(M),

where R2 → T vE → E is the vertical tangent bundle, e(T vE) is the Euler class,
and

∫
Σ

: H∗(E)→ H∗−2(M) is the fiber-integration (or Gysin) map.

Morita [Mor87] defined the characteristic classes ei ∈ H∗(Modg), and showed
they are often nonzero (by constructing interesting Σg-bundles). Harer [Har85]
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proved that they are stably nonzero, and Madsen–Weiss [MW07] proved that these
classes account for all of the cohomology in low degree (their techniques also give
an alternate proof that ei 6= 0 for g large).

Proof of Theorem 2.12. Let Diff2(Σg)
δ denote Diff2(Σg) with the discrete

topology. We may view π as a composition of continuous maps Diff2(Σg)
δ α→

Diff2(Σg)
β→ Modg. To prove the theorem, it suffices to show that

α∗ ◦ β∗ : H∗(BModg;Q)→ H∗(BDiff2(Σg);Q)→ H∗(BDiff2(Σg)
δ;Q)

has nontrivial kernel. The result of Earle–Eells [EE67] cited in the previous section
is that Diff2(Σg)→ Modg is a homotopy equivalence, so by classifying space theory
the induced map on classifying spaces is as well, hence β∗ is an isomorphism. Thus,
we need to show that α∗ is not injective. Since BDiff2(Σ)δ classifies flat surface
bundles, kerα∗ is the ideal of characteristic classes of Σg-bundles that vanish for
flat bundles. Using Bott’s vanishing theorem (a topological obstruction to existence
of certain foliations), which applies because of the C2 hypothesis, one checks that if
E →M is flat, then ei(E) = 0 for i ≥ 3. By the Theorem 2.13, e3 ∈ H∗(Modg;Q)
is nonzero if g ≥ 10. Thus e3 is a nonzero element of kerα∗.

If j : Γ ↪→ Modg is finite index, then the induced map j∗ : H∗(Modg;Q) →
H∗(Γ;Q) is injective by transfer, so j∗(e3) 6= 0 and the same argument shows Γ is
not realized by diffeomorphisms. �

The proof above shows Modg is not realized by C2 diffeomorphisms when g ≥ 10.
As mentioned in the introduction, there are now many different proofs of Theorem
2.12 [BCS13, FH09, ST16, MS08] that show Modg is not realized by C1 or C0

diffeomorphisms (with varying improvements on the genus bound); in particular,
both Theorem 2.5 and Theorem 3.9 have Theorem 2.12 as a consequence. However,
none of these alternate proofs give information about finite-index subgroups of
Modg. In particular, Markovic–Saric’s proof of non-realization by homeomorphisms
uses torsion elements in a crucial way, so does not answer the following.

Problem 2.14 (Robust non-lifting). Show that no finite-index subgroup of
Modg is realized by homeomorphisms for g ≥ 2.

A seemingly more difficult problem is to show non-lifting for the Torelli group.

Problem 2.15. Show that Ig, the kernel of Modg → Sp2g(Z), is not realized
by diffeomorphisms.

The question of realizing mapping class groups Modbg,m when m, b ≥ 1 is also

interesting. For example, the mapping class group Mod1
0,m of a disk D2 with m

marked points zm ⊂ D2 is the classical braid group Bm. The following theorem
of Nariman [Nar18] states that there is no cohomological obstruction to splitting
Diff∂(D2 − zm)→ Bm. Nevertheless, in contrast, the mapping class group of a disk
is not realized by C1 diffeomorphisms – see Theorem 3.9 below.

Theorem 2.16 (Nariman). Consider the surjection Diff∞(D2 − zm) → Bm.
The induced map on group cohomology H∗(Bm;A) → H∗(Diff∞(D2 − zm);A) is
split injective in all cohomological degrees and for all abelian groups A.

Nariman’s work also considers another question related to subgroups of mapping
class groups. There is a natural “geometric” map ψ : Br2g+2 ↪→ Mod2

g induced by
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lifting mapping classes to a double cover Σ2
g of the disk D2 ramified over the points

of z2g+2. One description of this map is as follows: Each f ∈ Diff(D2, z2g+2) has a
canonical lift to a homeomorphism of the cover Σ2

g; this is the lift that fixes both

boundary components pointwise. This gives an injective map Ψ : Diff(D2, z2g+2)→
Homeo(Σ2

g, ∂Σ2
g), and the induced map on isotopy classes is ψ. Nariman asked if

Ψ can be “smoothed”: is there a homomorphism Diff(D2, z2g+2)→ Diff(Σ2
g, ∂Σ2

g)
that induces ψ on mapping class groups? Building on the techniques used in his
proof of Theorem 2.16, Nariman shows that there is no cohomological obstruction.

Theorem 2.17 (Nariman [Nar18]). Let g ≥ 1. There is a space Y , homologi-

cally equivalent to the classifying space BDiffδ(Σ2
g, ∂Σ2

g) and a map Φ such that the
following diagram is homotopy commutative

BDiffδ(D2, z2g+2)
Φ //

��

Y

��
BMod(D2, z2g+2)

Bψ
// BMod(Σ2

g)

We give an alternative proof in §4 by constructing an explicit lift. However, the
following question remains open.

Question 2.18. Can the “geometric” braid group ψ : Br2g+2 ↪→ Mod2
g described

above be realized in Diff(Σ2
g)?

3. Dynamical obstructions to realizations

This section showcases the use of dynamical tools in realization problems. In
many contexts, one can use the algebraic structure of a group Γ to force some
dynamical behavior – such as the existence of fixed points or invariant sets – when
Γ acts by diffeomorphisms on a manifold M . If the action comes from a section of
Diffr0(M)→ H for some group H, properties of H often furnish additional dynamical
information.

The proofs of non-realizability of Modg by homeomorphisms due to Markovic
and Markovic–Saric [Mar07, MS08] are the most sophisticated instance of this
phenomenon. The heart of Markovic’s idea is to show that the realization of Dehn
twists about simple closed curves have support on sets that, roughly, look like the
annuli on which the Dehn twists are defined. Once this is appropriately formalized,
one uses relations in Modg to derive a contradiction. As the argument is quite
involved, we will not be able to do it justice here and instead refer the reader to Le
Cavez’s work [Cal12], which contains a nice exposition as well as some alternative
techniques towards the proof.

Here we focus on simpler examples that illustrate a tension between the algebraic
structure of a group Γ and the dynamics of a realization. As a first basic illustration,
we discuss non-realizability for groups of germs.

3.1. Non-realizability of groups of germs. Recall that Gr(n) denotes the
group of germs at 0 of orientation-preserving Cr diffeomorphisms of Rn fixing 0 (i.e.
the quotient of Diffr(Rn, 0) by the subgroup of diffeomorphisms that restrict to the
identity in a neighborhood of 0), and Γ ⊂ Gr(n) is realizable by diffeomorphisms
if there is a section of Diffr(Rn, 0) → Gr(n) over Γ. Here, we prove the following
non-realizability result, as a first step towards Problem 1.6.
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Theorem 3.1. There exists an (explicit) finitely-generated, torsion-free subgroup
Γ of G0(n) that cannot be realized in Diff0(Rn, 0).

As we remark in the proof, the subgroup Γ can in fact be taken to lie in G∞(n).
Theorem 3.1 was proved in [Man15a] for n = 1. Here, we give a simplified

argument that proves the general case. The argument uses essentially only one
dynamical tool (which will make a later appearance in Section 3.3). This is the
basin of attraction.

Definition 3.2. Let f be a homeomorphism of a manifold M . A point p ∈M
is attracting if there exists a neighborhood W of p such that

⋂
n>0 f

n(W ) = p. In
this case the basin of attraction of f at p is the set {x ∈M | fn(x)→ p}.

It follows from the definition that the basin of attraction is f -invariant, and
equal to

⋃
n>0 f

n(W ) for any sufficiently small neighborhood W of the attracting
fixed point – so in particular is open. Furthermore, if f and g commute, then g
permutes the attracting fixed points of f and their basins of attraction.

Proof of Theorem 3.1. We first define Γ by specifying homeomorphisms of
which we take the germs, then prove that there is no realization. The key algebraic
properties of Γ are that it contains a Baumslag-Solitar subgroup BS(1, 2) = 〈a, b |
aba−1 = b2〉, as well as several commuting elements.

Parametrize Rn \ {0} = Sn−1 × R, with the sets Sn−1 × {t} approaching 0 as
t → −∞. All of the homeomorphisms in Γ will be defined radially, so we start
by working on R. A BS(1, 2) subgroup of Diff∞(R) is given by a : x 7→ 2x and
b : x 7→ x− 1. To define the other elements, let Y ⊂ X be two a-invariant disjoint
unions of intervals in (−∞, 0) and let f1 be a diffeomorphism supported on X that
agrees with b on Y in some neighborhood of −∞. Let f2 = f−1

1 ◦ b, which, in a
neighborhood of −∞, is supported on the a-invariant set R \ Y . Let gi be arbitrary
diffeomorphisms of R that commute with a in a neighborhood of −∞ and have
support equal to fix(fi).

For each h ∈ {a, b, f1, f2, g1, g2} the map (s, t) 7→ (s, h(t)) of Sn−1 × R extends
to a homeomorphism of R2 fixing 0. (By first conjugating a and b by a strong
contraction at −∞ as in Construction 4.3, one may in fact take these to be germs
of smooth diffeomorphisms, infinitely tangent to the identity at 0; in which case
fi and gi may be chosen so that these define diffeomorphisms as well.) Abusing
notation slightly, we identify h with the germ of the homeomorphism so defined.
These germs satisfy the relations aba−1 = b2, f1f2 = b, and [fi, a] = [fi, gi] = 1.

Let Γ < G0(n) be the subgroup generated by a, b, f1, f2, g1 and g2, and suppose
that φ : Γ → Homeo(Rn, 0) is a realization. Let B denote the attracting basin
for b. The relation aba−1 = b2 implies that B is a-invariant. Note that, if U is
a sufficiently small ball about the origin, then B is the increasing union of the
sets

⋃
n>0 a

−1(U); each a homeomorphic image of a ball. Using this (and the

annulus theorem), we can parametrize B \ 0 by Sn−1 × R, on which φ(b) acts by
(s, t) 7→ (s, t − 1). We now claim that the attracting basin for φ(a) has closure
contained in B, and will show this by finding an a-invariant set properly contained
in B. Take a fundamental domain Sn−1 × [0, 1] for φ(b); the relation aba−1 = b2

implies that the image of any fundamental domain for b under a is a fundamental
domain for b2. Now φ(a)(Sn−1 × [0, 1]) is compact so contained in Sn−1 × [−M,M ]
for some M , hence φ(a)−1(Sn−1 × [−2M, 2M ]) is a fundamental domain for b2M
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containing [0, 1], thus contained in Sn−1 × [−2M, 2M ]. This gives an a-invariant
compact set with closure contained in B, as desired.

Finally, since φ is a realization, we known the germ of φ(gi) at 0: in a neighbor-
hood of 0 the homeomorphism φ(gi) is supported on the disjoint union of an annulus
A ∼= Sn−1 × I with its images under φ(a)n for n ∈ N. Since gi and a commute,
the boundary of the basin of attraction of a is equal to the set of accumulation
points of the iterates a−n(A), for n > 0. Since gi and fi commute, this set of
accumulation points is fi-invariant. But f1f2 = b, contradicting the fact that there
is no b-invariant set contained in B \ {0}. �

Despite the elementary nature of this example, the algebraic structure of groups
of germs is far from understood. As well as the problems raised in the introduction,
we ask (expecting the answer to be positive):

Question 3.3. Can Gr(n) and Gr(m) be distinguished by their finite subgroups?
What about finitely-generated, torsion-free subgroups? Realizable subgroups?

Question 3.4. Fix n > 1. Can Gr(n) and Diffr(Rn) be distinguished by their
finitely-generated, torsion-free subgroups?

3.2. C1 techniques: linear representations and Thurston stability. In
[Ghy91], Ghys proved the following non-realization result for boundary maps.

Theorem 3.5 (Ghys). There is no section of the natural restriction map
Diff1

0(Dn)→ Diff1
0(Sn−1).

In the case when n is even, the proof actually gives a finitely-generated subgroup
Γ ⊂ Diff∞0 (Sn−1) which has no realization in Diff1

0(Dn), we give a sketch below.

Proof sketch – even dimensional case. Supposing n = 2k, identify Sn−1

with the unit sphere {(z1, ...zk) ∈ Ck |
∑
|zi|2 = 1}. Let µ1, . . . , µk be distinct

pth roots of unity for some prime p > n, and define an order p diffeomorphism
f : (z1, . . . , zk) 7→ (w1z1, . . . , wkzk). One can explicitly write f as a product of
commutators f = [a1, b1] . . . [aj , bj ] such that ai and bi all commute with f . Let
Γ = 〈f〉 × 〈a1, . . . , bj〉. Supposing that φ is an extension, φ(f) is a finite order

element of Diff1
0(Dn) with no fixed points on Sn−1 hence has an interior fixed

point (by Brouwer). Smith theory says that the action of φ(f) on the doubled disc
(i.e. Sn) has fixed set equal to a mod-p homology sphere; since this fixed set is
disconnected, it must be a 0-sphere. One concludes that φ(f) has a single fixed
point, say x ∈ Dn, preserved by φ(ai) and φ(bi) since these commute with φ(f).
Since x is an isolated fixed point, the derivative Dφ(f)x is a linear map of order
p and full rank. However, the centralizer of such a map in GL(n,R) is abelian, so
Dφ(f)x =

∏
[Dφ(ai)x, Dφ(bi)x] = 1, contradiction. �

The tension here comes from forcing a global fixed point (through Smith theory
and the algebraic structure of Γ), then using the constraints from the algebraic
structure of Γ on the linear representation given by taking derivatives at that
point. It would be interesting to see if this line of argument can be improved to
even dimensional spheres – because there is no fixed-point free finite order map of
S2k, Ghys’ argument in this case is more involved and uses simplicity of the full
diffeomorphism group. Torsion elements also play an essential role in the argument,
so the following question remains open in all cases except n = 2.



14 KATHRYN MANN AND BENA TSHISHIKU

Question 3.6. Does there exist a torsion-free, finitely-generatedG ⊂ Diff0(Sn−1)
with no section to Diff0(Dn)?

The n = 2 is covered in [Man13], and parallels the strategy in Ghys’ proof above.
Distorted elements in G are used as a substitute for torsion elements, and work of
Franks and Handel on distorted surface diffeomorphisms is used as a substitute for
Smith theory to force an isolated fixed point. To complete the second half of the
argument, one needs an element with nontrivial, finite-order, derivative at the fixed
point; this is accomplished using rotation numbers.

In the absence of a nontrivial linear representation, Thurston’s stability theorem
gives an alternative – and more powerful – tool whenever one has a C1 action with
global fixed point.

Theorem 3.7 (Thurston stability [Thu74]). Let M be a manifold, x ∈M , and
let G be finitely-generated group of germs of C1 diffeomorphisms fixing x and with
trivial derivative at x. Then there is a surjective homomorphism G→ Z.

The proof uses a clever renormalization procedure to compare growth of higher
order terms. A nice exposition can be found in [CC00, §6.2].

Application 3.8. A typical application of Theorem 3.7 is as follows: suppose Σ
is a surface and x an accumulation point of fixed points for G ⊂ Diff1(Σ). Then the
linear representation of G by taking derivatives at x either gives a homomorphism
to Z via determinant, or via conjugation to the unipotent subgroup ( 1 ∗

0 1 ), or is
trivial. In the last case, Thurston stability produces a homomorphism to Z. Thus,
to apply this reasoning to a non-realization problem in Diff1(Σ), one aims to force
the existence of accumulation points of fixed points for a finitely-generated subgroup
G with H1(G;Q) = 0.

As an illustrative example, here is a special case of a result of Salter-Tshishiku.

Theorem 3.9 (Salter-Tshishiku [ST16]). Let n ≥ 5. There is no realization of
Diff1(D2, zn)→ Bn.

Proof. Suppose φ : Bn → Diff1(D2, zn) is a realization. The commutator
subgroup of Bn is finitely generated, and by a theorem of Gorin–Lin [GL69], is
perfect provided that n ≥ 5. Let x be a point in the frontier of fix(φ([Bn, Bn])),
which is nonempty since φ(Bn) pointwise fixes ∂D2. Now use the argument from
Application 3.8 to derive a contradiction. �

Salter–Tshishiku actually prove the stronger result that, for any surface Σb
g,n

(possibly with b = 0) the surface braid subgroup of Mod(Σbg,n) is not realized by C1

diffeomorphisms whenever n ≥ 6, then use the same technique to re-prove Morita’s
non-lifting Theorem 2.12 in class C1 for surfaces of genus g ≥ 2. The idea is as
follows: Supposing that a realization Modg → Diff1(Σ) exists, let f ∈ Modg be the
hypereliptic involution. The Lefschetz fixed point theorem implies that φ(f) has
2g + 2 fixed points; these are permuted by the centralizer of f . Using Dehn twists
about explicit curves, one produces a subgroup of the centralizer isomorphic to a
quotient of B2g+2, acting with a global fixed point, and applies a Thurston stability
argument to derive a contradiction.

We will show in §4 that B3 can be realized by (smooth) diffeomorphisms of a
disc with three marked points; however, the following are open.
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Question 3.10. Can B4 be realized by diffeomorphisms?

Question 3.11. For n > 3, can Bn be realized by homeomorphisms of the
marked disc?

Question 3.12. The argument of [ST16] does not generalize to finite index
subgroups. For n ≥ 4, is there a finite index subgroup of Bn that can be realized by
diffeomorphisms? What about by homeomorphisms? As a particular case, what
about the pure braid group Pn := ker[Bn → Sn] ?

3.3. Franks–Handel nonlifting. Franks and Handel have a different proof
of a general version of Morita’s nonlifting Theorem 2.12 for genus ≥ 3.

Theorem 3.13 (Franks–Handel [FH09]). Let f ∈ Modg preserve a genus h ≥ 1
subsurface S, and be pseudo-Anosov on S and isotopic to the identity on Σg \S. Let
H ∼= Mod(Σg \ S) ⊂ Modg be the subgroup of mapping classes of diffeomorphisms
pointwise fixing S; this centralizes f . Provided that Σg \ S has genus at least 2,

〈f,H〉 cannot be realized in Diff1(Σg).

The proof uses two of the dynamical tools we have discussed: Thurston stability
and basins of attraction. The additional ingredients are a) the theory of prime ends
– a compactification method compatible with group actions on open, connected,
simply connected domains in the plane – and b) the Thurston–Nielsen classification
of mapping classes and the dynamics of their boundary maps, which we describe
next. Notably, the proof does not use torsion in Mod(Σ).

The Thurston–Nielsen classification. Building on work of Nielsen [Nie44],
Thurston [Thu88] gave a classification of elements of the mapping class group of a
surface. Each φ ∈ Modg has a representative homeomorphism which is either finite
order, pseudo-Anosov, or reducible. A homeomorphism f being Pseudo-Anosov
means that the surface admits two f -invariant transverse measured foliations, whose
transverse measures are expanded by λ and 1/λ (respectively), for some λ > 0.
The foliations may have finitely many singularities, each a p-pronged saddle, for
some p. Reducible means that there is a finite collection A of disjoint simple
closed curves invariant under f such that, after passing to a power that fixes each
curve, f preserves a small tubular neighborhood N(A) of A, and acts on each
connected component of Σ\N(A) separately either by the identity, a pseudo-Anosov
homeomorphism, or possibly a Dehn twist if the component is an annulus. The
structure of reducible elements is discussed more in §4.2.

Any homeomorphism f of Σ can be lifted to a homeomorphism of the universal
cover Σ̃ ∼= H2. The lift is a quasi-isometry of H2 so extends to a homeomorphism
of the boundary S1 of the Poincaré disc. Thinking of the mapping class group
as the group of outer automorphisms of π1(Σ); a choice of lift of f fixes a choice
of representative automorphism corresponding to the mapping class of f , and the
action of the lift on S1 agrees with the action of the automorphism on the Gromov
boundary of π1(Σ). Thus, if f and g are isotopic, two isotopic lifts determine the
same boundary action; and the Thurston–Nielsen classification above gives a helpful
way to understand the boundary action of mapping classes, as will be used in the
proof below. Thurston’s survey [Thu88] is a good introduction to this theory; more
details can be found in [FM12, §13] and [FLP79].

Using this machinery, we now sketch the proof of Franks and Handel’s theorem.
Their exposition is focused on the dynamics of homeomorphisms of the disc with
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fixed points; we focus on the dynamics of pseudo-Anosov mapping classes applicable
to this situation.

Proof sketch of Theorem 3.13. Suppose for contradiction that φ : G =
〈f,H〉 → Diff1(Σg) is a realization. One may check directly from a presentation of
H that H1(H;Z) = 0, so the goal is to find an accumulation point of global fixed
points for φ(H) and apply Thurston stability.

We first lift φ to an action on the universal cover, and study its action by

homeomorphisms on the compactification of Σ̃g ∼= H2 as D2. Let a be a pseudo-
Anosov representative of f on S. After passing to a power of a (and f) if needed,
we may assume a fixes a point x ∈ S, and (after a further power) also fixes all leaves

through x. Choose a connected component S̃ of the preimage of S in H2 and take

a lift ã fixing x̃ ∈ S̃. Then the boundary action of ã has a finite, even number of
fixed points, alternately attracting and repelling, corresponding to the endpoints of
the leaves of the (lifted) foliations that pass through x̃. If x is a non-singular point,
there will be two attractors and two repellers, otherwise, for a p-pronged singularity,
there are p of each. Let f̃ be the lift of φ(f) with boundary action agreeing with ã;

these lifts have the property that f̃ and ã are isotopic. There is also a canonical

choice of lift H̃ of φ(H) pointwise fixing ∂S̃ ⊂ ∂H2. This will commute with f̃ ,
giving a well-defined lift of φ.

The next step is to understand the dynamics of the action of f̃ on the interior
of the disc. Although f is only isotopic to a, so a priori it can have very different
dynamics, we claim that the attracting points of f̃ on the boundary really are
attractors, in the sense that there exists an open neighborhood W ⊂ D2 of each
such point p with the property that f̃n(W ) converges to p. To see this, we use the
fact that f is a quasi-isometry of D2, so there exists K such that the image of each
geodesic under f is a K-quasi-geodesic. Also, since f̃ and ã are isotopic, there exists
K ′ such that d(f̃(x), ã(x)) < K ′ (in the hyperbolic distance) for all x ∈ H2. Recall
also that a expands length along the singular leaf L ending at p by some λ > 1.
Let γ be a bi-infinite geodesic perpendicular to a passing through L at distance t
from x̃. Then f̃(γ) is a K quasi-geodesic passing through a point at distance K ′

from a point distance λt from x̃ along L, and it is easy to verify that whenever t is
sufficiently large, f̃(γ) is contained inside the hemisphere cut out by γ. This suffices
to show that p is an attracting point.

Let U denote the basin of attraction of f̃ at p (as defined in Section 3.1). Since

f̃ and H̃ commute, and H fixes p, the basin U is H̃-invariant. An easy improvement
of this argument shows that, in fact, for every h̃ ∈ H̃, there exists n ∈ N such that
for each attractor or repeller z of f̃ in ∂H2, the map f̃nh̃ has z as an attractor (or
repeller) with the same basin at z as f .

Now we find a point y ∈ H2 fixed by any such homeomorphism f̃n◦h̃. As an easy
case, suppose U were an open ball with boundary topologically an embedded circle
C. Let y be the closest point of fix(f̃n ◦ h̃) ∩ C to the right of the repelling point q
adjacent to p, as indicated in the figure. Using the fact that f and H commute, one
shows this “first point” for f̃n ◦ h̃ is actually independent of h, and so fixed by each
such f̃nh̃. When h = id, we may take n = 0, so this shows it is also a fixed point of
f̃ , and hence of H̃ as well. In general, U is not necessarily a homeomorphic disc with
circle boundary, but one can show that U is open, connected, and simply connected,
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Figure 1. Dynamics of f̃ on H2

and thus replace ∂U in the argument above with the prime end compactification of
U to finish the argument in an analogous manner.

This gives us a single fixed point for φ(H) in Σg. To produce infinitely many
more, one repeats the argument above using other powers of a. It is a standard fact
(a consequence of Poincaré recurrence) that pseudo-Anosov diffeomorphisms have
infinitely many periodic points – in fact, a dense set in the surface. See [FM12,
§14]. These are partitioned into (infinitely many distinct) Nielsen classes, where x
and y are said to be equivalent if there exists a lift of an to H2 that fixes both x
and y. The argument we gave above produced a global fixed point y for φ(H) in
the same Nielsen class as the original periodic point x of a. Thus, starting with
points from different Nielsen classes for a will produce infinitely many distinct fixed
points for φ(H), which must accumulate somewhere on Σ. This is what we needed
to show. �

3.4. Obstructions to realizing non-discrete groups: forcing continu-
ity. We return to discussing realization problems for large (non finitely-generated)
subgroups under the “restrict-to-boundary” map. Groups of quasiconformal home-
omorphisms are an interesting case. Quasiconformal mappings are those with
“bounded deviation” from conformal maps: as a special case, if f is a differentiable

map defined on an open domain U ⊂ C, f is quasiconformal if supp∈U
|fz(p)|+|fz̄(p)|
|fz(p)|−|fz̄(p)| is

finite. There are other formulations of the definition which apply to homeomorphisms
of arbitrary metric spaces. The pseudo-Anosov maps from the Thurston–Nielsen
classification above give examples of quasiconformal homeomorphisms between
Riemann surfaces; indeed one approach to proving the classification (due to Bers
[Ber78]) is through the theory of quasiconformal maps.

A quasiconformal homeomorphism of a surface with boundary restricts to what
is called a quasi-symmetric homeomorphism of S1. Thus, there is a natural surjection
QC(D2)→ QS(S1). The section problem for this map was answered negatively by
Epstein and Markovic.

Theorem 3.14 (Epstein–Markovic [EM07]). There is no section of the restric-
tion map QC(D2)→ QS(S1).

As explained in [EM07] (and perhaps part of their original motivation) there
is a nice connection between this problem and the Nielsen realization problem for
Modg. If QC(D2) → QS(S1) had a section with the additional property that the
extension over PSL(2,R) were the identity, then the mapping class group Mod(Σg)
could be realized by homeomorphisms, as follows: Let G be the group of all boundary
mappings of lifts of homeomorphisms of Σg to D2 = H2. Since the representative
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diffeomorphisms from the Thurston–Nielsen classification of mapping-classes are
quasiconformal, these boundary maps are all quasi-symmetric. There is an exact
sequence π1(Σg)→ G→ Mod(Σg). Assuming a section as above, let φ be a lift of
G to QC(D2); then π1(Σg) acts by Möbius transformations. The quotient of φ(G)
by φ(π1(Σg)) then gives a realization of Mod(Σg) in the group of quasiconformal
homeomorphisms of Σg.

A major step in Epstein and Markovic’s proof of Theorem 3.14 is to show that
any such realization would be forced to be continuous, and so they ask whether every
section of the boundary map Homeo(D2)→ Homeo(S1) is necessarily continuous.
Note that at least one section exists, namely from “coning off” the circle to the disc.
More generally, one can ask the following.

Question 3.15. Let M be a manifold with boundary, fix r > 0, and suppose
that Diffr0(M)→ Diffr0(∂M) admits a section. Is that section necessarily continuous?

Only two results are known in this direction, one in C∞ and one in C0 regularity.
Both prove something much stronger than the answer to the question above, but
both use their respective assumptions on regularity in an essential way.

Theorem 3.16 (Hurtado [Hur15]). Let M and N be closed manifolds, and
φ : Diff∞0 (M)→ Diff∞0 (N) any homomorphism. Then φ is continuous.

Theorem 3.17 ([Man16]). Let M be a closed manifold and G a separable
topological group. Any homomorphism φ : Homeo0(M)→ G is continuous.

We conclude this section with two additional open questions.

Question 3.18 (Epstein–Markovic). Fix n > 2. Does the map QC(Dn) →
Homeo(Sn−1) have a section over its image?

Question 3.19. Let M be a manifold with boundary. If Diffr0(M)→ Diffr0(∂M)
admits a section, what can one say about the topology of M? Are there examples
where the action of Diffr0(∂M) does not preserve a foliation?

For Diff∞0 this question was asked by Ghys [Ghy91], who also asks specifically
whether the map admits a section when M is a handlebody.

4. Positive results

Up to now we have only discussed negative results and obstructions to realization.
In this section we give some examples of large groups of mapping classes that are
realized by diffeomorphisms and techniques to realize them.

4.1. Automorphisms, blow-ups and smoothings. The mapping class group
of the torus Mod1,1

∼= Mod1
∼= SL(2,Z) is realized by linear diffeomorphisms of

T2 := R2/Z2 (with 0 as a marked point). Automorphism groups of translation
surfaces are a natural generalization of this example.

A translation surface is a surface with the additional structure of a holomorphic
1-form; equivalently, it is a surface obtained by taking a finite collection of polygons
in R2 and identifying parallel sides in pairs by translations. Such a surface inherits
a singular Euclidean structure with finitely many cone singularities, each with angle
a positive multiple of 2π. An (orientation preserving) affine automorphism of a
translation surface X is a homeomorphism of X that permutes its singularities and
is locally in Aff+(R2) at all other points. These form a group, denoted Aut+(X).
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While the automorphism group of the square torus includes both SL(2,Z) and all
translations in R2/Z2, when a translation surface X has at least one singularity, the
map Aut+(X)→ Mod(X) is always injective. By definition Aut+(X) < Mod(X) is
realized by homeomorphisms, but not obviously by diffeomorphisms. In this section,
we discuss techniques that allow one to promote an action by homeomorphisms to a
smooth action, and use this to realize affine automorphisms and other groups.

Realizing Aut+(X) by diffeomorphisms. Let X be a translation surface
with holomorphic 1-form ω. Assume X is not a flat torus, so has at least one
singularity. Taking the linear parts of the defining affine maps gives a homomorphism
Aut+(X)→ SL(2,R) whose image, denoted SL(X,ω), is a discrete subgroup. This
subgroup may be finite covolume or not, but is never cocompact. (For a gentle
introduction, see [Sch11].) We show how to realize Aut+(X) by diffeomorphisms,
under the simplifying assumption that SL(X,ω) is finitely generated.

In this case, SL(X,ω) has a presentation of the form

〈a1, b1, . . . , ag, bg, c1, . . . , cm, d1, . . . , dn | [a1, b1] · · · [ag, bg]c1 · · · cmd1 · · · dn, (ci)qi〉
where qi ∈ N, n ≥ 1 and g,m ≥ 0. Let p1, . . . , pk denote the singularities of X. The
stabilizer of pi is a finite index subgroup of SL(X,ω), so finitely generated and of
the form above. The open surface X \ {p1, . . . , pk} can be compactified by adding a
circle of “straight line directions” at each end, giving a surface X with k boundary
components, to which the action of Aut+(X) extends.

If p1 has cone angle 2πM , its stabilizer in SL(X,ω) acts on the circle of directions
by lifts of the linear action of SL(2,R) on the circle of rays from the origin in R
(topologically a circle) to the M -fold cover of this circle. Other elements of the
stabilizer in Aut+(X), if any, act by rotations of order k/M , commuting with the
lifted linear action.

This action can be smoothly isotoped to one where, using the presentation
above, all the ai, bi, and d1, . . . , dn−1 act trivially, and the ci and dn lie in SO(2)
(we do not change the action of elements that map to the identity in SL(X,ω)).
To do this, work within the cyclic extension of SL(2,R) by Z/MZ in which these
elements lie, and isotope ai, bi, and di, smoothly towards the identity, while iso-
toping each ci (through the space of order qi elements) to rotations. The product
[a1, b1]...[ag, bg]c1...cmd1...dn−1 varies smoothly through the isotopy, so can be taken
to define an isotopy of d−1

n . This isotopy of the action allows one to “cone off” the
circle to a disc, extending the action of the stabilizer smoothly over the disc. A
variation of this argument is given in detail in the next example.

If Aut+(X) acts transitively on the singularities, this is enough to determine
a smooth action of Aut+(X) on a closed surface obtained by gluing discs to each
boundary component of X (which is topologically the surface X). If not, repeat the
procedure for each orbit of the action. �

A realization of B3 by diffeomorphisms. Thurston observed that the braid
group B3 could be realized by homeomorphisms. Building on our work above, we
describe his construction and prove the following.

Theorem 4.1. There is a section of Diff∞∂ (D2, z3)→ Mod(Σ1
0,3) = B3.

Proof of Theorem 4.1. Consider the linear action of SL(2,Z) on T2 =
R2/Z2. The center {±1} of SL(2,Z) acts on T2 as the hyperelliptic involution;
it has four fixed points {0} ∪ {p1, p2, p3}, which SL(2,Z) permutes (later we will
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use that these points are p1 = (0, 1
2 ), p2 = ( 1

2 ,
1
2 ), p3 = (1

2 , 0), when viewed in R2).
The point 0 is a global fixed point and SL(2,Z) acts on p = {p1, p2, p3} transitively.
The quotient PSL(2,Z) = SL(2,Z)/{±1} acts on the quotient T2/{±1}, which is
a sphere with four cone points, each of angle π. (In the language of the previous
section, this sphere is a half translation surface, or Riemann surface equipped with
a quadratic differential.)

Since 0 is a global fixed point, we can compactify T2/{±1} \ {0} by adding a
circle of directions at 0, obtaining an action of PSL(2,Z) on a disk with 3 marked
points Σ1

0,3 = (D2,p).
To relate B3 to PSL(2,Z), note that there is an exact sequence 1→ Z→ B3 →

PSL2(Z)→ 1. On the level of mapping class groups, the projection B3 → PSL(2,Z)
is equal to the map

B3 ' Mod1
0,3 → Mod0

0,4 ' (Z/2Z× Z/2Z) o PSL(2,Z)→ PSL(2,Z)

induced by the map Σ1
0,3 → Σ0

0,4 that collapses the boundary component of to a
point (see [FM12, Prop. 2.7]). On the group level PSL(2,Z) ' Z/2Z ∗ Z/3Z =
〈x, y : x2 = 1 = y3〉, and B3 has a presentation 〈a, b : a2 = b3〉, with B3 → PSL(2,Z)
the obvious homomorphism. Thus, we can view the PSL(2,Z) action on (D2,p) as a
non-faithful action of B3. To obtain a smooth realization of B3, we will (1) isotope
the action of x, y ∈ PSL2(Z) on the ∂D2 to the identity, preserving the relation
x2 = y3 to get an action by homeomorphisms, and (2) glue discs in at singularities,
as we did for translation surfaces above, to smooth the action.

For (1), attach an annulus A ' S1 × [0, 1] to ∂D2 along S1 × {0}, enlarging
the disc. Under suitable parameterization, a ∈ B3 acts on ∂D2 by a standard order
two rotation, and b by an order 3 projectively linear map. Let bt, 0 ≤ t ≤ 1/2
be a smooth path of conjugates of b through PSL(2,R) such that b0 = b, and
b1/2 ∈ SO(2). Now extend this to a smooth path through SO(2) for 1/2 ≤ t ≤ 1,
with b1−ε = id for all small ε. Let at be a smooth path in SO(2) from a0 = a to
a1 = id such that a2

t = b3t for all t. Defining a, b on S1×{t} ⊂ A to agree with at, bt
gives an extension of the action to a smooth action on the annulus that is identity
in a neighborhood of S1 × {1}.

For (2), as in the argument for translation surfaces, compactify D2 \ p by a
circle Ci of straight line directions at each pi. Observe that the action of PSL(2,Z)
on C1 ∪ C2 ∪ C3 is the action of PSL(2,Z) on the projectivized unit tangent circles
at p1, p2, p3 (which we may identify using the natural trivialization of TD2). Under
our identification we have

a : C2 → C2 is the identity, a : C1 → C3 agrees with
(

0 −1
1 0

)
∈ PSL(2,R),

b : Ci → Ci+1 agrees with
(

0 −1
1 1

)
∈ PSL(2,R).

(4.1)

Glue a disc Di to each Ci and fix smooth collar neighborhoods of Ci ⊂ Di

parametrized by Ci× [0, 1]. To extend to this collar, we can choose smooth isotopies
of a and b from the maps in (4.1) to the identity, and extend the action to ∪iCi×{t}
by at, bt, so that a0, b0 agree with rigid translations on ∪iCi × {0}. Then we can
extend the action to the rest of Di by rigid translations. The result is an action by
diffeomorphisms of a and b on a disc, fixing the boundary pointwise, and permuting
the centers of D1, D2 and D3, which we take as three marked points. The reader may
easily check that the mapping classes of a and b agree with the standard generators
of B3, as required. �
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Building on this line of argument, we also give a positive answer to Nariman’s
question mentioned at the end of Section 2.

Theorem 4.2. Let z = z2g+2 for some g ≥ 1. There is a continuous homomor-
phism ψ : Diff(D2, z) → Diff(Σ2

g, ∂Σ2
g) that induces the geometric homomorphism

B2g+2 → Mod2
g on mapping class groups.

While Nariman showed there is no cohmological obstruction to this lift, the
existence of the realization is somewhat surprising, given a few of the results we have
already mentioned. Specifically, Theorem 3.9 implies that ψ cannot be obtained
by a map that factors through B2g+2, and Theorem 3.16 (which has a variation for
manifolds that are not closed) also implies that such a map ψ should essentially
be continuous, with further work of Hurtado implying that its restriction to the
subgroup Diffc(D2, z) of diffeomorphisms fixing a neighborhood of z (which we know
to be nontrivial by [ST16]) must be obtained by embedding copies of covers of the
open, punctured disc into Σ2

g. This suggests, at least vaguely, that ψ would have
to be obtained by branching the punctured disc over z, an inherently non-smooth
construction.

The proof uses two constructions, one a trick for smooth gluing, and the other a
classical “blow up” procedure similar to the technique above to deal with singularities
of translation surfaces.

Construction 4.3 (Smoothing actions glued on a codimension 1 submanifold).
Let G be a group acting by smooth diffeomorphisms on manifolds S1 and S2. Let
X1 and X2 be diffeomorphic connected components of ∂S1 and ∂S2 respectively,
and let S be the manifold obtained by gluing S1 and S2 by a diffeomorphism
X1 → X2. If, for each g ∈ G, the action of g on X1 agrees with that on X2 under
the identification used in the gluing, then there is an obvious induced action of
G on S by homeomorphisms. However, this is conjugate to an action by smooth
diffeomorphisms on S. The conjugacy can be obtained by a map f : S → S which is
the identity outside a tubular neighborhood of the glued boundary components, and
in the tubular neighborhood (identified with X × [−1, 1], with the glued boundary
components at X × {0}) is locally a very strong contraction at 0; taken strong
enough so that fgf−1 becomes infinitely tangent to the identity in the direction
transverse to the boundary at X × {0} . Details are worked out in [Par15] using

the local contraction (x, y) 7→ (x, e
−1

e−1/|y| ).

Construction 4.4 (Blow-up). Let p = {p1, p2, ..., pk} be a finite set of points in

a manifold Mn. The (oriented) blowup of M at p is a smooth manifold M̂ obtained
from M by replacing each x ∈ p with the space of directions T 1

xM ' Sn−1 in its

tangent space. There is a natural projection Φ : M̂ →M that is a diffeomorphism
away from p, and a natural injection Φ∗ : Diffr(M,p)→ Diffr−1(M̂) for r ≥ 1. In

particular, any C1 action on (M,p) induces an action on M̂ by homeomorphisms.

Proof of Theorem 4.2. Our strategy is to first build a map φ : Diff(D2, z)→
Diff(D2, z), which has image in a subgroup that acts on a given neighborhood of z
by translations, and also induces the identity map Bn → Bn. Building this map is
the bulk of the construction. Given such a map φ, the diffeomorphisms in its image
can then be lifted to diffeomorphisms of a cover branched over z as described above.

To start, apply Construction 4.4 to blow up D2 at the set z. The new surface
obtained (call it D0) has n + 1 boundary components, one corresponding to the
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z1 z2 z3

D0

∂

D1

D2 D3

z1

∂

z2
z3

Figure 2. Gluing copies of D2 blown up at one point of z into a
copy of D2 blown up at z

original boundary ∂ of the disc, and the others corresponding to the blown up
points.

Enumerate z = {z1, z2, ..., zn} and for i = 1, 2, ..., n, let Di be a blow-up of D2

at {zi}. Glue each Di to D0 along the blow-up of zi, using the identity map on the
space of tangent directions at zi. The result is an (n+ 1)-holed sphere. Now embed
this (n+ 1)-holed sphere into D2 with the boundary component ∂ mapping to ∂D2.
The result is pictured in Figure 2; boundary components of the Di are labeled by
their images under the map from the blow-up construction.

Let C1, C2, ...Cn be the connected components of the complement of the image
of the embedding (shown in white on the figure). We may arrange the embedding so
that each Ci is a round disc of radius ε, centered around the marked point zi on the
original disc D2 (shown as midpoints of the white regions of the figure). Construction
4.4 gives a natural homomorphism from Diff(D2, z) to Diff(Di). These actions of
Diff(D2, z) on the various Di for i = 0, 1, ..., n agree on their glued boundary
components, so Construction 4.3 produces a homomorphism from Diff(D2, z) to
the diffeomorphisms of the n+ 1 holed sphere that was obtained by gluing the Di

together. We identify this surface with the image of its embedding in D2. Since
elements of Diff(D2, z) fix a neighborhood of ∂D2 pointwise, we may also arrange
the embedding so that this action permutes the boundaries of the complementary
discs Ci by rigid translations. Thus, the action naturally extends to an action on
D2 by diffeomorphisms, permuting the discs Ci by translations. In particular, the
set of midpoints of the Ci is preserved, so this action is by elements of Diff(D2, z).
Let φ : Diff(D2, z)→ Diff(D2, z) denote this action.

Finally we check that φ induces the identity map on the quotient Bn =
Diff(D2, z)/Diff0(D2, z). By design of our blow-up, gluing, and embedding, if
f(zi) = zj , then φ(f) maps Di to Dj , hence maps Ci to Cj , and its center point zi
to zj .

We may now quickly finish the proof. As explained in §2, there is an injective map
Ψ : Diff(D2, z)→ Homeo∂(Σ2

g). Consider the map Ψ◦φ : Diff(D2, z)→ Homeo∂(Σ2
g),

which agrees with Ψ on mapping class groups. Each diffeomorphism in the image
of φ has trivial (i.e. constant ≡ id) derivative in a neighborhood of each z ∈ z,
so its image under Ψ is smooth everywhere. Thus, Ψ ◦ φ gives the desired map
Diff(D2, z)→ Diff∂(Σ2

g). �
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4.2. Realizing free abelian and right-angled Artin groups. Recall from
§3.3 the Nielsen–Thurston classification of elements of Mod(Σ) (finite order, re-
ducible, pseudo-Anosov). We now discuss reducible elements in more detail. By
definition, a reducible φ ∈ Mod(Σ) admits a reduction system, a finite collection A
of disjoint isotopy classes of simple closed curves that is invariant under φ. The
intersection of all maximal reduction systems is called the canonical reduction system
Aφ.

Birman–Lubotzky–McCarthy [BLM83] use reduction systems to show that all
solvable subgroups of Mod(Σb

g,n) are virtually abelian, and give a (sharp) bound
on the torsion-free rank of abelian subgroups. Farb [Far06b, Ch. 2, §6.3] remarks
(without proof) that their perspective can be used to show that all free abelian

subgroups Zn < Modbg,m can be realized by homeomorphisms. In essence, since the
image of a reduction system A for φ under some element ψ is a reduction system for
ψφψ−1, whenever Γ < Mod(Σbg,n) is abelian, then the union

⋃
φ∈ΓAφ is a reduction

system for each element of Γ, and restrictions of commuting elements to subsurfaces
are necessarily either powers of the same pseudo-Anosov, or of the same Dehn
twist, or possibly the identity. From there (proceeding with some care on annular
neighborhoods of the reducing system) one can choose commuting representative
homeomorphisms for elements of Γ.

A natural next step is to generalize this strategy to right-angled Artin subgroups
of Mod(Σ). A right-angled Artin group A(G) is defined by a finite undirected graph
G = (V,E) via

A(G) = 〈x ∈ V | [x, y] = 1 if {x, y} ∈ E〉.
Hence, free groups (which are always realizable) correspond to totally disconnected
graphs, and free abelian groups to complete graphs. There are many other interesting
RAAG subgroups of mapping class groups, see [Kob17, §8] and references therein.

Question 4.5. Is every right-angled Artin subgroup A(G) < Mod(Σ) realized
by homeomorphisms?

We remark that the reduction-system strategy above seems to go through in
some special cases; for instance, if A(G) < Mod(Σ) is such that each x ∈ V fixes
each curve in Ax. However, there are many RAAG subgroups that do not have this
property.
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