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Abstract. For each circle bundle S1 → X → Σg over a surface with
genus g ≥ 2, there is a natural surjection π : Homeo+(X) → Mod(Σg).
When X is the unit tangent bundle UΣg, it is well-known that π splits.
On the other hand π does not split when the Euler number e(X) is not
divisible by the Euler characteristic χ(Σg) by [CT23]. In this paper we
show that this homomorphism does not split in many cases where χ(Σg)
divides e(X).

1. Introduction

Let Σg be a closed oriented surface of genus g ≥ 2, and let Xg,e denote the
oriented S1-bundle over Σg with Euler number e. Let Homeo+(Xg,e) be the
group of orientation-preserving homeomorphisms of Xg,e that act trivially
on the center of π1(Xg,e), and let Mod(Xg,e) := π0

(
Homeo+(Xg,e)

)
denote

the mapping class group.
The (generalized) Nielsen realization problem for Xg,e asks whether the

surjective homomorphism

Homeo+(Xg,e)→ Mod(Xg,e)

splits over subgroups of Mod(Xg,e). In this paper we study a closely re-
lated problem. For each g, e there is a surjection Mod(Xg,e) → Mod(Σg).
Consider the composition

πg,e : Homeo+(Xg,e)� Mod(Xg,e)� Mod(Σg).

Problem 1.1. Does πg,e : Homeo+(Xg,e)� Mod(Σg) spilt?

If e = ±(2g − 2), then Xg,e is the unit (co)tangent bundle, and πg,e does
split; see [Sou10, §1]. On the other hand, if e is not divisible by 2g− 2, then
the surjection Mod(Xg,e) → Mod(Σg) does not split by work of the second
two authors [CT23], so πg,e also does not split in these cases. Given this, it
remains to study the case when e is divisible by 2g − 2 and e 6= ±(2g − 2).
In these cases Mod(Xg,e) → Mod(Σg) does split [CT23], but we prove πg,e
does not split in many cases.

Theorem A. Fix a surface Σg of genus g and e ∈ Z. Assume that g = 4k−1
where k ≥ 3 and k is not a power of 2, and assume that e is divisible by
(2g − 2)2p where p is an odd prime dividing k. Then the natural surjective
homomorphism πg,e : Homeo+(Xg,e)→ Mod(Σg) does not split.
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For example, if e = 0, we find that πg,e : Homeo+(Σg × S1) → Mod(Σg)
does not split when g = 11, 19, 23, 27, 35, 39, 43, 47, . . ..

Theorem A solves the Nielsen realization problem for Mod(Σg) subgroups
of Mod(Xg,e) in the cases of the theorem. Specifically, if e is divisible by
2g−2, then Mod(Xg,e) ∼= H1(Σg;Z)oMod(Σg) [CT23], and every Mod(Σg)
subgroup of Mod(Xg,e) is the image of a splitting of Mod(Xg,e)→ Mod(Σg).
By Theorem A, Homeo+(Xg,e)→ Mod(Xg,e) does not split over any of these
Mod(Σg) subgroups.

Theorem A has the following topological consequence. When 2g − 2 di-
vides e, there is a “tautological” Xg,e-bundle Etaut

g,e → BHomeo(Σg) whose
monodromy

Mod(Σg) ∼= π1

(
BHomeo(Σg)

)
→ Mod(Xg,e)

splits the surjection Mod(Xg,e) → Mod(Σg) (c.f. [CT23, §1]). One can
ask whether or not the bundle Etaut

g,e → BHomeo(Σg) is flat. Recall that
an X-bundle E → B is flat if there is a homomorphism ρ : π1(B) →
Homeo(X) and an X-bundle isomorphism E ∼= X oρ B. Such bundles are
characterized by the existence of a horizontal foliation on E, or, equivalently,
by the property that their monodromy π1(B)→ Mod(X) lifts to Homeo(X).
When e = 2g − 2, the bundle Etaut

g,e → BHomeo(Σg) is flat because of the
splitting of πg,e in this case. When πg,e does not split, we deduce that
Etaut
g,e → BHomeo(Sg) is not flat.

Corollary 1.2. Fix g, e as in the statement of Theorem A. Then the tau-
tological Xg,e-bundle Etaut

g,e → BHomeo(Sg) is not flat.

Short proof sketch of Theorem A. The proof strategy is similar to an
argument of Chen–Salter [CS22] that shows that Homeo+(Σg)→ Mod(Σg)
does not split when g ≥ 2. Theorem A is proved by contradiction: assuming
the existence of a splitting Mod(Σg) → Homeo+(Xg,e), first we obtain, by
lifting, an action of the based mapping class group Mod(Σg, ∗) on the cover

X̂g,e
∼= R2 × S1 corresponding to the center of π1(Xg,e). The conditions

on g and e in Theorem A guarantee the existence of a Z/2pZ subgroup of

Mod(Σg, ∗) for which we can show the action on X̂g,e has a fixed circle.
Denoting a generator of Z/2pZ by α, we show that Mod(Σg, ∗) is gener-
ated by the centralizers of α2 and αp. This shows that the entire group

Mod(Σg, ∗) acts on X̂g,e with a fixed circle, which contradicts the fact that
the point-pushing subgroup π1(Σg) < Mod(Σg, ∗) acts freely (by deck trans-

formations) on X̂g,e.

Other questions. Related to the Mod(Σg) action on the unit tangent
bundle UΣg, we pose the following question.

Question 1.3. Do either of the following surjections split?

Diff+(UΣg)→ Mod(Σg) or Homeo(UΣg)→ Mod(UΣg)
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If one includes orientation-reversing diffeomorphisms and mapping classes,
then if g ≥ 12, then Diff(UΣg)→ Mod±(Σg) does not split by Souto [Sou10,
Thm. 1].

Acknowledgement. The authors LC and BT are supported by NSF grants
DMS2203178, DMS-2104346, and DMS-2005409.

2. Proof of Theorem A

Fix g = 4k − 1 and e as in the theorem statement, and set Σ = Σg and
X = Xg,e. Suppose for a contradiction that there is a homomorphism

σ : Mod(Σ)→ Homeo(X)

whose composition with π = πg,e : Homeo(X)→ Mod(Σ) is the identity.

2.1. Step 1: lifting argument. Consider the covering space X̂ = Σ̃×S1 of

X, where Σ̃ ∼= R2 is the universal cover. This is the covering corresponding
to the center ζ of π1(X). Given the action of Mod(Σ) on X, we consider the

set of all lifts of homeomorphisms in this action to X̂. This is an action of

the pointed mapping class group Mod(Σ, ∗) on X̂. To explain this, we start
with the following general proposition.

Proposition 2.1. Let Y be a closed manifold. Let ζ < π1(Y ) be the center

of the fundamental group, and denote ∆ = π1(Y )/ζ. Let Ŷ → Y be the

covering space with π1(Ŷ ) = ζ. Fix a basepoint ∗ ∈ Y . Assume that the
evaluation map

Homeo(Y )→ Y, f 7→ f(∗)

induces a surjection π1

(
Homeo(Y )

)
� ζ < π1(Y ). Then there is a commu-

tative diagram
(1)

1 ∆ Homeo(Ŷ )∆ Homeo(Y ) 1

1 ∆ Mod(Y, ∗) Mod(Y ) 1

// // //
q

//

// // // //
��
p̂

��
p

whose rows are exact, where the bottom row is the (generalized) Birman
exact sequence. Furthermore, this diagram is a pullback diagram.

A version of Proposition 2.1 when Y = Σg (whose center is trivial) is used
in [CS22].

We prove Proposition 2.1 after explaining how it gives the desired lifting.
In our situation, the center of π1(X) is the kernel of π1(X) → π1(Σ) since
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π1(Σ) has trivial center. Thus Proposition 2.1 gives us the following diagram.

1 π1(Σ) Homeo(X̂)∆ Homeo(X) 1

1 π1(Σ) Mod(X, ∗) Mod(X) 1

1 π1(Σ) Mod(Σ, ∗) Mod(Σ) 1

// // //
q

//

// // // //

// // // //

��
p̂

��
p

?�

OO

?�

OO

The splitting σ defines a subgroup Mod(Σ) < Mod(X) and a splitting of
p over this subgroup. Since the top row is a pullback of the middle row,
it follows that p̂ splits over Mod(Σ, ∗) (this uses only general facts about
pullbacks). Denote this splitting by

σ̂ : Mod(Σ, ∗)→ Homeo(X̂)∆.

Under this splitting the point-pushing subgroup π1(Σ) acts by deck trans-
formations.

Remark 2.2. If G < Mod(Σ) and σ(G) has a fixed point ∗, then after

choosing a lift ∗̂ of ∗, one can lift canonically elements of σ(G) to X̂ by
choosing the unique lift that fixes ∗̂. This implies that G < Mod(Σ) can be
lifted to G < Mod(Σ, ∗) so that σ̂(G) has a fixed point.

Proof of Proposition 2.1. First we recall the construction of the bottom row
of diagram (1). Evaluation at ∗ ∈ Y defines a fibration

Homeo(Y, ∗)→ Homeo(Y )
ε−→ Y.

The long exact sequence of homotopy groups gives an exact sequence

π1

(
Homeo(Y ))

ε∗−→ π1(Y )→ Mod(Y, ∗)→ Mod(Y )→ 1.

In general the image of ε∗ is contained in the center of π1(Y ); see e.g. [Hat02,
§1.1, Exer. 20]. By assumption, ε∗ surjects onto the center, so we obtain
the short exact sequence in the bottom row of (1). The homomorphism
π1(Y ) → Mod(Y, ∗) is the so-called “point-pushing” homomorphism. It
sends η ∈ π1(Y ) (basepoint= ∗) to the time-1 map of an isotopy that pushes
∗ around η in reverse (this follows directly from the definition of the connect-
ing homomorphism in the long exact sequence; note that it makes sense for
the reverse of η to appear in defining this homomorphism since concatena-
tion of paths is left-to-right, while composition of functions is right-to-left).

Next we define p̂ : Homeo(Ŷ )∆ → Mod(Y, ∗). Fix a point ∗̂ ∈ Ŷ that

covers the basepoint ∗ ∈ Y . Given f ∈ Homeo(Ŷ )∆. Choose a path [0, 1]→
Ŷ from ∗̂ to f(∗̂) and let γf denote the composition [0, 1] → Ŷ → Y . By
isotopy extension, there exists an isotopy ht : Y → Y where h0 = idY and
ht(∗) = γf (t) for each t ∈ [0, 1]. Define

p̂(f) = [h1 ◦ q(f)].
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The map p̂ is well-defined. The choice of γf is unique only up to an element

of π1(Ŷ ) = ζ. This implies that the isotopy class [h1 ◦f ] is only well-defined
up to composition by a point-pushing mapping class by an element of ζ, but
such a point-push is trivial by assumption.

It is a straightforward exercise to check that p̂ is a homomorphism. The
right square in diagram (1) commutes because q(f) and h1 ◦ q(f) are iso-
topic by construction. It is easy to see that the left square in the diagram
commutes by applying the definition of p̂ to deck transformations.

Finally, regarding the claim that the diagram is a pullback, we show that
the map to the fibered product

p̂× q : Homeo(Ŷ )∆ → Mod(Y, ∗)×Mod(Y ) Homeo(Y )

is an isomorphism. The codomain consists of pairs (φ, g) ∈ Mod(Y, ∗) ×
Homeo(Y ) such that g is isotopic to a representative of the isotopy class φ.

We define an inverse ι to p̂ × q. Given (φ, g) in the fibered product,
choose an isotopy gt from g to a homeomorphism representing φ. Lift gt to
an isotopy g̃t such that g̃1 fixes ∗̂, and define ι(φ, g) = g̃0. The reader can
check that the maps ι and p̂× q are inverses. �

2.2. Step 2: finite group action rigidity. Recall that g = 4k − 1 and
k ≥ 3 is not a power of 2; let p be an odd prime dividing k. From Step

1, we have homomorphism σ̂ : Mod(Σ, ∗) → Homeo(X̂) that descends to a
splitting σ : Mod(Σ) → Homeo(X). In this section we describe the action

of a particular finite subgroup of Mod(Σ, ∗) on X̂.

Proposition 2.3. There exists an element α ∈ Mod(Σ, ∗) of order 2p such
that the fixed sets of σ̂(α), σ̂(α)2, and σ̂(α)p coincide and are equal to an

embedded circle c ⊂ X̂.

It is worth noting that the fixed set of a finite-order, orientation-preserving
homeomorphism of a 3-manifold can be wildly embedded [MZ54].

In order to prove Proposition 2.3 we first construct the specific element
α. Then we prove (Proposition 2.5) a weaker version of Proposition 2.3 with
the additional assumption that the action is smooth. Finally, we combine
this with a result of Pardon [Par21] and Smith theory to prove Proposition
2.3.

Construction of α. We obtain α as an element in a dihedral subgroup
D4k of Mod(Σ), where D4k denotes the dihedral group of order 8k. The
dihedral action D4k y Σ we use has quotient Σ/D4k homeomorphic to T 2

and the quotient Σ→ Σ/D4k has a single branch point; it is determined by
the homomorphism

〈x, y〉 = F2
∼= π1(T 2 \ pt)→ D4k = 〈a, b | a4k = b2 = 1, bab = a−1〉

x 7→ a, y 7→ b.
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By Riemann–Hurwitz, the genus of Σ is 4k − 1. The orbifold O = Σ/D4k

has fundamental group

πorb1 (O) = 〈x, y, h | h2k = 1, h = [x, y]〉,

and there is a short exact sequence

(2) 1→ π1(Σ)→ πorb1 (O)→ D4k → 1.

This sequence induces a homomorphism πorb1 (O) → Mod(Σ, ∗). We take

α = hk/p, where p, as defined above, is an odd prime dividing k, which
exists by assumption. Then α is an element of order 2p in the subgroup
〈h〉 ∼= Z/2kZ of πorb1 (O) < Mod(Σ, ∗).

Remark 2.4. The argument that follows works equally well when Σ/D4k

is a genus-g surface and Σ → Σ/D4k has a single branched point. This
provides more values of g, e for which the conclusion of Theorem A holds.

Smooth case. Here we prove the following proposition.

Proposition 2.5. Fix D4k < Mod(Σ) as above. Suppose that σ : D4k →
Diff+(X) and is a splitting of π : Homeo+(X) → Mod(Σ) over D4k. Then

σ̂(α) fixes a unique circle on X̂ = H2 × S1. Consequently, the fixed set of

σ(a2k/p) is nonempty.

The last part of the statement of Proposition 2.5 follows from the preced-
ing statement because the image of α under πorb1 (O)→ D4k is a2k/p.

Proof of Proposition 2.5. First we reduce to a more geometric setting. By
Meeks–Scott [MS86, Thm. 2.1], the smooth(!) action σ(D4k) y X preserves
some geometric metric on X. There are two possibilities for the geometry:
if e(X) = 0, then X has H2 × R-geometry, and if e(X) 6= 0, then X has
˜PSL2(R)-geometry. We treat these cases in parallel.

The universal cover X̃ (with the induced geometric structure) is either

H2×R or ˜PSL2(R). In either case, X̃ has an isometric foliation by lines whose

leaf space is isometric to H2, and this foliation is preserved by Isom(X̃), so

there is a homomorphism Isom(X̃)→ Isom(H2). Let Isom+(X̃) < Isom(X̃)
be the group whose action on the leaves and on the leaf space are both
orientation preserving. There is an exact sequence

(3) 1→ R→ Isom+(X̃)
F−→ Isom+(H2)→ 1.

See also [Sco83, §4].
Next consider the group Λ of all lifts of elements of σ(D4k) < Isom(X) to

Isom+(X̃). This yields an exact sequence

1→ π1(X)→ Λ→ D4k → 1.
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The action of Λ on X̃ induces an action of Λ/ζ on X̃/ζ = X̂ ∼= H2×S1, where

ζ is the center of π1(X). This action extends to an action of Isom+(X̃)/ζ,
and there is a homomorphism

ρ : Λ/ζ → Isom+(X̃)/ζ
∼=−→ Isom(X̂).

The last map is an isomorphism by the general formula Isom(X̃/Λ) =

N
Isom(X̃)

(Λ)/Λ for discrete subgroups Λ < Isom(X̃).

To prove the proposition, we first identify Λ/ζ with πorb1 (O) (Claim 2.6).

Then it is a formal consequence of our setup that ρ(hk/p) = σ̂(α), and

after showing Isom+(X̃)/ζ ∼= Isom+(H2)×SO(2) (Claim 2.7), we show that

ρ(hk/p) fixes a unique circle in X̂ (Claim 2.8).

Claim 2.6. The restriction of the sequence (3) to Λ is a short exact sequence

1→ ζ → Λ→ πorb1 (O)→ 1

where ζ is the center of π1(X).

Proof of Claim 2.6. Recall the map F : Isom+(X̃) → Isom+(H2) from (3).
First we identify F (Λ) < Isom+(H2) with πorb1 (O). For this, it suffices to
show that F (Λ) fits into a short exact sequence

(4) 1→ π1(Σ)→ F (Λ)→ D4k → 1,

where the “monodromy” D4k → Out+
(
π1(Σ)

) ∼= Mod(Σ) has image the

given subgroup D4k < Mod(Σ). This implies that F (Λ) ∼= πorb1 (O) because
πorb1 (O) is an extension of the same form (see (2)), and extensions of π1(Σ)
are determined by their monodromy [Bro82, §IV.3].

To construct the extension (4), first note that the restriction of (3) to
π1(X) is the short exact sequence

1→ ζ → π1(X)→ π1(Σ)→ 1.

The group π1(Σ) = F (π1(X)) is normal in F (Λ) because π1(X) is normal
in Λ. Furthermore, the surjection Λ → F (Λ) induces a surjection D4k =
Λ/π1(X)→ F (Λ)/π1(Σ).

The quotient map X̃ → H2, which is equivariant with respect to Λ →
F (Λ) descends to a map X = X̃/π1(X)→ H2/π1(Σ) = Σ that’s equivariant
with respect to D4k = Λ/π1(X)→ F (Λ)/π1(Σ).

Since σ is a realization, the induced action of σ(D4k) on Σ is a realization
of the D4k < Mod(Σ), and in particular the D4k action on Σ is faithful.
Therefore, F (Λ)/π1(Σ) ∼= D4k, and the monodromy of the associated exten-
sion

1→ π1(Σ)→ F (Λ)→ D4k → 1,

is the given inclusion D4k < Mod(Σ). This concludes the proof that F (Λ)
is isomorphic to πorb1 (O).

To finish the proof of Claim 2.6, it remains to show that the intersection
of Λ with R = ker(F ) is ζ. We do this by showing (i) Λ ∩R is the center of
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Λ, and (ii) the center of Λ is contained in π1(X). Together with the obvious
containment ζ < Λ ∩ R, (i) and (ii) imply Λ ∩ R = ζ.

(i): First note that Λ ∩R is central because R is central in Isom(X̃). On
the other hand, the center of Λ is contained in Λ ∩ R because the center of
Λ/(Λ ∩ R) ∼= πorb1 (O) has trivial center.

(ii): To show the center of Λ is contained in π1(X), we show that the center
of Λ projects trivially to D4k = Λ/π1(X). This is true because Λ → D4k

factors through πorb1 (O), which has trivial center. �

We summarize the relation between the relevant groups in Diagram (5).

(5) 1 π1(X) Λ D4k 1

1 π1(Σ) πorb1 (O) D4k 1

ζ ζ

1 1

1 1

// // // //

// // // //
�� ��

�� ��

�� ��

�� ��

By Claim 2.6, Λ/ζ ∼= πorb1 (O), so ρ takes the form

ρ : πorb1 (O)→ Isom+(X̃)/ζ ∼= Isom(X̂)

By construction, this homomorphism is the restriction of σ̂ : Mod(Σ, ∗) →
Homeo(X̂) to πorb1 (O). Since α = hk/p, to show the fixed set of σ̂(α) is a

circle, it suffices to show the same statement for ρ(hk/p). To prove this, we

first compute Isom(X̂) ∼= Isom+(X̃)/ζ.

Claim 2.7. The group Isom+(X̃)/ζ is isomorphic to Isom+(H2)× SO(2).

Proof of Claim 2.7. First note that there is an extension

1→ SO(2)→ Isom+(X̃)/ζ → Isom+(H2)→ 1

induced from (3). This sequence is obviously split when X̃ = H2 × R since

Isom+(X̃) ∼= Isom+(H2)× R is a product.

Assume now that X̃ = ˜PSL2(R), and write e = (2g − 2)n where n is a
nonzero integer. Let K denote the kernel of the universal cover homomor-

phism ˜PSL2(R)→ PSL2(R).
We claim that ζ = 1

nK. To see this, note that the extension

1→ K → ˜PSL2(R)→ PSL2(R)→ 1
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pulled back under a Fuchsian representation π1(Σ)→ PSL2(R) induces the
extension of the unit tangent bundle group π1(UΣ), which has Euler number
2 − 2g, and there is an n-fold fiberwise cover UΣ → X, so the center of
π1(UΣ) < π1(X) is generated by the n-the power of the generator of the
center of π1(X), i.e. ζ = 1

nK.

The inclusion of ˜PSL2(R) in Isom
( ˜PSL2(R)

)
(given by left-multiplication)

descends to a homomorphism

PSL2(R) = ˜PSL2(R)/K → Isom
( ˜PSL2(R)

)
/K � Isom

( ˜PSL2(R)
)
/ζ

that defines a splitting of the sequence

1→ SO(2)→ Isom( ˜PSL2(R))/ζ → PSL2(R)→ 1. �

The following Claim 2.8 is the last step in the proof of Proposition 2.5.

Claim 2.8. Let p be an odd prime dividing k. If e is divisible by (2g−2)2p,

then the fixed set of ρ(hk/p) is a circle.

Before proving the claim, we explain how the factors of Isom+(H2) ×
SO(2) ∼= Isom+(X̂) act on X̂ = X̃/ζ.

Remark 2.9. Consider the isomorphism Isom(X̂) ∼= Isom+(H2) × SO(2)

from Claim 2.7. In each case (e = 0 or e 6= 0) the action of SO(2) on X̂
covers the identity of H2 and acts freely by rotation on the circle fibers of

X → H2. For the Isom+(H2) action, when e = 0, then X̂ ∼= H2 × S1 is a
metric product, and the action of Isom+(H2) is trivial on the S1 factor and
is the natural action on H2. If e = (2g − 2)n is nonzero, then

X̂ ∼= ˜PSL2(R)/ζ ∼= PSL2(R)/(Z/nZ),

and with respect to this isomorphism, the action of Isom+(H) ∼= PSL2(R) on

X̂ is induced from left multiplication of PSL2(R) on PSL2(R). Identifying
PSL2(R) with the unit tangent UH2, we can also view PSL2(R)/(Z/nZ) as
the quotient of UH2 by the Z/nZ action that covers the identity of H2 and
rotates each fiber.

Proof of Claim 2.8. Write e = (2g − 2)2pm for some integer m.
First note that since ρ(h) has finite order, the induced isometry of H2

has a unique fixed point, so ρ(h) preserves a unique circle C of the fibering

X̂ → H2. The same is true for ρ(hk/p), and we will show that ρ(hk/p) acts
trivially on C.

Since h = [x, y] is a commutator in πorb1 (O) and SO(2) is abelian, we find
that the projection

ρ(h) ∈ Isom+(X̂) ∼= Isom+(H2)× SO(2)→ SO(2)

is trivial. Therefore, the action of ρ(h) on X̂ factors through Isom+(H2)

acting on X̂. This action is described in Remark 2.9. If e = 0, since

Isom+(H2) acts trivially on the S1 factor of X̂ ∼= H2×S1, we conclude that
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ρ(h) acts trivially on C. If e 6= 0, then ρ(h) acts as a a rotation by 2π(pm/k)

on C, so ρ(hk/p) acts as a rotation by 2πm, which is trivial. �

This completes the proof of Proposition 2.5. �

Homeomorphism case. Here prove Proposition 2.3.

Proof of Proposition 2.3. By Pardon [Par21, Thm. 1.1], there is a sequence
of smooth D4k actions converging in Hom

(
D4k,Homeo(X)

)
to the given

action of σ(D4k) on X. Sufficiently close approximates also give a splitting of
π over D4k < Mod(Σ) because Homeo(X) is locally path connected [EK71].

For each of the smooth approximations of σ(D4k), the fixed set of a2k/p is

nonempty by Proposition 2.5. This implies that σ(a2k/p) has a fixed point
(a sequence of fixed points, one for each smooth action, sub-converges to

a fixed point of the σ(a2k/p) action). By Remark 2.2, there exists a lift of

a2k/p ∈ D4k < Mod(Σ) to a finite order element α′ ∈ πorb1 (O) < Mod(Σ, ∗)
so that σ̂(α′) has a fixed point. Since πorb1 (O) has a unique conjugacy class
of finite subgroup of order 2p, the subgroups 〈α′〉 and 〈α〉 are conjugate, so
the fixed set of σ̂(α) is nonempty.

It remains to show the fixed set of σ̂(α) is a circle, and that this circle is
the same as the fixed sets of σ̂(α)2 and σ̂(α)p.

First we show (using Smith theory) that both σ̂(α)2 and σ̂(α)p have fixed
set a single circle (we are not yet claiming/arguing that the fixed sets of σ̂(α)2

and σ̂(α)p are the same). To see this, we focus on σ̂(α)2 for concreteness.
Consider the group Λ0 of all lifts of powers of σ̂(α)2 to the universal cover

X̃. This group is an extension

1→ Z→ Λ0 → Z/pZ→ 1,

which is central and split; hence Λ0
∼= Z×Z/pZ. It is central because α acts

orientation-preservingly on fibers of X → Σ (otherwise, the action of α on
Σ would reverse orientation, contrary to the construction); it splits because

σ̂(α) has a fixed point. The (lifted) action of σ̂(α)2 on X̃ has fixed set a line
(i.e. embedded copy of R) by Smith theory and local Smith theory [Bre12,
Theorem 20.1], and this line is preserved and acted properly by Z < Λ0; thus

σ̂(α)2 acts on X̂ with a circle in its fixed set. Furthermore, each component

of the fixed set of σ̂(α)2 acting on X̂ corresponds to a distinct conjugacy
class of order-p subgroup of Λ0. Since there is only one Z/pZ subgroup of Λ0,
the fixed set of σ̂(α)2 is connected, i.e. a single circle. The same argument1

works for σ̂(α)p.
Now we determine the fixed set of σ̂(α). First observe that σ̂(α) preserves

the fixed set of σ̂(α)2 and has a fixed point there (the fixed set of σ̂(α) is
nonempty and contained in the fixed set of σ̂(α)2). The only Z/2pZ action
on the circle with a fixed point is the trivial action, so in fact the fixed sets

1Smith theory applies to prime-order finite cyclic group actions, so we cannot apply
this argument directly to σ̂(α).
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of σ̂(α) and σ̂(α)2 are the same. The same argument applies to σ̂(α) and
σ̂(α)p. This proves Proposition 2.3. �

2.3. Step 3: centralizer argument. Recall that we have defined α as an
element of order 2p in πorb1 (O) < Mod(Σ, ∗). In this step we prove that
Mod(Σ, ∗) is generated by the centralizers of α2 and αp.

Proposition 2.10 (centralizer property). Let α ∈ Mod(Σ, ∗) be the element
of order 2p constructed above. Then

Mod(Σ, ∗) = 〈C(α2), C(αp)〉,

where C(−) denotes the centralizer in Mod(Σ, ∗).

Strategy for proving Proposition 2.10. Set Γ = 〈C(α2), C(αp)〉. Our
method for showing Γ = Mod(Σ, ∗), which is similar to the proof of [CS22,
Thm. 1.1], is to inductively build subsurfaces

(6) S0 ⊂ S1 ⊂ · · · ⊂ SN ⊂ Σ \ {∗}

such that Mod(Sn) ⊂ Γ for each n and SN fills Σ \ {∗} (i.e. each boundary
component of SN is inessential in Σ \ {∗}). The fact that SN fills implies
that Mod(SN ) = Mod(Σ, ∗), so then Mod(Σ, ∗) ⊂ Γ by the last step in the
inductive argument.

In order to ensure that Mod(Sn) ⊂ Γ, the subsurface Sn is obtained
from Sn−1 by an operation known as subsurface stabilization. If S ⊂ Σ is a
subsurface and c ⊂ Σ is a simple closed curve that intersects S in a single arc,
then the stabilization of S along c is the subsurface S∪N(c), where N(c) is a
regular neighborhood of c. It is easy to show that Mod(S∪N(c)) is generated
by Mod(S) and the Dehn twist τc [CS22, Lem. 4.2], so if Mod(S) ⊂ Γ and
τc ∈ Γ, then Mod(S ∪ N(c)) ⊂ Γ. Therefore, for the proof, it suffices to
find a sequence of subsurface stabilizations along curves whose Dehn twist
belongs to Γ = 〈C(α2), C(αp)〉.

Model for the α action. Our proof of Proposition 2.10 makes use of an
explicit model for Σ with its α action, which is pictured below in the case
k = 6 and p = 3 (recall that g = 4k − 1 and p is an odd prime dividing k).

The surface Σ is built out of two copies of the standard action of Z/2pZ
on S2 and one copy of a free action of Z/2pZ on T 2. We glue each copy
of S2 to T 2 along k/p free orbits by an equivariant connected sum. In the
figure, α acts by vertical translation. Note that the fixed points of α on S2

are not pictured in the figure – they are at ±∞ along the x-axis.
To derive this model, recall that D4k = 〈a, b | a4k = 1 = b2, bab = a−1〉

has abelianization D4k → (Z/2Z)2 with kernel 〈a2〉 ∼= Z/2kZ. Then there is
a sequence of regular covers

Σ
〈a2〉−−→ Σ/〈a2〉 (Z/2Z)2−−−−−→ Σ/D4k.
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Figure 1. The model of the surface Σ23 where p = 3.

The cover Σ/〈a2〉 → Σ/D4k is unbranched and is the Z/2Z-homology cover
of T 2 (in particular, Σ/〈a2〉 is also a torus). The cover Σ → Σ/〈a2〉 is
branched over four points; the local monodromy around the branched points
is a2 at two of the branched points and a−2 at the other two. Choosing
branched cuts joining branched points in a±2 pairs gives a model for Σ, and
one can check that this model is equivalent to the one described above. (The
spheres in Figure 1 arise from pre-images under Σ → Σ/〈a2〉 of neighbor-
hoods of the branch cuts.)

By Remark 2.2, since σ(a2k/p) has a fixed point, the subgroup 〈α〉 ⊂
Mod(Σ, ∗), which lifts 〈a2k/p〉, has a fixed point. The different lifts of 〈a2k/p〉
to a finite subgroup of Mod(Σ, ∗) are in one-to-one correspondence to fixed

points of a2k/p. Since these fixed points are permuted transitively by the
action of D4k, the different lifts of 〈a2k/p〉 are conjugate. Consequently, for
the purpose of our argument, we can choose ∗ to be any one of the four
fixed points of α and prove Proposition 2.10 for this choice, without loss
of generality. (It will also be evident from the argument that a similar
argument applies if ∗ is changed to another fixed point.)

Remark 2.11. We do not known how generally the relation Mod(Σ, ∗) =
〈C(α2), C(αp)〉 holds. For example, it may hold for every Z/2pZ subgroup of
Mod(Σ, ∗). We do not know a general (abstract) approach to this problem.

Proof of Proposition 2.10.

Symmetry breaking. In preparation for constructing a sequence of sub-
surface stabilizations, in this paragraph we find a suitable collection of Dehn
twists that belong to Γ. The obvious way for τc to belong to Γ is if c is pre-
served by either α2 or αp. More generally, we use a process that we call
symmetry breaking to show τc ∈ Γ for certain c. We formulate this in the
following lemma, which is similar to [CS22, Lem. 3.2].

Lemma 2.12 (Symmetry breaking). Assume that c, d ⊂ Σ are simple closed
curves that intersect once and τd ∈ Γ. Suppose that either (i) αp(c) is
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disjoint from c and d or (ii) the curves α2(c), α4(c) . . . , α2p−2(c) are disjoint
from d and the curves c, α2(c), α4(c) . . . , α2p−2(c) are pairwise disjoint. Then
τc ∈ Γ.

Proof of Lemma 2.12. We prove case (i) of the statement; case (ii) is similar.
Since Dehn twists about disjoint curves commute,(

τcταp(c)

)
τd
(
τcταp(c)

)−1
= τcτdτ

−1
c .

The left hand side of the equation is in Γ because τd ∈ Γ by assumption
and τcταp(c) ∈ Γ because the curves c, αp(c) are permuted by αp and are
disjoint (so their twists commute), and thus τcταp(c) ∈ C(αp) ⊂ Γ. Since c

and d intersect once, the braid relation implies that τdτcτ
−1
d = τcτdτ

−1
c also

belongs to Γ. Since τd ∈ Γ this implies that τc ∈ Γ, as desired. �

Remark 2.13. When applying Lemma 2.12(i) or (ii) we refer to it as the
αp- or α2-symmetry breaking, respectively.

Lemma 2.14. Dehn twists about the curves in Figure 2 are in Γ.
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Figure 2. The curves used in the proof of Lemma 2.14.
Here we are using the model for Σ23, but the proof follows in
the same way for similar types of curves on any Σ.

In Figure 2, we illustrate the case k = 6, p = 3. The corresponding curves
in the general case belong to Γ by the exact same argument.

Proof of Lemma 2.14. First observe that τc1 and τc6 are in Γ because each
is invariant under αp. We deduce that τc2 ∈ Γ using α2-symmetry breaking
with d = c1. Each of τc3 and τc4 are in Γ by αp-symmetry breaking with
d = c2. Finally, both τc5 and τc7 are in Γ by αp-symmetry breaking with
d = c3. �
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Surface stabilization sequence. We stabilize with the sequence of curves
represented in Figure 3. To get the initial subsurface S0 we can take the
subsurface spanned by the chain of curves c0, c1, . . . , c4. This subsurface
has genus 2 and one boundary component, and these curves are Humphries
generators for S0 [FM12, Fig. 4.10]. Next we extend this chain with the
curves c5, . . . , c4k−1; at this point the left genus-0 subsurface has been filled.
Next we stabilize with c4k and the curves (c4k+1, c4k+2, · · · , c8k−2) that fill
the right genus-0 subsurface; there is some choice in the order of curves we
stabilize, but this is not important. Finally we stabilize with the curves
c8k−1 and c8k that generate π1(T 2).

All of the twists about the curves used are in Γ. In each case, this can be
seen either directly from the statement of Lemma 2.14 or by an argument
that is a small variation of its proof. Since this collection of curves fills Σ,
we have shown that Γ = Mod(Σ, ∗). This proves Proposition 2.10. �

α

→

→

N N

→

→

→

→

c0 c1

c2

c3
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c5

c6

c7
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c48

Figure 3. The stabilization sequence we use for the case
k = 6 and p = 3.

2.4. Step 4: conclusion. By Proposition 2.3, σ̂(α), σ̂(α2) and σ̂(αp) all

have the same fixed set, which is a circle c ⊂ X̂. The centralizers C(α2)
and C(αp) preserve c. By Proposition 2.10, Mod(Σ, ∗) = 〈C(α2), C(αp)〉, so
σ̂
(

Mod(Σ, ∗)
)

preserves c. This contradicts the fact that σ̂(π1(Σg)) acts as
the deck group, which as a properly discontinuous action does not preserve
any compact set.
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