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Abstract

Let N be a smooth manifold that is homeomorphic but not diffeomorphic
to a closed hyperbolic manifold M . In this paper, we study the extent to which
N admits as much symmetry as M . Our main results are examples of N that
exhibit two extremes of behavior. On the one hand, we find N with maximal
symmetry, i.e. Isom(M) acts on N by isometries with respect to some negatively
curved metric on N . For these examples, Isom(M) can be made arbitrarily
large. On the other hand, we find N with little symmetry, i.e. no subgroup of
Isom(M) of “small” index acts by diffeomorphisms of N . The construction of
these examples incorporates a variety of techniques including smoothing theory
and the Belolipetsky–Lubotzky method for constructing hyperbolic manifolds
with a prescribed isometry group.

1 Introduction

Throughout this paper, M = Hn /π denotes a closed hyperbolic manifold with
fundamental group π, and N denotes an exotic smooth structure (on M), i.e. a
smooth manifold that is homeomorphic but not diffeomorphic to M . Define the
symmetry constant of N as the supremum

s(N) = sup
ρ

| Isom(N, ρ)|
| Isom(M)|

,

over all Riemannian metrics ρ on N . In this paper we study the possible values of
this invariant. There is an “easy” bound

1

| Isom(M)|
≤ s(N) ≤ 1 (1)

that follows from Mostow rigidity and a theorem of Borel (explained below). Our
main results follow:
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Theorem A (maximal symmetry constant). Fix n such that the group Θn of exotic
spheres is nontrivial. For every d > 0, there exists a closed hyperbolic manifold Mn

and an exotic smooth structure N such that | Isom(M)| ≥ d and s(N) = 1.

Theorem B (arbitrarily small symmetry constant). Fix n such that Θn−1 6= 0.
For every d > 1, there exists a closed hyperbolic manifold Mn and an exotic smooth
structure N such that s(N) ≤ 1

d .

The hypothesis Θn 6= 0 is frequently true, e.g. Θ4k+3 6= 0 for every k ≥ 1 and Θ4k+1

is nontrivial for any positive k /∈ {1, 3, 7, 15, 31}. See [KM63, §7], [MS74, Appx. B],
and [HHR16, Thm. 1.3].

The problem of computing s(N) is related to two different problems in the study of
transformation groups:

• Degree of symmetry. The degree of symmetry δ(W ) of a manifold W is defined
as the largest dimension of a compact Lie group with a smooth, effective action
on W [HH69].

When W = Σ is an exotic sphere, computing δ(Σ) is equivalent to computing
the supremum

s(Σ) := sup
ρ

dim Isom(Σ, ρ)

dim Isom(Sn)
,

over all Riemannian metrics ρ. Again there is a bound 1
dim SO(n+1) ≤ s(Σ) ≤ 1,

but the upper bound is not optimal. For example, Hsiang–Hsiang [Hsi67,

HH65] prove that if Σ 6= Sn has dimension n ≥ 40, then s(Σ) < n2+8
4(n2+n)

< 1/4.

When W is an aspherical manifold and π1(W ) is centerless, then δ(W ) = 0, i.e.
W does not admit a nontrivial action of a connected Lie group [Bor83]. In this
case it’s fitting to define δ(W ) as the largest order of a finite group that acts
effectively on W . With this definition, for W = N an exotic smooth structure
on a hyperbolic manifold, δ(N) is closely related to s(N); see equation (2)
below.

• Propagating group actions [AD02]. One says that an F -action on Y propagates
across a map f : X → Y if there is an F -action on X and an equivariant map
X → Y that is homotopic to f . In particular, for an exotic smooth structure
N on a hyperbolic manifold M , and for a subgroup F < Isom(M), one can
ask whether or not the action of F propagates across some homeomorphism
N → M . This problem, and its relation to harmonic maps, is discussed
in Farrell–Jones [FJ90]. Theorems A and B can be viewed as positive and
negative results about propagating group actions, and give partial answers
the question of [FJ90, pg. 487].
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Remark. One could consider refinements of the symmetry constant such as s<0(N) =

supρ
| Isom(N,ρ)|
| Isom(M)| , where the supremum is over all metrics with sectional curvature

K < 0. In general, s<0(N) ≤ s(N), but computing s<0(N) is more difficult (e.g.
it does not reduce to a Nielsen realization problem; see below). We improve upon
Theorem A by giving examples for which s<0(N) = s(N) = 1.

Theorem C (maximal symmetry, achieved by negatively-curved metric). Fix n,
and assume that either n is even or |Θn| is not a power of 2. Given d > 0, there
exists a closed hyperbolic manifold Mn and an exotic smooth structure N such that
| Isom(M)| ≥ d and N admits a Riemannian metric ρ with negative sectional cur-
vature so that Isom(N, ρ) ' Isom(M).

If n = 4k + 3, then |Θn| is divisible by 22k+1 − 1; see [MS74, Appx. B].

1.1 Techniques

The problem of determining s(N) is related to a Nielsen realization problem, which
will be our main point of view. By Borel [Bor83] any compact Lie group that
acts effectively on N is finite; furthermore, any finite subgroup of Diff(N) acts
faithfully on π = π1(N). Consequently, for every ρ, the isometry group Isom(N, ρ)
is a subgroup of Out(π) = Aut(π)/π. Furthermore, if dimM ≥ 3, then Out(π) '
Isom(M) by Mostow rigidity. This explains the upper bound in (1). A subgroup
F < Out(π) is said to be realized by diffeomorphisms when can we solve the lifting
problem (commonly called the Nielsen realization problem — see e.g. [BW08] and
[MT18]):

Diff(N)

Out(π)F
��
ΨN

99

� � //

If F < Out(π) and F ' Isom(N, ρ) for some ρ, then group F is a fortiori realized
by diffeomorphisms. Conversely, if F < Out(π) is realized by diffeomorphisms, then
by averaging a metric, we find ρ with F < Isom(N, ρ). Therefore,

s(N) = max
F

|F |
|Out(π)|

, (2)

where the maximum is over the subgroups F < Out(π) that are realized by diffeo-

morphisms. Note that s(N) ≤ | Im ΨN |
|Out(π)| .

Farrell–Jones [FJ90] studied the Nielsen realization problem for N = M#Σ, where
Mn is a closed, oriented hyperbolic manifold and Σ ∈ Θn is a nontrivial exotic
sphere. The main result of [FJ90] states that if M is stably parallelizable, 2Σ 6= 0

3



in Θn, and M admits an orientation-reversing isometry, then Im ΨN < Out(π) has
index at least 2. In particular, s(N) ≤ 1/2 for these examples.

Symmetric exotic smooth structures. Here we discuss the main components
in the proof of Theorems A and C. We find our examples with s(N) = 1 among the
manifolds N = M#Σ studied by Farrell–Jones. Using (2), observe that s(N) = 1 if
and only if Out(π) is realized by diffeomorphisms of N . In particular, we must find
examples where ΨN is surjective. The following results refine [FJ90, Thm. 1].

Theorem 1. Let Mn be a closed, oriented hyperbolic manifold, let Σ ∈ Θn be a
nontrivial exotic sphere, and let N = M#Σ. Denote by Out+(π) < Out(π) the
subgroup that acts trivially on Hn(N) ' Z.

(a) The image Im ΨN contains Out+(π).

(b) Fix α ∈ Out(π) \ Out+(π). If 2Σ = 0 in Θn, then α ∈ Im ΨN . The converse
is true if M is stably parallelizable.

Every closed hyperbolic manifold has a finite cover that is stably parallelizable
[Sul79, pg. 553]. As a consequence of Theorem 1, if 2Σ = 0, then ΨN is surjective,
and if 2Σ 6= 0, then Im ΨN = Out+(π). In any case, if M does not admit an
orientation-reversing isometry, then ΨN is surjective. Farrell–Jones [FJ89a] show
(implicitly) that reversing orientation is an obstruction to belonging to Im ΨN when
2Σ 6= 0. According to Theorem 1, this is the only obstruction.

Having identified Im ΨN < Out(π), we would like to know if this subgroup is realized
by diffeomorphisms.

Theorem 2. Fix N = M#Σ as in Theorem 1. Set d = | Isom+(M)| and let
m ∈ N be the size of the largest cyclic subgroup of Θn that contains Σ. Assume that
gcd(d,m) divides m

|Σ| . Then Out+(π) is realized by diffeomorphisms.

The assumption gcd(d,m) | m|Σ| guarantees that Σ ∈ Θn has a d-th root. This con-

dition is satisfied, for example, whenever | Isom+(M)| and |Σ| are relatively prime.

If Out+(π) is realized by diffeomorphisms of N , then s(N) ≥ 1/2. By Theorems 1
and 2, if M is stably parallelizable and 2Σ 6= 0, then s(M#Σ) is equal to 1/2 or
1, according to whether or not M admits an orientation-reversing isometry. This
completely solves the Nielsen realization problem in these cases.

Theorem A reduces to Theorem 2. Fixing Σ 6= Sn, it’s possible to find M so that
| Isom+(M)| and |Σ| are relatively prime, and | Isom+(M)| can be made arbitrarily
large. This is a consequence of a result of Belolipetsky–Lubotzky [BL05]: for any
finite group F , there exists a closed hyperbolic Mn with Isom(M) = F . For their
examples Isom(M) = Isom+(M). In particular, one can find examples where ΨN :
Diff(N)→ Out(π) is a split surjection with |Out(π)| arbitrarily large.
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To prove Theorem C, one would like to promote the action of Out+(π) on N =
M#Σ produced in Theorem 2 to an action by isometries with respect to some
negatively curved metric on N . Using a warped-metric construction of Farrell–Jones
[FJ89a], it suffices to find an M that is stably parallelizable, has large injectivity
radius, and such that Isom+(M) acts freely on M . Arranging all of these conditions
simultaneously becomes delicate, especially arranging that M is stably parallelizable
(which is desired because it guarantees that M#Σ is not diffeomorphic to M).
Because of this difficulty we take a less direct approach when dimM is odd — see
Theorem 6.

Asymmetric exotic smooth structures. We explain the main ideas for proving
Theorem B. For this, we consider exotic smooth structures N = Mc,φ obtained by
removing a tubular neighborhood S1 ×Dn−1 ↪→M of a geodesic c ⊂M and gluing
in S1 × Dn−1 by a diffeomorphism 1 × φ of S1 × Sn−2, where φ ∈ Diff(Sn−2) is
not isotopic to the identity. Farrell–Jones [FJ93] prove that Mc,φ is often an exotic
smooth structure on M .

The strategy for proving Theorem B is to find N = Mc,φ and F ' Z/dZ in Out(π) so
that Im ΨN ∩F = 1. This condition implies that the index of Im ΨN < Out(π) is at
least |F |, so s(N) ≤ 1

|F | . To show F∩Im ΨN = 1, we study how the smooth structure

on Mc,φ changes if we choose a different geodesic c. This is complementary to [FJ93,
Thm. 1.1], which studies how the smooth structure changes when the geodesic is
fixed and the isotopy class [φ] ∈ π0 Diff(Sn−2) ' Θn−1 is changed. In Theorem 8 we
give a criterion to guarantees that Mc1,φ and Mc2,φ are not concordant, i.e. there is
no smooth structure on M × [0, 1] that restricts to Mc1,φ tMc2,φ on the boundary.
This is one of the main technical ingredients in the proof of Theorem B.

The proof of Theorem B works equally well when M is nonuniform, but we won’t
discuss this further.

Theorem B proves that s(N) may be arbitrarily close to 0, as N varies over exotic
smooth structures on all hyperbolic n-manifolds (when Θn−1 6= 0), but if we fix
the homeomorphism type, we know that s(N) ≥ 1

| Isom(M)| . It would be interesting
to know if there are examples where this lower bound is achieved. Of course if
Isom(M) = 1, then s(N) = 1 = 1

| Isom(M)| , so to make this interesting one should

ask for examples such that Isom(M) is large.

Question 3. Does there exist n so that for every d > 0, there exists a hyperbolic
manifold Mn and an exotic smooth structure N such that | Isom(M)| ≥ d and
s(N) = 1

| Isom(M)|?

Note that s(N) = 1
| Isom(M)| if and only if ΨN : Diff(N)→ Out(π) is trivial. Equiv-

alently, Isom(N, ρ) = 1 for every Riemannian metric ρ.

Section outline. In §2 we prove Theorems 1 and 2 and discuss some related questions
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of interest. In §3 we discuss the work of Belolipetsky–Lubotzky and use it to prove
Theorem C. Finally, in §4 we prove Theorem B; specifically, we study when two
smooth structures Mc1,φ and Mc2,φ are concordant, which we use as an obstruction
to Nielsen realization.

Acknowledgements. The authors would like to thank I. Belegradek and S. Cappell
for helpful and interesting conversations. M.B. has been supported by the Spe-
cial Priority Program SPP 2026 “Geometry at Infinity” funded by the Deutsche
Forschungsgemeinschaft (DFG).

2 Symmetry constant for N = M#Σ

In this section we prove Theorems 1 and 2.

2.1 The image of ΨN : Diff(N)→ Out(π)

Proof of Theorem 1. Let N = M#Σ as in the theorem. It will be convenient to fix
p ∈M and a small metric ball B = Br(p) where the connected sum is performed.

First we prove (a). For this we fix α ∈ Out+(π) ' Isom+(M) and define f ∈
Diff(N) so that ΨN (f) = α. View α as an isometry of M , and choose an isotopy
αt ∈ Diff(M) so that α0 = α and α1(B) = B and α1

∣∣
B
∈ O(n) is an isometry

of the ball; for example, if the radius r is sufficiently small, then we can isotope
α(B) to B in M through isometric embeddings, and then extend the isotopy of
B to an ambient isotopy. Since α is orientation-preserving, α1

∣∣
B

belongs to the
identity component SO(n) ⊂ O(n), and it is easy to see then that α1 induces a
diffeomorphism f : N → N ; for example, isotope α1

∣∣
B

further so that α1

∣∣
Br/2(p)

is

the identity and perform the connected sum along Br/2(p) instead of Br(p). This
proves part (1).

To prove (b), assume that α ∈ Out(π) \ Out+(π). Viewing α as an orientation-
reversing isometry of M , the argument above defines an orientation-reversing dif-
feomorphism h : M#Σ→M#Σ that induces α (recall that for A#B, if the identi-
fication of the attaching disk is changed by an orientation-reversing involution, then
the result is A#B, where B is B with the opposite orientation). If 2Σ = 0 in Θn,
then Σ = Σ (because Σ = −Σ in Θn), so h ∈ Diff(N) and ΨN (h) = α. This proves
the first statement of (b). The converse is already to contained in [FJ90, Thm. 1].
In short, if ΨN (f) = α for some f ∈ Diff(N), then h ◦ f is an orientation-preserving
diffeomorphism M#Σ→M#Σ. When M is stably parallelizable, this implies that
2Σ = 0 by [FJ89a, §2].
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2.2 Sections of ΨN : Diff(N)→ Im Ψ

Proof of Theorem 2. Since M is hyperbolic, Out(π) is realized by isometries of M
(by Mostow rigidity). Set F = Isom+(M). Since F is finite, there exists p ∈ M
whose stabilizer in F is trivial. Choose a ball B around p whose F -translates are
disjoint. By assumption, gcd(|F |,m) divides m

|Σ| , which implies that there exists

Σ′ ∈ Θn so that Σ = |F | ·Σ′. Then N = M#Σ is diffeomorphic to M#Σ′# · · ·#Σ′,
where Σ′ appears |F | times. If we form the connected sum along the union of balls
F.B, then we can extend the action of F on M \ F.B to a smooth F -action on
N = M#Σ′# · · ·#Σ′ by rigidly permuting the exotic spheres.

Remark. One might think that the above argument could be used to define an action
of Out(π) on N under a similar constraint on |Out(π)| and |Σ|. This would contra-
dict the fact that ΨN is frequently not surjective when M admits an orientation-
reversing isometry. In the argument above, when M admits an orientation-reversing
isometry, one obtains an action of Out(π) on M#kΣ′#kΣ′, where k = |Out(π)|/2.
But M#kΣ′#kΣ′ is diffeomorphic to M , not N .

It would be interesting to know if Out+(π) ever acts on N = M#Σ when N has no
“obvious” symmetry:

Question 4. Is Theorem 2 ever true without the assumption gcd(d,m) | m|Σ|? For

example, fix α ∈ Isom+(M) of order d, and assume that α acts freely. Choose
Σ ∈ Θn that does not admit a d-th root. Prove or disprove that the subgroup
〈α〉 ' Z/dZ in Out+(π) is realized by diffeomorphisms of N = M#Σ.

In this direction, it would be interesting to know how the choice of Σ affects the
answer to Question 4. For instance, in the study of the symmetry constant of
Σ ∈ Θn, there is a marked difference between (1) the standard sphere Σ = Sn, (2)
the nontrivial exotic spheres that bound a parallelizable manifold Σ ∈ bPn+1 \{Sn},
and (3) the remaining exotic spheres Σ ∈ Θn \ bPn+1. See [HH69]. Does this
distinction play a role in Question 4?

Note that the subtlety in Question 4 disappears in the topological category: if W
is an aspherical manifold with π1(W ) ' π, then Homeo(W ) → Out(π) is a split
surjection because W and M are homeomorphic by the solution of Farrell–Jones to
the Borel conjecture in this case; see [Far02, Cor. 3 in §5].

We mention another problem related to Question 4. For this, let Wn be an exotic
smooth structure on the torus Tn. There is a surjective homomorphism Diff+(W )→
Out+(π1(W )) ' SLn(Z), and whether or not this homomorphism splits is unknown.
One approach to this question is to focus on maximal abelian subgroups of SLn(Z)
and try to use the dynamics of Anosov diffeomorphisms; see [FKS13, Question 1.4]
and also [BRHW17]. Alternatively, an obstruction to realizing finite subgroups
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F < SLn(Z) as in Question 4 could provide an approach to the splitting problem
for certain W = Tn#Σ.

3 Realization by isometries

In this section, we prove Theorem C. The starting point of our argument is the
following result from [BL05, Thm. 1.1 and §6.3].

Theorem 5 (Belolipetsky–Lubotzky). For every n ≥ 2 and every finite group F ,
there exists infinitely many compact n-dimensional hyperbolic manifolds M with
Isom(M) = Isom+(M) ' F .

The main result we prove here is as follows.

Theorem 6. Fix a finite group F and fix R > 0. Among the hyperbolic manifolds
Mn with Isom(M) = Isom+(M) ' F , there exists M such that

(a) the group F acts freely on M ,

(b) there is a cover M̂ → M of degree ` ∈ {1, 2, 4} so that M̂ is stably paralleliz-
able, and

(c) InjRad(M) > R.

Furthermore, for (b), if n is even, then we can take ` = 1.

Next we deduce Theorem C from Theorem 6.

Proof of Theorem C. Fix d > 0. If n is even, take any nontrivial Σ ∈ Θn and let F
be a group with |F | ≥ d and gcd(|F |, |Σ|) = 1. If |Θn| 6= 2i, take Σ ∈ Θn nontrivial
of odd order and let F be a 2-primary group with |F | ≥ d. In either case, there
exists Σ′ ∈ Θn with Σ = |F | · Σ′. By Belolipetsky–Lubotzky and Theorem 2, for
every M with Isom(M) ' Isom+(M) ' F , the group F acts by diffeomorphisms
of N = M#Σ ' M#Σ′# · · ·#Σ′. We need to show we can choose M and a
negatively-curved metric ρ on N so that F = Isom(N, ρ) in Diff(N).

According to [FJ89a, Prop. 1.3], there is a constant τn > 0 so that if Mn has
injectivity radius InjRad(M) > τn, then N = M#Σ admits a negatively curved
metric. This metric agrees with the hyperbolic metric on M away from the disk
where the connected sum is performed, and on that disk, the metric is radially
symmetric. Choose M satisfying Theorem 6 with R = |F | · τn and such that F acts
freely on M , so the quotient M = M/F is a hyperbolic manifold. Furthermore,

InjRad(M) ≥ InjRad(M)/|F | > τn. (3)
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We prove this below. Now fix r with τn < r < InjRad(M). From (3) it follows that
for any ball B = Br(p) in M , the F -translates of B are disjoint. Fix such a ball
B. As in the proof of Theorem 2, write Σ = |F | · Σ′ and consider M0 = M \ F.B.
The manifold N is obtained by gluing Dn to each boundary component of M0 by
a fixed diffeomorphism f ∈ Diff(Sn−1). Using the technique in [FJ89a], we give
N a Riemannian metric ρ that agrees with the hyperbolic metric on M0 and is a
warped-product metric on each Dn. Since r > τn, [FJ89a, §3] guarantees that the
resulting metric has negative curvature. The group F acts on N as in Theorem 2,
and by construction it acts by isometries for the metric ρ.

Now we explain the inequality (3). To see the first inequality, note that 2 InjRad(M) =
sys(M), where sys(M) is systole, i.e. the length of the shortest geodesic. Under a
d-fold isometric cover M → M , if γ is a closed geodesic of M and γ ⊂ M is a
connected component of its preimage, then length(γ) ≤ d · length(γ). It follows that
sys(M) ≤ d · sys(M).

It remains is to show that N is not diffeomorphic to M . When n is even, then by
Theorem 6 we can assume that M is stably parallelizable and so M is not diffeo-
morphic to M#Σ by Farrell–Jones [FJ89a]. In the general case, M has a stably
parallelizable cover of degree 2 or 4. Suppose for a contradiction that M#Σ is
diffeomorphic to M . Lifting to the cover M̂ → M , we find that M̂#`Σ is diffeo-
morphic to M̂ . Note that `Σ 6= 0 in Θn since Σ has odd order and ` ∈ {2, 4}. Since

M̂ is stably parallelizable, by [FJ89a, Prop. 1.2], we conclude that M̂#`Σ is not

diffeomorphic to M̂ . This is a contradiction, so N is not diffeomorphic to M as
desired. This completes the proof.

Next we prove Theorem 6. Fix a finite group F . In what follows M = Hn /π
will always denote one of the Belolipetsky–Lubotzky manifolds with Isom(M) =
Isom+(M) ' F . We have to explain why M can be chosen to satisfy (a), (b), and
(c). We will see that [BL05, Thm. 2.1] already shows that (a) can be arranged,
and that (b) can be arranged by modifying the proof of [BL05, Prop. 2.2]. Part (c)
requires a different, separate argument. All of these arguments involve passing to
certain congruence covers, so once we explain why (a), (b), and (c) can be arranged
individually, it will be evident that they can be arranged simultaneously.

Recollection of Belolipetsky–Lubotzky [BL05]. Here we summarize the main
results of [BL05], especially the aspects needed for our proof. Let Γ be a finitely
generated group. Assume that ∆CΓ is finite-index, normal, and that ∆ surjects to
a finite-rank free group:

1→ K → ∆→ Fr → 1

for some r ≥ 2. The conjugation action of NΓ(K) on ∆ preserves K, so NΓ(K) acts
on Fr by automorphisms. Let D < NΓ(K) be the subgroup that acts on Fr by inner
automorphisms. With this setup, the main algebraic construction of [BL05, Thm.
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2.1] asserts that for any finite group F , there exists a finite-index subgroup π < D
with NΓ(π)/π ' F (in their notation, they use M instead of K and B instead of π).

In the application to hyperbolic manifolds, define Γ as the commensurator Comm(Λ)
of a Gromov–Piatetski-Shapiro [GPS88] non-arithmetic lattice Λ < SO(n, 1). By
work of Mostow and Margulis, Comm(Λ) is a maximal discrete subgroup of Isom(Hn),
so for any π < Γ,

NΓ(π)/π ' NIsom(Hn)(π)/π ' Isom(Hn /π).

Hence to find M = Hn /π with Isom(M) ' F , it suffices to find π < Γ with
NΓ(π)/π ' F .

To define ∆, denote G = O(n, 1) and let OS be ring of definition of Γ, so Γ < G(OS).
Let p ⊂ OS be a prime ideal and denote p ∈ N the prime with (p) = p ∩ Z. We
only deal with prime ideals p where OS/p ' Fp. Equivalently, p splits completely
in OS ; there are infinitely many such p by Chebotarev’s theorem. Reduction mod p
defines a map αp : Γ→ G(OS/p) ' On+1(p) to an orthogonal group over Fp. Define
Γ(p) = ker(αp), where αp : Γ → On+1(p) → POn+1(p). The group ∆ is defined as
Λ ∩ Γ(p).

To ensure ∆ C Γ, we want Λ C Γ. In order to arrange this, after we’ve defined Γ,
we replace Λ with a finite-index subgroup (still denoted Λ) so that Λ C Γ (note
that this replacement does not change Comm(Λ)). The group ∆ surjects to a free
group: By the cut-and-paste nature of the construction of [GPS88], Λ is either an
amalgamated product or an HNN extension. For definiteness assume Λ = Λ1 ∗Λ3 Λ2.
Denoting Ωn+1(p) = [On+1(p), On+1(p)], by strong approximation, for all but finitely
many p, the image of αp : Λ → POn+1(p) contains Qp := PΩn+1(p), and the same
is true for the restriction to Λ1,Λ2. Without loss of generality, we may assume
Im(αp) = Qp (replace Λ by the intersection of all index-2 subgroups of Λ). Denoting

Tp = αp(Λ3), the map αp factors through surjective maps Λ
s−→ Qp ∗Tp Qp

t−→ Qp.
Then ∆ = ker(t ◦ s) surjects onto ker t, which is a free group of rank r ≥ 2 [BL05,
Prop. 3.4].

Proof of Theorem 6. Fix a finite group F . We use the setup of the proceeding
paragraphs. In particular, π < D will always denote a subgroup with NΓ(π)/π ' F ,
and our aim is to show that π can be chosen in such a way that M = Hn /π has
properties (a), (b), and (c).

Part (a). By [BL05, pg. 465] the group NΓ(π) is contained in D = ker
[
NΓ(K)→

Out(Fr)
]
, and [BL05, §5] shows that D is contained in Γ(p), which is torsion-free

for p large. It follows that Isom(M) ' NΓ(π)/π acts freely on M : if x ∈M is fixed
by g 6= 1 ∈ Isom(M), then g lifts to g̃ ∈ NΓ(π) that acts on Hn with a fixed point,
but this contradicts the fact that NΓ(π) is torsion-free.

Part (b). As mentioned in part (a), we can arrange that π < Γ(p). Our main task
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for part (b) will be to show that we can also arrange that π < Γ(p) ∩ Γ(q), where
p, q ⊂ OS are prime ideas with OS/p ' Fp and OS/q ' Fq for distinct primes p, q.
Before we do this, we explain why this is enough to conclude that M = Hn /π has
the desired stably parallelizable cover.

Suppose that M = Hn /π with π < Γ(p) ∩ Γ(q). We will show that there is a cover

M̂ → M of degree 1, 2, or 4 so that M̂ has a tangential map M̂ → Sn, and hence
M̂ is stably parallelizable. The group π is a subgroup of the identity component
SO0(n, 1) < SO(n, 1). The inclusions π ↪→ SO0(n, 1) ↪→ SOn+1(C) define flat

bundles over M . By Deligne–Sullivan [DS75], there is a particular cover M̂ → M

so that the map M̂ →M → B SOn+1(C) is homotopically trivial. This cover is the
one corresponding to the subgroup π̂ = π ∩ ker(αp) ∩ ker(αq) of π. Note that the
index [π : π̂] is 1, 2, or 4 because ker(αp) has index 2 in ker(αp). Furthermore, if
n is even, then SOn+1(p) < On+1(p) has trivial center, so SOn+1(p) ' PSOn+1(p),
which implies that π̂ = π.

Since there is a fibration

SOn+1(C)/ SO0(n, 1)→ B SO0(n, 1)→ B SOn+1(C)

and M̂ → B SO0(n, 1) → B SOn+1(C) is trivial, the map M̂ → B SO0(n, 1) lifts
to SOn+1(C)/ SO0(n, 1), which is homotopy equivalent to SO(n + 1)/SO(n) ' Sn.

This map M̂ → Sn is a tangential map by Okun [Oku01, §5]. This completes the
construction of the stably parallelizable cover.

Now we show we can find M with isometry group F and fundamental group π <
Γ(p) ∩ Γ(q). As above, fix p ⊂ OS such that αp : Λ → Qp is surjective and also
α(Λ1) = α(Λ2) = Qp.

Observation. Fix a prime ideal q ⊂ OS and denote q ∈ N the prime with (q) = q∩Z.
If the image of αq : Λ(p) → POn+1(q) contains Qq, then the image of αp,q : Λ →
POn+1(p)× POn+1(q) defined by

αp,q(g) = (αp(g), αq(g))

contains Qp×Qq. Indeed, if (x, y) ∈ Q := Qp×Qq, then one has that αp(g) = x for
some g ∈ Λ and also αq(h) = αq(g)−1y for some h ∈ Λ(p). Thus αp,q(gh) = (x, y).

We use the observation together with the strong approximation theorem to conclude
that for all but finitely many of the infinitely many primes q that split completely, the
image of each of Λ, Λ1, and Λ2 in POn+1(p)×POn+1(q) contains Qp×Qq. As before,
we may assume (by replacing Λ with a finite-index subgroup) that αp,q(Λ) = Qp×Qq.

Set T = αp,q(Λ3). The subgroup T < Q has the property that there are no nontrivial
N CQ such that 1 ≤ N ≤ T (compare [BL05, §3.2]). This holds essentially for the
same reasons it holds for Tp < Qp (see [BL05, §5]). In our case, we only need to
notice that T ≤ POn(p)×POn(q), while the only nontrivial proper normal subgroups
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of Q are Qp × 1 and 1 ×Qq (the latter fact holds because Qp and Qq are simple if
p, q are sufficiently large and Qp 6' Qq).

Setting ∆ = ker(αp,q) = Λ∩ Γ(p)∩ Γ(q), we may repeat the argument of [BL05, §5]
to conclude that π < D is contained in Γ(p) ∩ Γ(q). This finishes part (b).

Part (c). We explain why we can arrange for M to have isometry group F and
arbitrarily large injectivity radius. This will follow (using Proposition 7 below) from
the fact that π is a subgroup of matrices SLm(OS) with coefficients in the ring OS
of S-integers in a number field L. Before proving Proposition 7 we recall a few facts
about OS . Here O is the ring of integers in L, and S is a finite set of places (i.e.
an equivalence class of absolute value on L) that includes all of the Archimedean
places, and OS = {x ∈ L : t(x) ≤ 1 for all places t /∈ S}.

For our proof of Proposition 7, we recall the description of the set of all places of
L. This is the content of Ostrowski’s theorem [Jan96, Ch. II]. The Archimedean
places all come from embeddings of L into R or C. The non-Archimedean places
come from prime ideals q ⊂ O as follows. Given q, for a ∈ O define νq(a) ∈ Z≥0

as the multiplicity of q appearing in the prime factorization of the ideal (a) ⊂ O;
this is extended to x = a

b ∈ L by νq(x) = νq(a) − νq(b). Denoting the norm

N(q) = |O/q|, the function tq(x) = N(q)−νq(x) defines a place of L. The set of
all places (normalized in the way we have described) satisfies the product formula∏
t(x) = 1 for any x ∈ L× [Jan96, Ch. II, §6]. For future reference, observe that if

a ∈ O and q - a, then tq(a) = 1, so only finitely many terms in the product
∏
t(x)

differ from 1. Note also that if (a) = qn1
1 · · · q

nf

f is the prime factorization, then
N(a) = N(q1)n1 · · ·N(qf )nf , so by the product formula, N(a) is also equal to the
product

∏
t|∞ t(a) over Archimedean places of L.

Proposition 7 (Injectivity radius growth in congruence covers). Let V be a closed
aspherical Riemannian manifold with fundamental group π. Suppose there exists an
injection π ↪→ SLm(OS), where OS is the ring of S-integers in a number field L.
For an ideal k ⊂ O, denote

SLm(k) = ker
[

SLm(OS)→ SLm(OS/kOS)
]

and let Vk be the cover of V with fundamental group π(k) := π∩SLm(k). Then there
are constants C,D (depending only on V , m, and K, but not k) so that InjRad(Vk) ≥
C log k +D, where (k) = k ∩ Z.

This statement is similar to the “Elementary Lemma” of [Gro96, §3.C.6]. The proof
below is based on, and has some overlap with, the argument in [GL14, §4].

Proof of Proposition 7. Let Ṽ be the universal cover of V .

Fix the ideal k, and set R = InjRad(Vk). By definition of InjRad, there exists
y, z ∈ Ṽ and η ∈ π(k) so that y, ηy are both contained in the ball B2R(z). Then
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d(y, ηy) ≤ 4R; equivalently

R ≥ 1

4
d(y, ηy).

To prove the proposition, we will give a lower bound on d(y, ηy).

Since V is compact, π is finitely generated. Consider the generating set associated
to the Dirichlet fundamental domain D centered at y for the action of π on Ṽ
(generators are those g ∈ π for which g(D) ∩ D 6= ∅). For the word length w : π →
Z≥0 associated to this generating set, there is a bound w(η) ≤ c1 ·

[
d(y, ηy) + 1

]
,

obtained as follows. Take a geodesic γ connecting y, ηy, and cover it by bd(y, ηy)c+1
balls of radius 1. There is c1 > 0 so that each ball intersects at most c1 translates
of D, so γ intersects at most c1 ·

[
d(y, ηy) + 1

]
translates of D. This proves the

aforementioned bound, which is equivalent to

d(y, ηy) ≥ (1/c1) · w(η)− 1.

To finish the proof, we prove

w(η) ≥ c2 log k + c3 (4)

for some constants c2, c3. Now we use the assumptions that π < SLm(OS) and
η ∈ SLm(k). For X = (xij) ∈ SLm(L) and s ∈ S, define

|X|s = max
i,j

s(xij) and |X|S =
∑
s∈S
|X|s.

By the formula for matrix multiplication |XY |S ≤ m|X|S |Y |S . Write η = X1 · · ·Xw(η)

with Xi ∈ SLm(OS) belonging to our chosen generating set of π. Then |η|S ≤
mw(η)−1 ·Mw(η), where M is the maximum value of | · |S on generators of π. On
the other hand, we will show that |η|S ≥ ` · k1/` − `, where (k) = k ∩ Z and ` = |S|.
Then altogether we have

` · k1/` − ` ≤ |η|S ≤ mw(η)−1 ·Mw(η),

which gives a bound as in (4) after taking log. Note that log(k1/`− 1) = log(k1/`) +
log(1− k−1/`) and log(1− k−1/`) is bounded below by the constant log(1− 2−1/`).

Now we prove |η|S ≥ ` · k1/` − `. Since η 6= Id, some entry ηij has the form 1 + x or
x, where x ∈ kOS is nonzero. Write x = a

b · x1, where x1 ∈ k and the only primes
dividing a, b are primes in S. By the product formula∏

s∈S
s(a/b) = 1 and

∏
s∈S

s(x1) = N(x1).

Furthermore, N(x1) ≥ N(k) ≥ k because (x1) ⊂ k and Z/kZ ⊂ O/k. Therefore,∏
s∈S s(x) ≥ k.
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Next we show that
∏
s∈S s(x) ≥ k implies that |x|S :=

∑
s∈S s(x) ≥ `k1/`. This

follows from some calculus: we want to minimize the function φ(x1, . . . , x`) = x1 +
· · · + x` under the constraint x1 · · ·x` ≥ k. Since φ has no critical points, the
minimum is achieved on the set x1 · · ·x` = k. Using Lagrange multipliers, one finds
that φ has a unique minimum at x = (k1/`, . . . , k1/`) and the minimum value is
φ(x) = ` · k1/`.

Since ηij is either x or 1 + x, in either case |ηij |S ≥
∑

s∈S [s(x) − 1] ≥ ` · k1/` − `.
Combining everything we conclude that

|η|S ≥ |ηij |S ≥ ` · k1/` − `.

This completes the proof.

4 Symmetry constant for N = Mc,φ

In this section we prove Theorem B. As mentioned in the introduction, the goal is to
find smooth structures N and large subgroups F < Out(π) so that Im ΨN ∩ F = 1.
To this end, we consider the exotic smooth structures N = Mc,φ studied in [FJ93].
Here M is hyperbolic, c is a simple closed geodesic, and φ ∈ Diff(Sn−2). Choosing
a framing ι : S1 ×Dn−1 →M of c, the manifold Mc,φ is defined as the quotient of

S1 ×Dn−1
∐

M \ ι(S1 × int(Dn−1))

by the identification (x, v)↔ ι(x, φ(v)) for (x, v) ∈ S1 × Sn−2.

We prove Theorem B in 3 steps.

4.1 Non-concordant smooth structures (Step 1)

Our mechanism for constructing α ∈ Out(π) such that α /∈ Im ΨN is Theorem 8
below. Before we state it, recall some facts about smooth structures that will be
used here and in the next subsection.

Smoothings of topological manifolds. By a smooth manifold N we mean a
topological manifold with a smooth atlas of charts Rn ⊃ Uα → N (which we call
a smooth structure). If N (resp. M) is a smooth (resp. topological) manifold and
h : N → M is a homeomorphism, then we obtain a smooth structure on M by
pushforward. The map h is called a marking. Two markings h0 : N0 → M and
h1 : N1 →M determine the same smooth structure onM if there is a diffeomorphism
g : N0 → N1 so that h1g = h0.

Two smooth structures N0, N1 on M are concordant if there exists a smooth struc-
ture on M×[0, 1] whose restriction to M×{i} is Ni for i = 0, 1. The main fact about
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concordances that we use is that classifying concordance classes reduces to homo-
topy theory: there is a bijection between the set of concordance classes of smooth
structures on M and the set of based homotopy classes of maps [M,Top /O].

As remarked in [FJ93, §1], the concordance class of the smooth structure Mc,φ

is independent of the choice of framing and is also independent of the choice of
representative of the isotopy class [φ] ∈ π0 Diff(Sn−2).

Theorem 8 (non-concordant smooth structures). Let M be a smooth closed man-
ifold. Assume M is stably parallelizable. Let c1, . . . , c` be disjoint closed curves
in M . Assume that there exists a homomorphism ∆ : π1(M) → Z` such that
∆(c1), . . . ,∆(c`) generate Z`. For any nontrivial isotopy class [φ] ∈ π0 Diff(Sn−2),
no two of the smooth structures Mc1,φ, . . . ,Mc`,φ are concordant.

Proof. Given a codimension-0 embedding λ : X → Y of open manifolds, we denote
λ′ the induced map of 1-point compactifications, obtained by collapsing Y \X to a
point. Also X+ denotes the space X with a disjoint basepoint.

Let ι1, . . . , ι` : S1 × Dn−1 ↪→ M be framings of c1, . . . , c`. Use ι1, . . . , ι` to define
an embedding ι :

∐
` S

1 × Dn−1 ↪→ M . The induced collapse map has the form
ι′ : M →

∨
` Σn−1(S1

+). Consider the composition

ι̂ : M+ →M
ι′−→
∨
`

Σn−1(S1
+)→

∨
`

Sn−1,

where the last map is induced from the obvious maps Σn−1(S1
+) ' Sn ∨ Sn−1 →

Sn−1. It suffices to show that the induced map

ι̂∗ :
[∨
`

Sn−1, Top /O
]
→
[
M+, Top /O

]
is injective. This is because, under the bijection between concordance classes of
smooth structures onM and [M,Top /O], the concordance class ofMcj ,φ corresponds
to the map

M
ι̂−→
∨
`

Sn−1 πj−→ Sn−1 φ̂−→ Top /O,

where πj collapses every sphere other than the j-th sphere to the basepoint, and φ̂
corresponds to [φ] ∈ π0 Diff(Sn−2) under the bijections [Sn−1,Top /O] ' Θn−1 '
π0 Diff(Sn−2).

To show that ι̂∗ is injective, we use that Top /O is an infinite loop space. In par-
ticular, there exists a space Y such that Ωn+`Y ' Top /O, and for any space A,
there are natural bijections [A,Top /O] ' [A,Ωn+`Y ] ' [Σn+`A, Y ]. This allows us
to view ι̂∗ as map [∨

`

S2n+`−1, Y
]
→
[
Σn+`(M+), Y ].
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This map can also be obtained by considering the embedding ι×1 :
(∐

` S
1 ×Dn−1

)
×

Dn+` ↪→ M ×Dn+` and the composition ι̂× 1 : Σn+`(M+)
(ι×1)′−−−−→

∨
` Σ2n+`(S1

+)→∨
` S

2n+`−1, similar to before.

The homomorphism ∆ is induced by a map δ : M → T ` to the torus, and we can
assume δ is smooth. Take a Whitney embedding ε : M → D2n, and consider the
induced embedding δ × ε : M → T ` × D2n. Since M is a stably parallelizable,
M ⊂ T ` × D2n has trivial normal bundle νM ' εn+`. (To see this, observe that
TM ⊕ νM ' ε2n+`. Since M is stably parallelizable, TM ⊕ ε ' εn+1, which implies
that εn+1 ⊕ νM ' ε2n+`+1. Since rank(νM ) > dimM , this implies that νM is the
trivial bundle by [KM63, Lem. 3.5].) Then there is an embedding κ : M ×Dn+` →
T ` ×D2n.

Consider now the composition

p : Σ2n(T `+)
κ′−→ Σn+`(M+)

ι̂×1−−→
∨
`

S2n+`−1.

To prove the theorem, we show that the induced map

p∗ :
[∨
`

S2n+`−1, Y
]
→
[
Σ2n(T `+), Y

]
is injective. First observe the homotopy equivalence Σ2n(T `+) ∼

∨`
i=0

(
`
i

)
S2n+i.

This follows from general homotopy equivalences Σ(A+) ∼ ΣA ∨ S1 and Σ(A ×
B) ∼ ΣA ∨ ΣB ∨ Σ(A ∧ B). Since ∆(c1), . . . ,∆(c`) generate π1(T `), the inclusion
`S2n+`−1 ⊂

∨`
i=0

(
`
i

)
S2n+i is a right inverse to p, up to homotopy. This implies that

p∗ is injective.

4.2 Outer automorphisms not realized by diffeomorphisms (Step
2)

Next we apply Theorem 8 to give a criterion that guarantees that α ∈ Out(π) is not
in the image of ΨN : Diff(N)→ Out(π).

Theorem 9 (obstruction to Nielsen realization). Let M be a hyperbolic manifold
and fix a simple closed geodesic c in M . Let N = Mc,φ be an exotic smooth struc-
ture. Assume that α ∈ Isom(M) ' Out(π) is such that Mc,φ and Mα(c),φ are not
concordant. Then α /∈ Im ΨN .

Proof. Suppose for a contradiction that there is a diffeomorphism f : N → N such
that ΨN (f) = α.

Set N0 = N and N1 = Mα(c),φ, and observe that α : M → M induces a diffeomor-
phism g1 : N0 → N1. Define g2 = g1 ◦ f−1. Denoting hi : Ni → M be the obvious
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homeomorphisms, the composition

M
h−1
0−−→ N0

g2−→ N1
h1−→M

induces the identity on π and is therefore homotopic to the identity. From this homo-
topy, we obtain a homotopy equivalence H0 : M× [0, 1]→M× [0, 1], which restricts
to a homeomorphism on the boundary. By [FJ89b, Cor. 10.6], H0 is homotopic rel
boundary to a homeomorphism H. Then the composition

N0 × [0, 1]
h0×id−−−−→M × [0, 1]

H−→M × [0, 1]

defines a smooth structure on M×[0, 1] whose restriction to M×{i} is Ni for i = 0, 1,
i.e. N0 and N1 are concordant. This contradicts our assumption, so α /∈ Im ΨN .

4.3 Examples (Step 3)

To complete the proof of Theorem B, we explain how to obtain examples of stably
parallelizable M that satisfy the assumptions of Theorems 8 and 9. This is the
content of the following proposition.

Proposition 10. Fix n ≥ 2. For any d ≥ 2, there exists a stably parallelizable
hyperbolic manifold Mn, a geodesic c, a subgroup F < Isom(M) isomorphic to
Z/dZ = 〈α〉, and ρ ∈ H1(M) ' Hom(H1(M),Z) such that

ρ(αjc) =

{
1 j = 0

0 1 ≤ j ≤ d− 1.
(5)

Consequently, the homomorphism ∆ : H1(M)→ Zd whose i-th coordinate is ρ ◦α−i
has the property that ∆(c), . . . ,∆(αd−1c) generate Zd.

In [Lub96], Lubotzky gave examples of hyperbolic M (both arithmetic and non-
arithmetic) with a surjection π1(M) � Fr to a free group of rank r ≥ 2. By
passing to a cover, we can assume that M is stably parallelizable [Sul79, pg. 553].
Proposition 10 is proved by passing to a further cover, using the general procedure
of the following lemma.

Lemma 11. Let X be a CW-complex, and let Fr denote a free group of rank r ≥ 2.
Assume there is a surjection π1(X)� Fr. Then for any d ≥ 2, there exists a regular
cover Y → X with deck group Z/dZ = 〈α〉 and c ∈ π1(Y ) and ρ ∈ H1(Y ) satisfying
(5).

Proof. Take Fr with generators a1, . . . , ar. Consider Fr � Z/dZ defined by a1 7→ 1
and ai 7→ 0 for 2 ≤ i ≤ r. Then ker[Fr � Z/dZ] ' Fk with k = 1 + d(r − 1). It’s
easy to compute H1(Fk) as a F = Z/dZ-module:

H1(Fk) ' Z{b1} ⊕ ZF{b2, . . . , bk}.
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(For example, realize 1 → Fk → Fr → Z/dZ → 0 as a (Z/dZ)-covering of graphs.)
Then also H1(Fk) ' Z{β1} ⊕ ZF{β2, . . . , βk}, where βi is dual to bi.

Let Y → X be the cover such that π1(Y ) = ker
[
π1(X) � Fr � Z/dZ

]
. Then

π1(Y ) � Fk, and H1(Y ) → H1(Fk) is (Z/dZ)-equivariant. Choose c ∈ π1(Y ) so

that c 7→ b2 under π1(Y )� Fk, and define ρ : π1(Y )� Fk
β2−→ Z. It’s easy to verify

that ρ satisfies (5). This proves the lemma.
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Congr., pages 291–362. Soc. Math. France, Paris, 1996.

[HH65] W.-C. Hsiang and W.-Y. Hsiang. Classification of differentiable actions
of Sn, Rn, and Dn with Sk as the principal orbit type. Ann. of Math.
(2), 82:421–433, 1965.

[HH69] W.-C. Hsiang and W.-Y. Hsiang. The degree of symmetry of homotopy
spheres. Ann. of Math. (2), 89:52–67, 1969.

[HHR16] M. A. Hill, M. J. Hopkins, and D. C. Ravenel. On the nonexistence of
elements of Kervaire invariant one. Ann. of Math. (2), 184(1):1–262,
2016.

[Hsi67] W.-Y. Hsiang. On the bound of the dimensions of the isometry groups
of all possible riemannian metrics on an exotic sphere. Ann. of Math.
(2), 85:351–358, 1967.

[Jan96] G. J. Janusz. Algebraic number fields, volume 7 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, second
edition, 1996.

[KM63] M. A. Kervaire and J. W. Milnor. Groups of homotopy spheres. I. Ann.
of Math. (2), 77:504–537, 1963.

[Lub96] A. Lubotzky. Free quotients and the first Betti number of some hyper-
bolic manifolds. Transform. Groups, 1(1-2):71–82, 1996.

[MS74] J. Milnor and J. Stasheff. Characteristic classes. Princeton University
Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals
of Mathematics Studies, No. 76.

[MT18] K. Mann and B. Tshishiku. Realization problems for diffeomorphism
groups. https://arxiv.org/abs/1802.00490, February 2018.

[Oku01] B. Okun. Nonzero degree tangential maps between dual symmetric
spaces. Algebr. Geom. Topol., 1:709–718, 2001.

[Sul79] D. Sullivan. Hyperbolic geometry and homeomorphisms. In Geometric
topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), pages 543–
555. Academic Press, New York-London, 1979.

Institut für Mathematik, Universität Augsburg
Email address: bustamante.math@gmail.com

Department of Mathematics, Harvard University
Email address: tshishikub@gmail.com

19


	Introduction
	Symmetry constant for N=M#
	Realization by isometries
	Symmetry constant for N=Mc,

