
NIELSEN REALIZATION FOR SPHERE TWISTS ON 3-MANIFOLDS

LEI CHEN AND BENA TSHISHIKU

Abstract. For a 3-manifold M , the twist group Twist(M) is the subgroup of the map-
ping class group Mod(M) generated by twists about embedded 2-spheres. We study the
Nielsen realization problem for subgroups of Twist(M). We prove that a nontrivial sub-
group G < Twist(M) is realized by diffeomorphisms if and only if G is cyclic and M is
a connected sum of lens spaces, including S1 × S2. We also apply our methods to the
Burnside problem for 3-manifolds and show that Diff(M) does not contain an infinite
torsion group when M is reducible and not a connected sum of lens spaces.

1. Introduction

The mapping class group Mod(M) of a smooth, closed oriented manifold M , is the group
of isotopy classes of orientation-preserving diffeomorphisms of M . Denoting Diff+(M) the
group of orientation-preserving diffeomorphisms, there is a natural projection map

π : Diff+(M)→ Mod(M)

sending a diffeomorphism to its isotopy class. A subgroup i : G ↪→ Mod(M) is called
realizable if there is a homomorphism of ρ : G→ Diff+(M) such that π ◦ ρ = i.
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The Nielsen realization problem asks which finite groups G < Mod(M) are realizable.
When M is a surface, every finite subgroup of Mod(M) is realizable by work of Kerkchoff
[Ker83]. For other manifolds, only sporadic results have been obtained; see [Par21, §2] for
a summary of results in dimension 3, [FL21, BK19, Lee22, Kon22] for results in dimension
4, and [FJ90, BW08, BT22] for higher dimensions.

When M is a (closed, oriented) 3-manifold, by Hong–McCullough [HM13, Thm. 4.1] its
mapping class group fits into an exact sequence

1→ Twist(M)→ Mod(M)→ Out(π1(M)),

where the twist group Twist(M) < Mod(M) is the subgroup generated by twists about
embedded 2-spheres (see §2 for the precise definition). McCullough [McC90] proved that
Twist(M) ∼= (Z/2Z)d for some d ≥ 0.

We address the Nielsen realization problem for subgroups of Twist(M). This problem
was studied by Zimmermann [Zim21] for M = #k(S

1 × S2), but there is an error in
his argument; see [Zim22]. Nevertheless, using some of the same ideas, we correct the
argument, and we generalize from #k(S

1×S2) to all 3-manifolds, giving a precise condition
for which subgroups can be realized or not.
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To state the main result, recall that for any pair of coprime integers p, q, there is a lens
space L(p, q). Every lens space is covered by S3 with the exception of L(0, 1) ∼= S1 × S2.

Main Theorem. Fix a closed, oriented 3-manifold M , and fix a nontrivial subgroup
1 6= G < Twist(M). Then G is realizable if and only if G is cyclic and M is diffeomorphic
to a connected sum of lens spaces.

In particular, the subgroup of Twist(M) generated by a single twist is sometimes realiz-
able (depending on the topology of M), but the subgroup generated by distinct commuting
twists is never realizable.

Application: the Burnside property for diffeomorphism groups. Recall that a
torsion group is a group where every element has finite order. The existence of finitely-
generated, infinite torsion groups was proved by Golod–Shafarevich [Gol64, Gv64] and
Adian-Novikov [AN68]. A group H is said to have the Burnside property if every finitely-
generated torsion subgroup of H is finite. Burnside and Schur proved that linear groups
have the Burnside property [Bur02, Sch12] . E. Ghys and B. Farb asked homeomorphism
groups of a compact manifolds have the Burnside property; see [Fis11, Question 13.2] and
[Fis17, §5]. As an application of the tools used to prove the Main Theorem, we prove that
certain diffeomorphism groups have the Burnside property.

Theorem 1.1. Let M be a compact oriented 3-manifold. Assume that M is reducible and
not a connected sum of lens spaces. Then Diff(M) has the Burnside property, i.e. every
finitely-generated torsion subgroup of Diff(M) is finite.

Smooth vs. topological Nielsen realization. The topological mapping class group
ModH(M) is defined as the group of isotopy classes of orientation-preserving homeomor-
phisms of M . There is a natural projection map

Homeo+(M)→ ModH(M),

and the Nielsen realization problem can also be asked for subgroups of ModH(M). For 3-
manifolds, the smooth and topological mapping class groups coincide Mod(M) ∼= ModH(M)
by Cerf [Cer59], who proved that Diff+(M) and Homeo+(M) are homotopy equivalent.
Surprisingly, the realization problem for finite groups is also the same in the topological
and smooth categories in dimension 3.

Theorem 1.2 (Pardon, Kirby–Edwards). Let M be a closed oriented 3-manifold. A finite
subgroup G < Mod(M) is realizable by homeomorphisms if and only if it is realizable by
diffeomorphisms.

In particular, this allows us to strengthen the conclusion of the Main Theorem. We
emphasize that the groupG in Theorem 1.2 is finite; however, we do not know an example of
a 3-manifold M and an infinite group G < Mod(M) that is realizable by homeomorphisms
but not diffeomorphisms.

Proof of Theorem 1.2. Let ρ : G → Homeo+(M) be a realization of G < Mod(M). By
Pardon [Par21], ρ can be approximated uniformly by a smooth action ρ′ : G→ Diff+(M).
Since Homeo+(M) is locally path-connected by Kirby–Edwards [EK71], we know that ρ′(g)
and ρ(g) are isotopic in Homeo+(M) for each g ∈ G, and hence also isotopic in Diff+(M)
since ModH(M) = Mod(M). �
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In dimension 4, the situation is different. Even the groups Mod(M) and ModH(M) may
differ. This is true when M is a K3 surface by work of Donaldson [Don87] (c.f. [FL21, §1.1])
and Quinn [Qui86, Thm. 1.1]. See also Ruberman [Rub98]. Regarding Nielsen realization,
Baraglia–Konno [BK19] give a simple example of an order-2 mapping class of a K3 surface
that can be realized by homeomorphisms but not by diffeomorphisms.

Related work. The following remarks connect the Main Theorem to other previous work.

Remark 1.3 (Twist group for S1×S2). The group Twist(S1×S2) is isomorphic to Z/2Z.
We construct a realization of this group in §5. This example seems to be overlooked in
some of the literature on finite group actions on geometric 3-manifolds. It is a folklore
conjecture of Thurston that any finite group action on a geometric 3-manifold is geometric
(i.e. acts isometrically on some geometric structure). It is easy to see that our realization
of the twist group, which also appears in work of Tollefson [Tol73], does not preserve any
geometric structure on S1×S2, so it is a simple counterexample to Thurston’s conjecture.

According to Meeks–Scott [MS86], Thurston proved some cases of his conjecture, but
these results were not published. Meeks–Scott [MS86] proved Thurston’s conjecture for

manifolds modeled on H2×R, S̃L2(R), Nil, E3, and Sol. In [MS86, Thm. 8.4] it is asserted
(incorrectly) that Thurston’s conjecture also holds for 3-manifolds modeled on S2 ×R (in
particular S2×S1); they give an argument, but in the case when some g ∈ G has positive-
dimensional fixed set (as is the case for our realization of Twist(S1 × S2)), they cite a
preprint of Thurston that seems to have never appeared.

Remark 1.4 (Sphere twists in dimension 4). For a 4-manifold W , for each embedded
2-sphere S ⊂ W with self-intersection S · S = −2, there is a sphere twists τS ∈ Mod(W ),
which has order 2. There are several results known about realizing the subgroup generated
by a sphere twist, both positive and negative; see Farb–Looijenga [FL21, Cor. 1.10], Konno
[Kon22, Thm. 1.1], and Lee [Lee22, Rmk. 1.7]. It would be interesting to determine
precisely when a sphere twist is realizable in dimension 4.

About the proof of the Main Theorem. The proof is divided into two parts: con-
struction and obstruction (corresponding to the “if” and “only if” directions in the theorem
statement). For the obstruction part of the argument, we prove the following constraint
on group actions on reducible 3-manifolds (see Theorems 4.1 and 4.2).

Theorem 1.5. Let M be a closed, oriented, reducible 3-manifold. Assume M is not a
connected sum of copies of RP 3. Let G < Diff+(M) be a finite subgroup that acts trivially
on π1(M). Then G is cyclic. If G is nontrivial, then M is a connected sum of lens spaces.

Section outline. In §2, we recall results about sphere twists and the twist group. In
§3 we explain results from minimal surface theory that allow us to decompose a given
action into actions on irreducible 3-manifolds. In §4 and 5 we prove the “obstruction” and
“construction” parts of the Main Theorem, respectively. In §6, we prove Theorem 1.1.

Acknowledgement. Thanks to B. Farb for helpful comments on a draft of this pa-
per. Thanks also to the referee for closely reading the paper and offering many valuable
comments and corrections. The authors are supported by NSF grants DMS-2203178, DMS-
2104346 and DMS-2005409. This work is also supported by NSF Grant No. DMS-1929284
while the first author visited ICERM in Spring 2022.
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2. Sphere twists and the twist subgroup

In this section we collect some facts about sphere twists and the group they generate.
In §2.1 we recall the definition of sphere twists and recall that they act trivially on π1(M)
and π2(M). In §2.2 we give a computation for the twist group of any closed, oriented 3-
manifold (Theorem 2.4). The computation can be deduced by combining different results
from the literature and gives a precise generating set.

2.1. Sphere twists and their action on homotopy groups. Fix a closed oriented 3-
manifold M . We recall the definition of a sphere twist. Fix an embedded 2-sphere S ⊂M
with a tubular neighborhood U ∼= S × [0, 1] ⊂M , and fix a closed path φ : [0, 1]→ SO(3)
based at the identity that generates π1(SO(3)). Define a diffeomorphism of U by

(1) TS(x, t) =
(
φ(t)(x), t

)
and extend by the identity to obtain a diffeomorphism TS of M . The isotopy class τS ∈
Mod(M) of TS is called a sphere twist. The twist subgroup of Mod(M), denoted Twist(M),
is the subgroup generated by all sphere twists.

Lemma 2.1 (Action of sphere twists on π1). Let M be a closed, oriented 3-manifold with
a 2-sided embedded sphere S ⊂M . Then τS acts trivially on π1(M).

Remark 2.2 (Action on π1(M) vs. π1(M, ∗)). When we say f ∈ Diff(M) acts trivially
on π1(M), we mean the induced outer automorphism is trivial (recall that after choosing
a path from f(∗) to ∗, there is an induced automorphism

π1(M, ∗) f∗−→ π1(M,f(∗)) ∼= π1(M, ∗),

which is well-defined up to inner automorphisms). If f is a diffeomorphism fixing ∗ ∈ M ,
then we say f acts trivially on π1(M, ∗) if the induced map f∗ : π1(M, ∗)→ π1(M, ∗) is the
identity. The distinction between f being trivial on π1(M) or π1(M, ∗) will be important
in later sections. In general, if f acts trivially on π1(M) and fixes ∗ ∈ M , then we can
only conclude that f acts on π1(M, ∗) by conjugation.

Lemma 2.1 is well-known, e.g. it is implicit in [McC90]. It can by proved as follows. Let
∗ ∈ M be a fixed point of the diffeomorphism TS defined in (1). After choosing a prime
decomposition of M , one can show that each element of π1(M, ∗) is represented by a loop
contained entirely in the fixed set of TS .

Remark 2.3 (Action on π2(M)). Laudenbach [Lau74, Appendix III] showed that a dif-
feomorphism of (M, ∗) that acts trivially on π1(M, ∗) also acts trivially on π2(M, ∗). See
[BBP21, Thm. 2.4] for a short proof. As a generalization of the argument given there, if
f is a diffeomorphism of (M, ∗) that acts on π1(M, ∗) by conjugation, then the action of
f on π2(M, ∗) agrees with the action of an element of π1(M, ∗). Furthermore, if f acts
trivially on π1(M), then f can be isotoped to a diffeomorphism that acts on π1(M, ∗) by
conjugation, hence on π2(M, ∗) by π1(M, ∗). Later we will use the fact that if two elements
of π2(M, ∗) differ by the action of π1(M, ∗), then maps representing the homotopy classes
are freely homotopic.

2.2. Generators and relations in the twist group. In this section we compute Twist(M)
for every closed, oriented 3-manifold.
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Theorem 2.4. Let M be a closed, orientable 3-manifold with prime decomposition M =
#k(S

1 × S2)#P1# · · ·#P`, where the Pi are irreducible. Let `′ ≤ ` be the number of the
Pi that are lens spaces. Then

Twist(M) ∼=

{
(Z/2Z)k if `− `′ ≤ 1

(Z/2Z)k+`−`′−1 otherwise.

We were not able to find Theorem 2.4 in the literature, although it can be deduced by
combining various old results.

For the proof of Theorem 2.4, we will use the following explicit construction of M . Let
X be the complement of ` + 2k open disks in S3. For each Pi choose a closed embedded
disk Di ⊂ Pi, and let Y be the compact manifold

(2) Y :=

[∐̀
i=1

Pi \ int(Di)

]
t

[∐
k

S2 × [−1, 1]

]
.

We form M by gluing X and Y along their boundary ∂X ∼= ∂Y . See Figure 1.

X

P1

P2

P3

[−1, 1]× S2 [−1, 1]× S2

Figure 1. Construction of M = #k(S
1 × S2)#P1# · · ·#P`. The red set

represents spheres that generate Twist(M).

To state the following lemma, recall that the mapping class group Mod(Z) of a manifold
with boundary is the group Diff∂(Z) of diffeomorphisms that restrict to the identity on
∂Z, modulo isotopies that are the identity on ∂Z.

Lemma 2.5 (Pants relation). Let Z be the complement in S3 of three disjoint 3-balls. Let
S1, S2, S3 be the three boundary components of Z. Then τS1τS2τS3 = 1 in Mod(Z).

Lemma 2.5 can be proved in an elementary fashion by constructing an explicit isotopy.
We explain the idea briefly. Represent τSi by a diffeomorphism TSi , supported on a neigh-
borhood N(Si) ∼= Si × [0, 1] of Si = Si × {0}, where the path φ : [0, 1] → SO(3) used
to define TSi is a family of rotations with a fixed axis. In particular the fixed set of TSi

in N(Si) has the form
(
Si × {0, 1}

)
∪
(
{pi, qi} × [0, 1]

)
for a pair of (antipodal) points

pi, qi ∈ Si. Observe that there is an isotopy of TSi on N(Si) to a diffeomorphism Ti that is
the identity on a tubular neighborhood of {pi}× [0, 1] and such that the restriction of Ti to
Si×{1} has support equal to an annulus and is a Dehn twist on that annulus (perform the
isotopy level-wise on N(Si) = Si × [0, 1] and supported near {pi} × [0, 1]). Since Ti is not
the identity on Si×{1} it does not extend in an obvious way to an isotopy of Z. However,
if we choose an arc α ⊂ Z joining p1 ∈ S1 to p2 ∈ S2 (and whose intersection with N(Si) is
{pi}× [0, 1]), then we can perform a similar isotopy of TS1 ◦TS2 on a regular neighborhood
N of S1 ∪ α ∪ S2 to a diffeomorphism that is the identity on a neighborhood of α. By a
further isotopy, we obtain a diffeomorphism T supported on a collar neighborhood of S′3,
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the boundary component of N in the interior of Z, and T represents the sphere twist τS′3 .

Finally, we observe that S′3 is parallel to S3, so this proves the relation τS1τS2τS3 = 1 in
Mod(Z).

For the proof of Theorem 2.4 we also use the following theorem.

Theorem 2.6 (Hendriks, Friedman-Witt). Let P be an irreducible 3-manifold. Fix an
embedded ball D ⊂ P , and let τS ∈ Mod(P,D) be the sphere twist about a sphere S parallel
to ∂D. Then τS = 1 if and only if P is a lens space.

Proof. By work of Hendriks [Hen77] (see [FW86, Cor. 2.1]), the twist TS ∈ Diff∂(P \int(D))
is not homotopic to the identity (rel boundary), unless P is either a lens space or a prism
manifold (the latter are manifolds covered by S3 whose fundamental group is an extension
of a dihedral group).

First consider the case when P is a lens space. Since we assume P is irreducible,
P 6= S1×S2, so P is covered by S3. In this case TS is isotopic to the identity (rel boundary)
by [FW86, Lem. 3.5]. (Aside: TS is also isotopic to the identity when P = S1 × S2, which
can be seen using Lemma 2.5.)

When P is a prism manifold, TS is not isotopic to the identity (rel boundary). See
[FW86, Thm. 2.2]. The statement there does not include one family of prism manifolds
S3/D∗4m. This is because the argument uses the (generalized) Smale conjecture, which
was not proved for S3/D∗4m at the time the paper was written. See [FW86, Remark after
Corollary 2.2]. Fortunately, the generalized Smale conjecture has now been confirmed for
all prism manifolds (in fact for all elliptic 3-manifold, with the exception of RP 3). See
[HKMR12] and [BK17]. �

Proof of Theorem 2.4. First observe that Twist(M) = 1 when M is irreducible. When
M = S2 × S1, then Twist(M) ∼= Z/2Z was first computed by Gluck [Glu62, Thm. 5.1].
Given this, it remains to consider the case when M is reducible and not prime.

Step 1: a generating set for Twist(M). For i = 1, . . . , `, fix an embedded sphere
Si ⊂ Y that is parallel to the boundary component of Pi \ int(Di). For j = 1, . . . , k, let
S′j ⊂ Y be the embedded sphere S2 × {0} in the j-th copy of S2 × [0, 1]. Let Twist(Y )

be the subgroup of Mod(Y ) generated by the sphere twists {τS1 , . . . , τS`
} ∪ {τS′1 , . . . , τS′k}.

Consider the composition

(3) (Z/2Z)`+k
ρ−→ Twist(Y )

π−→ Twist(M),

where

ρ(a1, . . . , a`, b1, . . . , bk) = τa1S1
· · · τa`S`

τ b1
S′1
· · · τ bk

S′k
,

and π is the restriction of the homomorphism Mod(Y )→ Mod(M). The composition π ◦ρ
is surjective by [McC90, Prop. 1.2]. In the rest of the proof we compute the kernels of π
and ρ.

Step 2: global relation among sphere twists. In this step we compute the kernel of
π : Twist(Y ) → Twist(M). We do this by first identifying Mod(Y ) with a subgroup of
Mod(M,D), where D ⊂ M is an embedded ball, and then we examine how the kernel of
the forgetful homomorphism Mod(M,D)→ Mod(M) intersects Twist(Y ).

Let D ⊂ X ⊂ M be an embedded ball. Let Emb(D,M) be the space of embeddings
that respect the orientation. Let EmbeD(X,M) be the space of embeddings X → M that
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(i) restrict to the inclusion on D and (ii) that extend to a diffeomorphism of M . Consider
the following diagram, which consists of two fiber sequences (c.f. [Pal60]).

Diff∂(Y ) Diff(M,D) EmbeD(X,M)

Diff+(M)

Emb(D,M)

// //

��

��

The “horizontal” fiber bundle in the diagram splits as a product by [HM87, Thm. 1].
Consequently, Mod(Y ) → Mod(M,D) is injective. Then from the preceding diagram, we
obtain

Mod(Y )

π1

(
Emb(D,M)

)

Mod(M,D)

Mod(M)

� � //
��
δ

��

As is well-known, the space Emb(D,M) is homotopy equivalent to the (oriented) frame
bundle of M , which is diffeomorphic to M × SO(3) since closed oriented 3-manifolds are
parallelizable. Then π1

(
Emb(D,M)

) ∼= π1(M) × Z/2Z. A generator of the Z/2Z factor
maps under δ to a sphere twist about S := ∂D. From Lemma 2.5 we deduce that τS
is equal to the product of sphere twists about each boundary component of X. For each
i = 1, . . . , ` (resp. j = 1, . . . , k) the number of boundary components of X that are isotopic
to Si (resp. S′j) is one (resp. two); since sphere twists have order 2, we deduce the relation

τS = τS1 · · · τS`
in Mod(M,D). This proves τS1 · · · τS`

belongs to ker(π).
We claim that ker(π) = 〈τS1 · · · τS`

〉. To see that ker(π) is not larger, it suffices to
show that if γ ∈ π1(M) < π1

(
Emb(D,M)

)
is nontrivial, then δ(γ) is not in the image

of Twist(Y ) → Mod(M,D). This is easy to see because each element of Twist(Y ) <
Mod(M,D) acts trivially on π1(M, ∗) (where the basepoint ∗ belongs to D), whereas
δ(γ) acts by a nontrivial conjugation on π1(M, ∗) (note that the fundamental group of a
reducible, non-prime 3-manifold has trivial center).

Step 3: local triviality of sphere twists. Here we compute the kernel of the map
ρ : (Z/2Z)`+k → Twist(Y ) defined in (3). Since the spheres S1, . . . , S`, S

′
1, . . . , S

′
k belong

to distinct components of Y , it suffices to determine which of the given generators for
Twist(Y ) is trivial in Twist(Y ). Sphere twists in S2 × [−1, 1] components are nontrivial
by [Lau73]. See also [BBP21] who prove this by considering the action on framings. It
remains then to consider when the twists τSi (about the boundary of Pi \ int(Di)) are
nontrivial. By Theorem 2.6, τSi ∈ Mod(Pi, Di) < Mod(Y ) is trivial if and only if Pi is a
lens space.
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Conclusion. Combining this with the proceeding steps gives a full list of relations among
the twists τS1 , . . . , τS`

and τS′1 , . . . , τS′k , i.e. a generating set for the kernel of the homomor-

phism π ◦ ρ : (Z/2Z)`+k → Twist(M) defined in (3). For example, if ` = 1, then τS1 = 1
is the only relation. If ` ≥ 2 and ` > `′, then we have the relation τS1 · · · τS`

= 1 and one
additional relation for each of the Si that bounds a lens space. If ` ≥ 2 and ` = `′, then
one of these relations is redundant. This completes the proof. �

For later use, we record the following corollary of Theorem 2.4. For the manifold S1×S2,
we call a sphere of the form ∗ × S2 a belt sphere (we use this terminology because this
sphere can be viewed as the belt sphere of a handle attachment).

Corollary 2.7. Let M = #k(S
1 × S2)#P1# · · ·#P`, and assume each Pi is a lens space.

Then Twist(M) ∼= (Z/2Z)k is generated by twists about the belt spheres of the S1 × S2

summands.

3. Decomposing finite group actions on 3-manifolds

In this section we explain some general structural results for certain finite group actions
on 3-manifolds, which will allow us to decompose a G-manifold M3 into simpler G-invariant
pieces. For our application to the Main Theorem we are particularly interested in actions
that are trivial on πi(M) for i = 1, 2.

3.1. Equivariant sphere theorem. The main result of this section is Theorem 3.1. In
order to state it, we introduce some notation. Let S be a collection of disjoint embedded
spheres in a 3-manifold M . Define MS as the result of removing an open regular neighbor-
hood of each S ∈ S and capping each boundary component with a 3-ball. The 3-manifold
MS is a closed, but usually not connected. This process is illustrated in Figure 2.

M MS

Figure 2. Cutting and capping along spheres M  MS.

Theorem 3.1. Let M be a closed oriented 3-manifold and let G be a finite subgroup of
Diff+(M).

(1) There exists a G-invariant collection S of disjoint embedded spheres in M such that
the components of MS are irreducible.

(2) If M 6= S1 × S2 and G acts trivially on π1(M), then G preserves every element in
S. Furthermore, for each S ∈ S, G preserves each of the two boundary components
of a G-equivariant regular neighborhood of S.

We call a collection of spheres as in the statement of Theorem 3.1 a sphere system for
G.
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Remark 3.2. Without loss of generality, one can assume that no S ∈ S bounds a ball in M
by removing any sphere that bounds a ball from S. Similarly, if G preserves every element
of S, then we can also assume that no pair S 6= S′ ∈ S bound an embedded S2 × [0, 1] in
M . We call a sphere system with these additional properties an essential sphere system
for G.

Part (1) of Theorem 3.1 is due to Meeks–Yau; see [MY80, c.f. Thm. 7]. An alternate
approach was given by Dunwoody [Dun85, Thm. 4.1]. The main tools used in these works
are minimal surface theory (in the smooth and PL categories). For the proof of Theorem
3.1(2), we use the following lemmas.

Lemma 3.3. Let S0, S1 ⊂ M be disjoint embedded spheres. If S0 and S1 are ambiently
isotopic, then they bound an embedded S2 × [0, 1] in M .

Lemma 3.3 follows from [Lau73, Lem. 1.2] and the Poincaré conjecture (Laudenbach
proves that homotopic spheres bound an h-cobordism, and every h-cobordism is trivial by
Perelman’s resolution of the Poincaré conjecture).

Lemma 3.4. Let h be an orientation-preserving homeomorphism of S2 × [0, 1]. If h that
interchanges the two boundary components, then h acts on H2(S2 × [0, 1]) ∼= Z by −1.

Proof of Lemma 3.4. Set A = S2 × [0, 1]. Consider the arc α = ∗ × [0, 1] and the sphere
β = S2 × 0. After orienting α and β, we view them as homology classes α ∈ H1(A, ∂A)
and β ∈ H2(A), which generate these groups. Since h interchanges the components of ∂A,
h(α) = −α. Since h is orientation-preserving,

α · β = h(α) · h(β) = −α · h(β).

This implies h(β) = −β because the intersection pairing H1(A, ∂A) × H2(A) → Z is a
perfect pairing by Poincaré–Lefschetz duality. �

Proof of Theorem 3.1(2). Let S be a G-invariant collection of embedded spheres as in
Theorem 3.1(1). Fix S ∈ S and g ∈ G. We want to show that g(S) = S. Suppose for a
contradiction that g(S) is disjoint from S. Fix an embedding f : S2 →M with f(S2) = S.
Since g acts trivially on π1(M), the maps f and g ◦ f are homotopic (see Remark 2.3),
hence isotopic by a result of Laudenbach and the Poincaré conjecture; c.f. [Lau73, Thm.
1].

By Lemma 3.3, the spheres S and g(S) bound a submanifold A ∼= S2× [0, 1]. Let k ≥ 2
be the smallest power of g so that gk(S) = S.

Suppose that k = 2. First we show that g(A) = A. By assumption S ∪ g(S) is g-
invariant; hence so to is its complement. Then g(A) is a component of M \

(
S ∪ g(S)

)
.

Then if g(A) 6= A, we conclude that M is the union of A and g(A), glued along their
common boundary, so M ∼= S2 × S1 (this is the only S2-bundle over S1 with orientable
total space). This contradicts our assumption, so g(A) = A. By Lemma 3.4, [g(S)] = −[S]
in H2(M). By assumption that G acts trivially on π1(M) together with Remark 2.3, we
deduce that [g(S)] = [S]. Therefore, 2[S] = 0 in H2(M). If S ⊂M is non-separating, then
there is a closed curve γ ⊂ M so that [S] · [γ] = 1; this implies that [S] has infinite order
in H2(M), which is a contradiction. If S ⊂M is separating, then M \A is a union of two
components M1 tM2 that are interchanged by g. This contradicts the fact that G acts
trivially on π1(M) ∼= π1(M1) ∗ π1(M2).

For the case k ≥ 3, we prove the following.
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Claim. If k ≥ 3, then

A ∪ gA ∪ · · · ∪ giA ∼=

{
S2 × [0, 1] if i ≤ k − 2

S2 × S1 if i = k − 1

From the Claim, we deduce M ∼= S2×S1, which contradicts our assumption and implies
k = 1, as desired. Therefore, it only remains to prove the claim.

The claim can be proved inductively. We explain the case i = 1; the general case is
very similar. We want to show that A and g(A) have disjoint interiors, for this implies
that A ∪ g(A) ∼= S2 × [0, 1]. First observe that g2(S) cannot be in the interior of A. If it
were, then g2(S) and g(S) bound an annulus A′ ⊂ A. Note that g(A) 6= A′ because we can
average a metric so that g acts isometrically (and isometries are volume preserving). But
if g(A) 6= A′, then M is the union of A′ and g(A), glued along their common boundary, so
M ∼= S2 × S1, which again is a contradiction.

Similarly, we can show g−1(S) is disjoint from A. We use this to deduce that A and
g(A) have disjoint interiors. If not, then we can find a path in g(A) that is disjoint from
g(S) and connects a point of A to a point of the complement Ac. Such a path necessarily
intersects S, which implies S ⊂ g(A). Equivalently, g−1(S) ⊂ A, which contradicts the
fact that g−1(S) is disjoint from A. This proves the case i = 1 of the claim, which can be
used as the base case in an induction by a similar argument. �

3.2. Decomposing an action along invariant spheres. Here we explain how we use
Theorem 3.1 to decompose an action G y M into smaller pieces. We also prove a result
about the action on the fundamental group of the pieces under the assumption that G acts
trivially on π1(M).

Fix a finite subgroup G < Diff+(M) and assume G acts trivially on π1(M). Let S be
an essential sphere system for G (Theorem 3.1 and Remark 3.2).

Observe that there is an induced action of G on MS. To construct it, recall a classical
result of Brouwer, Eilenberg, and de Kerékjártó [Bro19, dK19, Eil34] that every finite
subgroup of Homeo+(S2) is conjugate to a finite subgroup of SO(3), hence extends from
the unit sphere S2 ⊂ R3 to the unit ball D3 ⊂ R3. In this way the action of G on
M \

⋃
S∈S S extends to an action on MS, which can be made smooth as well.

Remark 3.5 (global fixed points). Since G acts trivially on S and preserves the boundary
components of a regular neighborhood of each S ∈ S, the center of each of the added
3-balls in MS contains a global fixed point for the G-action; we call these canonical fixed
points. Each component of MS contains at least one canonical fixed point.

The following proposition will be important for our proof of the Main Theorem.

Proposition 3.6. Fix G < Diff+(M) acting trivially on π1(M) and fix an essential sphere
system S for G. Let N be a component of MS, and let p ∈ N be a canonical fixed point, as
defined in Remark 3.5. Then G acts trivially on π1(N, p).

For the proof, it may be helpful to remember that a nonseparating 2-sphere in an oriented
3-manifold is the belt sphere of a S2 × S1 summand.

Proof. Fix g ∈ G. We show that the action of g on π1(N, p) is trivial. The statement is
only interesting when π1(N) is nontrivial, so we assume this.

Let S ∈ S be the sphere associated with p. Fix an equivariant regular neighborhood
ν(S) ∼= S × [−1, 1] of S in M , and denote S± = S × {±1}. The spheres S+, S− have
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canonical embeddings in MS, which bound 3-balls B+, B−, respectively. For definiteness,
we assume that p ∈ B+. Let q ∈ S be a fixed point of g, and let q± be the corresponding
point of S±.

Let N0 ⊂ M be the component of M \
⋃
S∈S ν(S) corresponding to N . It suffices to

show that g acts trivially on π1(N0, q+). Indeed, there is an obvious equivariant inclusion
N0 ⊂ N which induces an isomorphism π1(N0, q+) ∼= π1(N, q+) (because N \N0 is a union
of 3-balls). Furthermore, g acts trivially on π1(N, q+) if and only if g acts trivially on
π1(N, p). This is because p and q+ are connected by a path contained in the fixed set Ng.1

Our goal will be to show g acts trivially on π1(N0, q+).
By Remark 2.2, the action of g on π1(M, q) is by conjugation by some element α ∈

π1(M, q). Our basic strategy is as follows. We consider cases based on whether S is
separating or nonseparating in M , and in the latter case, whether B+ and B− belong to
the same or different components of MS. These cases are pictured in Figure 3. In each
of these cases, we give a free product decomposition of π1(M, q) that contains π1(N0, q+)
as a g-invariant free factor. Using additional structure from the specific case, we conclude
α = 1, which implies that g acts trivially on π1(M, q) and also on π1(N0, q+) < π1(M, q).

M1 M2

S S+

N0
q q+

M1 M2S

N ′0 N0

M1 M2

N0 S
q+

q−

S+

S−

Figure 3. Different cases in the proof of Proposition 3.6.

Case 1. Suppose that S is separating in M . Let M1,M2 be the closures of the components
of M \ S, and assume that M2 contains N0. See Figure 3 (left). Then π1(M2, q) ∼=
π1(N0, q+) ∗ Γ for some group Γ, and there is a decomposition

(4) π1(M, q) ∼= π1(M1, q) ∗ π1(N0, q+) ∗ Γ.

The group π1(M1, q) is nontrivial because otherwise M1 is a 3-ball, which contradicts our
assumption that S is an essential sphere system. Since the g action preserves each of M1

and N0, the free factors π1(M1, q) and π1(N0, q+) are also preserved by g. Since g acts
by conjugation by α ∈ π1(M, q) this implies that α must belong to both π1(M1, q) and
π1(N0, q+). Therefore α = 1, as desired.

Case 2. Suppose that S is nonseparating and that B± belong to different components of
MS. Let N ′ be the component of MS that contains B−. Let S = S1, S2, . . . , Sr+1 be the
spheres in S along which N and N ′ are glued in M . Here r ≥ 1 by the assumption that B−
is disjoint from N . Let M1,M2 be the closure of the components of M \ (S1 ∪ · · · ∪ Sr+1),
and assume that N ′ ⊂M1 and N ⊂M2. See Figure 3 (middle).

First assume r = 1. Then π1(M1, q) is nontrivial since otherwise S1 and S2 are parallel,
which contradicts the fact that S is essential. Again we have a decomposition as in (4),
where the first two factors are invariant by g. Then we conclude that g acts trivially on
π1(N0, q+) by the same argument as in Case 1.

1Note that in general, changing the basepoint can change the automorphism to a nontrivial conjugation.
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Now assume r ≥ 2. If π1(M1, q) is nontrivial, we can repeat the preceding argument.
Assume then that π1(M1, q) = 1. Now we have a decomposition

π1(M, q) ∼= Fr ∗ π1(N0, q+) ∗ Γ.

Here π1(M2, q) ∼= π1(N0, q+) ∗ Γ as before. Next we describe generators of the free group
Fr. For each i = 1, . . . , r, choose a point qi ∈ (Si)

g, choose2 a path ηi in N0 from q to qi,
and choose a path η′i in M1 from qi to q. Then Fr is generated by the loops γi = ηi ∗ η′i for
i = 1, . . . , r.

Now we compute the action of g. On the one hand,3

g(γi) ∼ g(ηi) ∗ η′i ∼ g(ηi) ∗ ηi ∗ ηi ∗ η′i = (g(ηi) ∗ ηi) ∗ γi,

so g acts on γi by left multiplication by the element βi = g(ηi) ∗ ηi ∈ π1(N0, q+).
On the other hand, g acts on γi by conjugation by an element α ∈ π1(M, q0). The only

way αγiα
−1 = βiγi for each i is if α and the βi are trivial. To see this, consider the word

length on π1(M, q) given by the generating set {s : s ∈ π1(N0, q+) or s ∈ Fr}, then the
word length of αγiα

−1 is odd, but the word length for βiγi is 2 unless βi = 1. This implies
that βi = 1. Then γi = αγiα

−1 for every i, which implies that α = 1.

Case 3. Suppose that S is nonseparating and that B± both belong to N . Here

π1(M, q) ∼= Z ∗ π1(N0, q+) ∗ Γ

for some group Γ. To describe a generator for the Z factor, fix a path η in N0 from q+ to
q− and otherwise disjoint from the spheres S±. This path corresponds in an obvious way
to an element η̂ ∈ π1(M, q), which generates the Z factor. Observe that g(η) is another
path in N0 from q+ to q− and that the concatenation g(η) ∗ η̄ is an element of π1(N0, q+).

The action of g on π1(M, q) sends η̂ to ĝ(η) (the loop corresponding to the path g(η) in
N0). Since g(η) and g(η) ∗ η̄ ∗ η are homotopic paths from q+ to q−, we conclude that g
acts on η̂ by multiplication on the left by

β := g(η) ∗ η̄ ∈ π1(N0, q+) < π1(M, q).

On the other hand, g acts on π1(M, q+) by conjugation by some element α, and this
conjugation preserves π1(N, q+) < π1(M, q+), so α ∈ π1(N, q+). Consequently, βη̂ =
αη̂α−1 in π1(M, q+). Arguing as in Case 2 (using a word length), we conclude that α =
1. �

4. Obstructing realizations

In this section we prove the “only if” direction of the Main Theorem. This can be
deduced quickly from the following more general statements.

Theorem 4.1 (π1-trivial action on irreducible 3-manifold). Let N be a closed, oriented,
irreducible 3-manifold with basepoint p ∈ N . Suppose there exists a nontrivial, finite-order
element f ∈ Diff+(N, p) that acts trivially on π1(N, p). Then N is a lens space.

2Technically, we should use qi,± and q± since q, qi are not points of N0, but will ignore this minor issue
to avoid making the notation more cumbersome.

3Here the symbol ∼ indicates homotopic loops based at q. For the first homotopy, note that the paths
g(η′i) and η′i are homotopic rel endpoints because M1 is simply connected.
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Theorem 4.2 (π1-trivial action on reducible 3-manifold). Let M be a closed, oriented,
reducible 3-manifold. Let G < Diff+(M) be a finite subgroup that acts trivially on π1(M).
Then G is cyclic unless M is either S2 × S1 or a connected sum of projective spaces
RP 3# · · ·#RP 3.

We comment on the excluded cases in Theorem 4.2. First observe that any finite sub-
group of SO(3) acts π1-trivially on S2 × S1. The same is true for finite subgroups of
SO(4)/{±1} acting on RP 3. Furthermore, by equivariant connected sum, one finds that
any finite subgroup of SO(3) acts π1-trivially on RP 3#RP 3, and every finite dihedral group
has a π1-trivial action on each manifold of the form RP 3# · · ·#RP 3.

Proof of Main Theorem: obstruction. Suppose 1 6= G < Twist(M) is realizable. The fact
that Twist(M) 6= 1 implies that either M = S2 × S1 or M is reducible and not prime.
In the former case, there is nothing to prove, so we assume M is reducible and has a
nontrivial prime decomposition. This assumption together with Lemma 2.1 allow us to
apply Theorem 4.2 and conclude that either G is cyclic or M is a connected sum of copies
of RP 3. The latter case is excluded because Twist(RP 3# · · ·#RP 3) is the trivial group
(Corollary 2.7).

To show that M is a connected sum of lens spaces, fix a sphere system S for G (Theorem
3.1). It suffices to show that each component of MS is a lens space, and this is implied
directly by Proposition 3.6 and Theorem 4.1. �

We proceed to prove Theorems 4.1 and 4.2. Our argument for Theorem 4.1 is inspired
by an argument of Borel [Bor83] that shows that a finite group G acting faithfully on a
closed aspherical manifold N and π1(N) has trivial center, then G also acts faithfully on
π1(N) (by outer automorphisms).

Remark 4.3 (Lifting actions to universal covers). In this remark we recall some facts that

are useful for Theorem 4.1. Let N be a closed manifold. Recall that Ñ can be defined as
the set of paths α : [0, 1] → N with α(0) = ∗, up to homotopy rel endpoints. Using this

description, there is a left action π1(N, ∗) × Ñ → Ñ given by pre-concatenation of paths
[γ].[α] = [γ ∗ α], and there is a left action

Diff(N, ∗)× Ñ → Ñ

given by post-composition f.[α] = [f ◦ α], and this action lifts the action of Diff(N, ∗) on
N . Furthermore, if f ∈ Diff(N, ∗) acts trivially on π1(N, ∗), then the lift [α] 7→ [f ◦ α]
commutes with the deck group action and fixes the homotopy class of the constant path,
as well as every other homotopy class corresponding to an element of π1(N, ∗).
Proof of Theorem 4.1. As observed in Remark 4.3, we can lift f to a finite-order diffeo-
morphism F that commutes with the deck group π1(N, ∗) and has a global fixed point.

First we show that π1(N) is finite. Suppose for a contradiction that π1(N) is infinite.

This implies Ñ is contractible.4 By Smith theory [Smi34], the fixed set (Ñ)F is connected,

and simply connected. Since F acts smoothly, (Ñ)F is a smooth 1-dimensional manifold,

hence it is homeomorphic to R. Since π1(N) commutes with F , it acts on (Ñ)F ∼= R, and

this action is free and properly discontinuous since the action of π1(N, ∗) on Ñ has these
properties. This implies that π1(N, ∗) ∼= Z, which contradicts the fact that N is a closed,
aspherical 3-manifold (Z is not a 3-dimensional Poincaré duality group).

4By Hurewicz, π3(Ñ) ∼= H3(Ñ). Since π1(N) is infinite, Ñ is noncompact, so H3(Ñ) = 0. Similarly, all
higher homotopy groups vanish by Hurewicz’s theorem.
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Since π1(N) is finite, its universal cover is diffeomorphic to S3 by the Poincare conjecture.

As in the preceding paragraph, consider the action of F on Ñ ∼= S3. By Smith theory
and smoothness of the action, the fixed set is a smooth, connected 1-dimensional manifold

with nontrivial fundamental group. Hence (Ñ)F ∼= S1. Since π1(N) acts freely on (Ñ)F

this implies π1(N) is cyclic, which implies that N is a lens space. �

Proof of Theorem 4.2. By assumption, G acts trivially on π1(M). Let S be an essential
sphere system for G (Theorem 3.1 and Remark 3.2). Proposition 3.6 and Theorem 4.1
combine to show that each component of MS is a lens space L(p, q) with p 6= 0. We
consider three cases.

Case 1. Suppose that there exists a component N of MS that is diffeomorphic to L(1, 0) ∼=
S3. Let k be the number of elements of S that meet N . Then k ≥ 3 because S is essential.
This implies that NG has at least 3 points. By the Smith conjecture [Mor84], the action
of G on N ∼= S3 is conjugate into SO(4), and the fact that |NG| ≥ 3 implies that G is
conjugate into SO(2). Therefore G is cyclic.

Case 2. Suppose there exists a component N of MS that is diffeomorphic to a lens space
L(p, q) with p ≥ 3. Fix a canonical fixed point ∗ ∈ N . By Remark 4.3, the action of G on

(N, ∗) lifts to an action on S3 = Ñ that fixes at least p = |π1(N)| points. By the Smith
conjecture, the action of G on S3 is conjugate into SO(4); furthermore, since Gy S3 has
at least p ≥ 3 fixed points, G is conjugate into SO(2), so G is cyclic.

Case 3. In the remaining case, every component of MS is L(2, 1) ∼= RP 3. Since M is
obtained from MS by removing balls and tubing components to each other (or themselves),
this implies that

M ∼= #k(S
1 × S2)#RP 3# · · ·#RP 3.

If M = RP 3# · · ·#RP 3 we are done (as this is a possible conclusion of the theorem), so
we assume k ≥ 1. This implies that there is a component N ∼= RP 3 of MS such that
some non-separating sphere S ∈ S meets N . This sphere contributes two canonical fixed
points x, y ∈ N to the G action on N . Using this, if we lift the action of G on (N, x) to

Ñ ∼= S3, we find that G is conjugate into O(2) < SO(4). (The action of G < SO(4) on S3

fixes two (antipodal) points, so G is conjugate into SO(3). Furthermore, there is another
pair of antipodal points that are permuted by G, so G is conjugate into O(2), which is the
stabilizer of a line in SO(3).)

Since G is conjugate into O(2), the group G is either cyclic or dihedral. Supposing that
G is a noncyclic dihedral group, we will obtain a contradiction by showing that G acts
non-trivially on π1(M).

First, observe that there is g ∈ G so that x, y belong to different components of the fixed
set Ng (which is a 1-dimensional manifold). For example, when the rotation subgroup of
G has order > 2, the action of G on N has exactly two fixed points, and any reflection
in g ∈ G has the desired property (by reflection we mean an element not in the rotation
subgroup). The case G = Z/2Z×Z/2Z is similar, but in that case, there is a unique choice
for g.

We will show g acts nontrivially on π1(M). Here we use an analysis similar to Case 3
in the proof of Proposition 3.6, and we will use the same notation (e.g. N0, S±, and q±)
from that argument. Here N0 is diffeomorphic to RP 3 minus a finite collection of disjoint
open 3-balls, and π1(M, q) ∼= Z ∗ π1(N0, q+) ∗ Γ for some group Γ.
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Fix a path η inN0 ⊂ N between q+ and q−. This arc determines a loop η̂ in π1(M, q) that
generates the Z factor in the decomposition above. One computes that the concatenation
β := g(η)∗η̄ is a loop that generates π1(N0, q+) ∼= Z/2Z (this can be written down explicitly
– it is helpful to choose η to be a semi-circular arc). Therefore, g(η̂) = βη̂, where β 6= 1.
By the argument from the proof of Proposition 3.6 we conclude that g does not act by
conjugation on π1(M, q), so g acts nontrivially on π1(M). �

5. Constructing realizations

In this section we prove the “if” direction of the Main Theorem. We state this as the
following theorem.

Theorem 5.1. Let M be a connected sum of lens spaces. Then every cyclic subgroup of
Twist(M) is realizable.

Fix M as in Theorem 5.1, and write the prime decomposition

M = #k(S
1 × S2)#P1# · · ·#P`,

where each Pi is a lens space different from L(0, 1) ∼= S1 × S2.
To prove Theorem 5.1, given a nontrivial element g ∈ Twist(M) we define γ ∈ Diff(M)

such that γ2 = id and [γ] = g in Mod(M). The basic approach is to define an order-2
diffeomorphism of

(5) tk(S1 × S2) t P1 t · · · t P`
in such a way that the diffeomorphisms on the components can be glued to give an order-2
diffeomorphism of M . On each component of (5) we perform one of the following diffeo-
morphisms.

• (constant π rotation) Define

R0 : S1 × S2 → S1 × S2

by id× r, where r : S2 → S2 is any π rotation (choose one – the particular axis is
not important).
• (nonconstant π rotation) Let c : [0, 1] → RP 2 be a closed path that generates
π1(RP 2), and let α : RP 2 → SO(3) be the map that sends ` ∈ RP 2 to the π-
rotation whose axis is `. Now define

R1 : S1 × S2 → S1 × S2

by (t, x) 7→ (t, α(c(t))(x)).
Since α ◦ c : [0, 1] → SO(3) defines a nontrivial element of π1(SO(3)), the dif-

feomorphism R1 represents the generator of Twist(S1 × S2) ∼= Z/2Z. This shows
that Twist(S1×S2) is realized. This involution appears in [Tol73, §1] in a slightly
different form.
• (lens space rotation) Fix p, q relatively prime and with p ≥ 2. View L(p, q) as the

quotient of S3 ⊂ C2 by the Z/pZ action generated by (z, w) 7→ (e2πi/pz, e2πiq/pw).
Define

Rp,q : L(p, q)→ L(p, q)

as the involution induced by (z, w) 7→ (z,−w) on S3 (which descends to L(p, q)
since it commutes with the Z/pZ action).



16 LEI CHEN AND BENA TSHISHIKU

Each of the diffeomorphisms R0, R1, and Rp,q has 1-dimensional fixed set. The repre-
sentation in the normal direction at a fixed point is the antipodal map on R2 (there is no
other option since these diffeomorphisms are involutions). Lemma 5.2 below allows us to
glue these actions along their fixed sets.

Lemma 5.2. Suppose M,M ′ are oriented manifolds, each with a smooth action of a
finite group G. Assume that x ∈ M and x′ ∈ M ′ are fixed points of G, and that the
representations TxM and Tx′M

′ are isomorphic by an orientation reversing map. Then M
and M ′ can be glued along regular neighborhoods B and B′ of x and x′ so that there is a
smooth action of G on M#M ′ that restricts to the given action on M \B and M ′ \B′. �

Remark 5.3. The condition that the isomorphism TxM ∼= Tx′M
′ be orientation-reversing

appears because the connected sum of two oriented manifolds is defined by deleting an open
ball from each and identifying the boundaries of these balls by an orientation-reversing
diffeomorphism. This condition is always satisfied if each tangent space contains a copy of
the trivial representation (choose an appropriate reflection).

Remark 5.4 (Useful isotopies). To prove that γ ∈ Diff(M) is in the isotopy class of
g ∈ Twist(M), the following observation will be useful. The fixed set of Rp,q acting
on L(p, q) contains5 the image C of the circle {(z, 0) : |z| = 1} ⊂ S3. The isotopy

ht(z, w) = (z, eπi(1−t)w), 0 ≤ t ≤ 1, descends to L(p, q) to give an isotopy between Rp,q
and the identity, and ht fixes C for each t.

Similarly, it’s possible to isotope R1 to R′1, which is a constant π-rotation (say about
the z-axis) on a neighborhood of ∗ × S2, for some fixed basepoint ∗ ∈ S1 (observe that
R′1 is still an involution). Furthermore, we can isotope R′1 to a diffeomorphism that is the
identity near ∗ × S2 and in such a way that the isotopy at time t ∈ [0, 1] is a rotation by
angle π(1− t) (about the z-axis) on each sphere in a regular neighborhood of ∗× S2. The
fixed set restricted to a neighborhood of ∗ × S2 remains constant during this isotopy.

Finally, we can isotope R0 to the identity so that at time t the diffeomorphism is a
constant rotation by angle π(1− t) (about the fixed axis).

On a neighborhood of a fixed point, the local picture of the isotopies of Rp,q, R
′
1, and R0

looks the same. This will allow us to perform these isotopies equivariantly on connected
sums.

We proceed now to the proof of Theorem 5.1. First we warm up with the case M =
#k(S

1 × S2) and then we do the general case.

5.1. Realizations for connected sums of S1 × S2. Fix k ≥ 1 and consider

Mk := #k(S
1 × S2).

Let Si be a belt sphere in the i-th connect summand, and denote the sphere twist about
Si by τi. The twists τ1, . . . , τk form a basis for Twist(Mk) ∼= (Z/2Z)k, c.f. Corollary 2.7.

Fix a nonzero element
g = a1τ1 + · · ·+ akτk

in Twist(Mk). We start by defining an involution γ̂ of tk(S1×S2). For ease of exposition,
let Wi = S1 × S2 denote the i-th component of tk(S1 × S2). Define γ̂ on Wi to be R0

or R1, depending on whether the coefficient ai is 0 or 1, respectively. Next we glue using
Lemma 5.2 to obtain an involution γ of Mk = W1# · · ·#Wk

∼= #k(S
1 × S2). There

are multiple ways to describe the gluing; for example, choose k − 1 distinct fixed points

5It’s possible that the fixed set is larger (this is true for L(2, 1) ∼= RP 3), but this is not important.
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x1, . . . , xk−1 ∈ Wk, and for 1 ≤ i ≤ k − 1, glue Wi to Wk along regular (equivariant)
neighborhoods of xi and an arbitrary fixed point yi ∈Wi (the neighborhoods of x1, . . . , xk
should be chosen to be small enough so that they are disjoint).

To see that γ ∈ Diff(Mk) is in the isotopy class g, recall the short exact sequence of
Laudenbach

1→ Twist(Mk)→ Mod(Mk)→ Out(π1(Mk))→ 1.

It’s easy to check that γ acts trivially on π1(Mk), so γ represents a mapping class in
Twist(Mk). The particular isotopy class is determined by the action on trivializations of
the tangent bundle of Mk, and in this way one can check that [γ] = g in Twist(Mk). We do
not spell out the details of this because we give an alternate argument in the next section
in the general case.

Remark 5.5. We cannot realize a non-cyclic subgroup of Twist(Mn) using this construc-
tion because it is not possible to choose the axis for R0 so that (1) R0 and R1 have a
common fixed point and (2) R0 and R1 commute. Indeed, §4 proves no non-cyclic sub-
group of Twist(Mn) is realized.

5.2. Realizations for connected sum of lens spaces. Now we treat the general case

M = #k(S
1 × S2)#L(p1, q1)# · · ·#L(p`, q`),

where each L(pj , qj) is a lens space different from L(0, 1) ∼= S1 × S2. Our approach is
similar to the preceding section.

Recall from Corollary 2.7 that Twist(M) ∼= (Z/2Z)k is generated by twists τ1, . . . , τk in
the belt spheres of the S1 × S2 summands.

Fix a nonzero element

g = a1τ1 + · · ·+ akτk

in Twist(M). We start by defining an involution γ̂ of

tk(S1 × S2) t L(p1, q1) t · · · t L(p`, q`).

Let Wi denote the i-th component diffeomorphic to S1 × S2. Define γ̂ on L(pj , qj) to
be Rpj ,qj , and on Wi to be R0 or R′1, depending on whether the coefficient ai is 0 or 1,
respectively. (Recall that R′1 is similar to R1, but it has a product region.)

Next we glue using Lemma 5.2 to obtain an involution γ of M . We glue by the following
pattern. First we glue W1, . . . ,Wk. Choose k − 1 distinct fixed points x1, . . . , xk−1 ∈ Wk,
and for 1 ≤ i ≤ k − 1, glue Wi to Wk along regular (equivariant) neighborhoods of xi and
an arbitrary fixed point yi ∈Wi (as was done in the preceding section). Next glue L(pj , qj)
to Wk in a region where γ̂ acts as a product (we can choose x1, . . . , xk−1 and the regular
neighborhoods of these points to ensure that there is room to do this). In this way we
obtain an involution γ ∈ Diff(M).

We need to check that γ is in the isotopy class of g. Using the isotopies defined in
Remark 5.4, we can isotope γ̂ to a map that is the identity on each L(pj , qj) component
and each component Wi such that ai = 0, and is a sphere twist on each component Wi

such that ai = 1. By construction these isotopies glue to give an isotopy of γ to a product
of sphere twists representing g.

This completes the proof of Theorem 5.1. �

Question 5.6. Are any two realizations of g ∈ Twist(M) conjugate in Diff(M)?
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6. Burnside Problem for Diff(M) for reducible 3-manifold M

In this section, we prove Theorem 1.1, which follows quickly from Lemma 6.1.

Lemma 6.1. Fix a closed, oriented 3-manifold M , and consider the group

K := ker
[

Diff(M)
Φ−→ Out(π1(M))

]
.

If M is reducible and M is not a connected sum of lens spaces, then K is torsion free.

Remark 6.2 (A strong converse to Lemma 6.1). If M is a connected sum of lens spaces,
then M has a faithful S1-action, so K contains S1 as a subgroup. To see this, observe that
each lens space has an S1 action with global fixed points, so by performing the connected
sum equivariantly along fixed points (similar to the construction in Section 5) we obtain
an S1 action on M .

Proof of Theorem 1.1. Let G < Diff(M) be a finitely-generated, torsion subgroup. By
Lemma 6.1, the intersection of G and K is trivial, so it suffices to show that Φ(G) is finite.

First we claim that the group Φ
(

Diff(M)
)

contains a finite-index subgroup Γ that has
finite cohomological dimension. For this, note that Φ factors through Mod(M). By [HM13,
Thm. 4.1] the image of Mod(M)→ Out(π1(M)) is isomorphic to Mod(M)/Twist(M), and
by [HM13, Thm. 5.1] the group Mod(M)/Twist(M) has a finite-index subgroup with finite
cohomological dimension. This proves the claim.

Since Γ has finite cohomological dimension, Γ is torsion-free. Without loss of generality,
we may assume that Γ is normal in Φ

(
Diff(M)

)
. By construction, Φ(G) intersects Γ

trivially. Then Φ(G) injects into the finite group Φ
(

Diff(M)
)
/Γ, so Φ(G) is finite. �

Proof of Lemma 6.1. Fix a nontrivial subgroup G = Z/`Z < K, and fix a sphere system
S for G (Theorem 3.1). By Proposition 3.6, the action of G on each component N of MS
is trivial on π1(N, p) as an automorphism. This implies that each component N of MS is
a lens space by Theorem 4.1. �
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[Gv64] E. S. Golod and I. R. Šafarevič. On the class field tower. Izv. Akad. Nauk SSSR Ser. Mat.,
28:261–272, 1964.
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