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Abstract. We give examples of Anosov actions of Z2 on the d-torus T d that cannot
be homotoped to a smooth action on T d#Σ, for certain exotic d-spheres Σ. This
is deduced using work of Krannich, Kupers, and the authors that, in particular,
computes the mapping class group of T d#Σ.

1. Introduction

An exotic d-torus T is a closed smooth manifold that is homeomorphic but not diffeo-
morphic to the standard torus T d = Rd/Zd. For example, the connected sum T d#Σ of
T d with an exotic d-sphere Σ is an exotic torus.

In this note we are interested in smooth group actions on exotic tori.

Question 1. Given an exotic torus T and an action G y T d on the standard torus,
is there an action of G on T that induces the same action on the fundamental group
π1(T) ∼= Zd ∼= π1(T

d)? If so, we say the two actions are π1-equivalent.

For example, if T = T d#Σ and G = Z, then for every action of Z on T d, there exists a
π1-equivalent action of Z on T (c.f. Remark 5). In contrast, for G = SLd(Z) there exist
T = T d#Σ for which there is no action of SLd(Z) on T d#Σ that is π1-equivalent to
the linear action SLd(Z) y T d; this is shown by Krannich, Kupers, and the authors
[BKKT23, Cor. C].

Below, for G = Z2, we show that not every action Z2 y T d is π1-equivalent to an action
on T d#Σ. For our examples, we can take the action Z2 y T d to be Anosov, i.e. some
g ∈ Z2 acts as an Anosov diffeomorphism.

Theorem 2. There exist exotic tori T = T d#Σ and Anosov actions Z2 y T d for which
there is no smooth Z2 action on T that is π1-equivalent to the given action Z2 y T d.

Theorem 2 is a direct consequence of Theorem 3 below. To state it, let Θd denote the
Milnor–Kervaire group of homotopy d-spheres, let η ∈ πs1 ∼= Z/2 denote the generator
of the first stable homotopy group of spheres, and write η · Σ for the Milnor–Munkres–
Novikov pairing πs1 ×Θd → Θd+1; see [Bre67] and also [BKKT23, §1.3.2].

Fixing a isomorphism π1(T) ∼= Zd, we write ` : Diff+(T) → SLd(Z) for the homomor-
phism induced by the action on π1. Recall that A ∈ SLd(Z) is called hyperbolic if it
has no eigenvalues on the unit circle.

Theorem 3. Fix d ≥ 7. Assume Σ ∈ Θd is a homotopy sphere such that η · Σ is not
divisible by 2 in Θd+1. Then there exist infinitely many conjugacy classes of subgroups
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G ∼= Z2 < SLd(Z) such that (i) G is generated by hyperbolic matrices, and (ii) the
homomorphism ` : Diff+(T d#Σ)→ SLd(Z) does not split over G.

Remark 4. The condition that η · Σ is not divisible by 2 in Θd+1 holds for exotic
spheres Σ in infinitely many dimensions d; see [BKKT23, Rmk. 1.10].

We prove Theorem 3 in §2. To deduce Theorem 2 from Theorem 3, assume Σ and
G < SLd(Z) satisfy the conditions in Theorem 3. The linear action of G < SLd(Z) on
T d is Anosov because G < SLd(Z) contains a hyperbolic matrix. If this action Gy T d

is π1-equivalent to an action on T d#Σ, then Diff+(T d#Σ) → SLd(Z) splits over G,
contradicting the assumption on G.

Remark 5. In contrast to T d#Σ, if one considers exotic tori of the form T ∼=
(T d−1#Σd−1) × S1, then it is possible to give examples of (Anosov) G ∼= Z acting
on T d that are not π1-equivalent to any smooth action on T. This is because for these
T the homomorphism Diff+(T)→ SLd(Z) is not surjective [BKKT23, Lem. 3.1] (and
one can choose G generated by a hyperbolic matrix not in the image).

Remark 6. The G constructed in the proof of Theorem 3 are without rank-one factors,
c.f. [RHW14, Defn. 2.8]. Rodriguez-Hertz–Wang [RHW14, Cor. 1.2] show that if
G < SLd(Z) contains a hyperbolic element and is without rank-one factors, then no
exotic d-torus T has an Anosov action that is π1-equivalent to the linear action of
G < SLd(Z) on T d. Theorem 2 gives a stronger conclusion, with “Anosov” replaced
by “smooth”, albeit with additional assumptions on Σ and G. Related to [RHW14], we
remark that there are examples of Anosov actions of Z on exotic tori T d#Σ, due to
Farrell–Jones and Farrell–Gogolev [FJ78, FG12].

Remark 7. With the same assumption on Σ as in Theorem 3, Krannich, Kupers, and
the authors show that the surjection Diff+(T d#Σ) � SLd(Z) does not split; in fact, there
is no splitting of Mod(T d#Σ) � SLd(Z), where Mod(−) = π0 Diff+(−) is the mapping
class group [BKKT23, Thm. A]. Theorem 3 is proved by finding G ∼= Z2 < SLd(Z) that
are generated by hyperbolic matrices and such that the map Mod(T d#Σ) → SLd(Z)
does not split over G.

Acknowledgements. We thank Andrey Gogolev for asking us a question that mo-
tivated our main result and thank Sebastián Hurtado for useful comments. MB is
supported by ANID Fondecyt Iniciación en Investigación grant 11220330. BT is sup-
ported by NSF grant DMS-2104346.

2. Proof of Theorem 3

Fix Σ ∈ Θd as in the statement of the Theorem 3, and set T := T d#Σ. To show
Diff+(T)→ SLd(Z) does not split over G < SLd(Z), it suffices to show that Mod(T)→
SLd(Z) does not split over G, where Mod(T) := π0 Diff+(T) is the mapping class group.
We proceed in three steps.

Step 1: Lie group reduction. Fix d ≥ 7. To show that Mod(T) � SLd(Z) does not
split over G < SLd(Z) it suffices to show that the universal cover short exact sequence

(1) 1→ Z/2Z→ S̃Ld(R)→ SLd(R)→ 1
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does not split over G < SLd(Z) ↪→ SLd(R). To explain this reduction, let

1→ Z/2Z→ S̃Ld(Z)→ SLd(Z)→ 1

be the short exact sequence obtained by pullback of (1) along the inclusion SLd(Z) ↪→
SLd(R). By [BKKT23, Thm. D], when η ·Σ is not divisible by 2, there is an isomorphism

Mod(T) ∼= K o S̃Ld(Z) (where K is a group whose precise form is not important here),
and there is a commutative diagram

K o S̃Ld(Z) ∼= Mod(T)

S̃Ld(Z) SLd(Z)
##
//

{{

This implies that if Mod(T)→ SLd(Z) splits over G, then S̃Ld(Z)→ SLd(Z) and hence

also S̃Ld(R)→ SLd(R) split over G.

Step 2: a particular Z2 subgroup of SLd(Z). For each d ≥ 3, we give a particular
recipe for a pair of commuting hyperbolic matrices A1, A2 ∈ SLd(Z) that generate a

subgroup isomorphic to Z2; in Step 3 we prove that S̃Ld(Z) → SLd(Z) does not split
over G = 〈A1, A2〉. Briefly, given d ≥ 3, we write d = n + 3, and we define Ai to be

a block diagonal matrix
(
Bi

Ci

)
, where Bi ∈ SL3(Z) and Ci ∈ SLn(Z) are hyperbolic

matrices as defined in the following paragraphs.

First we construct commuting hyperbolic matrices B1, B2 ∈ SL3(Z) that are conjugate
in SL3(R) to diagonal matrices of the form

(2)

λ1 0 0
0 λ2 0
0 0 1

λ1λ2

 and

 1
µ1µ2

0 0

0 µ1 0
0 0 µ2


respectively, where λ1, λ2, µ1, µ2 are all negative and different from −1. As an explicit
example, consider the polynomial ξ = x3 + x2 − 2x − 1. The totally real cubic field
K = Q[x]/(ξ) has discriminant 49 (the smallest possible). Fixing a root α of ξ in K,
the group of units O×

K , modulo its torsion subgroup (which is isomorphic to Z/2Z,
generated by −1), is freely generated by ε1 := α2 +α− 1 and ε2 := −α2 + 2. The action
of the units −ε1 and ε1ε2 on the ring of integers OK with the basis OK ∼= Z{1, α, α2}
gives matrices as in (2). These claims are about this number field are contained in
[Coh93, §B.4].

Next we recall that for each n ≥ 3, there exists a subgroup Z2 < SLn(Z) generated by
hyperbolic matrices C1, C2 such that all eigenvalues of C1 and C2 are real and positive.
Indeed, let K/Q be a degree n totally real number field. Choose linearly independent
units α1, α2 ∈ O×

K , and let Ci be the matrix for multiplication by αi on OK ∼= Zn (with
respect to any basis). Since the Galois conjugates of the αi are real and not equal to
±1, they do not lie on the unit circle, so the matrices Ci are hyperbolic. Furthermore,
after replacing αi by α2

i , we can ensure that the eigenvalues of Ci are positive.
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Step 3: computing the obstruction to splitting. Let G = 〈A1, A2〉 ∼= Z2 be the
subgroup of SLd(Z) defined in Step 2 above. To complete the proof of Theorem 3, it
remains to show that the short exact sequence

(3) 1→ Z/2Z→ S̃Ld(R)→ SLd(R)→ 1

does not split over G.

Recall the following algorithm for deciding if the sequence (3) splits over G ∼= Z2 ↪→
SLd(R). Compare with [Han92].

(i) Choose lifts Ã1, Ã2 ∈ S̃Ld(R) of the generators of G. Using the definition of the
universal cover as a set of paths, choosing lifts amounts to choosing paths from Ai
to the identity in SLd(R).

(ii) Compute the commutator [Ã1, Ã2]; this element belongs to the kernel group Z/2Z,
which can be identified with π1

(
SLd(R)

)
(the commutator defines a loop in SLd(R)

based at the identity). The sequence (3) splits over G if and only if the loop

[Ã1, Ã2] represents the trivial element of π1
(
SLd(R)

)
.

To apply this algorithm, we first define particular paths Ãi from Ai to the identity

for which the obstruction [Ã1, Ã2] is easy to compute. First, by conjugating, we may
assume A1, A2 are diagonal (note that commuting hyperbolic matrices are simultaneously
diagonalizable). Next we choose paths γ1(t) and γ2(t), 0 ≤ t ≤ 1, within the group
of diagonal matrices between A1 and A2 and D1 = (−1,−1, 1, 1, . . . , 1) and D2 =
(1,−1,−1, 1, . . . , 1), respectively (recall how A1, A2 were defined in Step 2). We orient
the paths γi so that γi(0) = Di and γi(1) = Ai. The matrices Di belong to SO(3) <
SL3(R) < SLd(R). Next consider the paths ηi(t), 0 ≤ t ≤ 1,

η1(t) =

cos(πt) − sin(πt) 0
sin(πt) cos(πt) 0

0 0 1

 and η2(t) =

1 0 0
0 cos(πt) − sin(πt)
0 sin(πt) cos(πt)

 .

The concatenation ηi ∗γi is a path in SLd(R) from the identity to Ai and is our specified

lift Ãi ∈ S̃Ld(R).

Having chosen Ãi, we compute the commutator [Ã1, Ã2]. Recall that the multiplication

in S̃Ld(R) of two paths λ(t), µ(t) in SLd(R) based at the identity is the pointwise product

path t 7→ λ(t) · µ(t) (this holds in any Lie group). Since Ãi = ηi ∗ γi and the paths
γ1, γ2 pointwise commute (being contained in the diagonal group), it suffices to compute
the commutator [η1, η2] for the paths ηi from the identity to Di. For this, it is helpful
to recall that the pointwise product of paths λ, µ is homotopic to the concatenation
λ ∗ (λ(1) · η) of λ with the path t 7→ λ(1) · η(t) (again this holds in any Lie group).
Consequently, the path η1η2η

−1
1 η−1

2 is homotopic to the concatenation of paths

η1 ∗ (D1 · η2) ∗ (D1D2 · η−1
1 ) ∗ (D1D2D

−1
1 · η

−1
2 ).

Note that D1D2D
−1
1 = D2. One can compute directly that this loop represents a

generator of π1
(

SO(3)
) ∼= Z/2Z. A picture of this path is given in Figure 1.
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This shows that G = 〈A1, A2〉 ↪→ SLd(R) does not lift to S̃Ld(R), as desired. This
concludes the proof of Theorem 3. �

id

η1

D1 · η2

D1D2 · η−1
1

D2 · η−1
2

Figure 1. Loop homotopic to [η1, η2] in SO(3) ∼= RP 3, viewed as the
quotient of the unit 3-ball by the antipodal map on its boundary. A
point v in the ball corresponds to the rotation with axis v and angle |v|π
(counterclockwise according to the right-hand rule). The pictured loop
is homotopically nontrivial.

References

[BKKT23] M. Bustamante, M. Krannich, A. Kupers, and B. Tshishiku, Mapping class groups of exotic
tori and actions by SLd(Z), arxiv:2305.08065. To appear in Transactions of the AMS, 2023.
1, 2, 3

[Bre67] G. E. Bredon, A Π∗-module structure for Θ∗ and applications to transformation groups,
Ann. of Math. (2) 86 (1967), 434–448. MR 221518 1

[Coh93] H. Cohen, A course in computational algebraic number theory, Graduate Texts in Mathe-
matics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206 3

[FG12] F. T. Farrell and A. Gogolev, Anosov diffeomorphisms constructed from πk(Diff(Sn)), J.
Topol. 5 (2012), no. 2, 276–292. MR 2928077 2

[FJ78] F. T. Farrell and L. E. Jones, Anosov diffeomorphisms constructed from π1 Diff (Sn), Topol-
ogy 17 (1978), no. 3, 273–282. MR 508890 2

[Han92] M. Handel, Commuting homeomorphisms of S2, Topology 31 (1992), no. 2, 293–303.
MR 1167171 4

[RHW14] Federico Rodriguez Hertz and Zhiren Wang, Global rigidity of higher rank abelian Anosov
algebraic actions, Invent. Math. 198 (2014), no. 1, 165–209. MR 3260859 2

Mauricio Bustamante
Departamento de Matemáticas, Pontificia Universidad Católica de Chile
mauricio.bustamante@uc.cl

Bena Tshishiku
Department of Mathematics, Brown University
bena tshishiku@brown.edu


	1. Introduction 
	Acknowledgements

	2. Proof of Theorem 3
	Step 1: Lie group reduction
	Step 2: a particular Z2 subgroup of SLd(Z)
	Step 3: computing the obstruction to splitting

	References

