
CHARACTERISTIC CLASSES OF FIBERWISE BRANCHED SURFACE BUNDLES

VIA ARITHMETIC GROUPS

BENA TSHISHIKU

Abstract. This paper is about the cohomology of certain finite-index subgroups of mapping class groups
and its relation to the cohomology of arithmetic groups. For G = Z/mZ and for a regular G-cover
S → S̄ (possibly branched), a finite index subgroup Γ < Mod(S̄) acts on H1(S;Z) commuting with
the deck group action, thus inducing a homomorphism Γ → SpG

2g(Z) to an arithmetic group. The in-

duced map H∗(SpG
2g(Z);Q) → H∗(Γ;Q) can be understood using index theory. To this end, we de-

scribe a families version of the G-index theorem for the signature operator and apply this to (i) compute
H2(SpG

2g(Z);Q) → H2(Γ;Q), (ii) re-derive Hirzebruch’s formula for signature of a branched cover, (iii)
compute Toledo invariants of surface group representations to SU(p, q) arising from Atiyah–Kodaira con-
structions, and (iv) describe how classes in H∗(SpG

2g(Z);Q) give equivariant cobordism invariants for surface
bundles with a fiberwise G action, following Church–Farb–Thibault.

1 Introduction

Let (S, z) be a closed oriented surface of genus g ≥ 2 with z ⊂ S a finite set of marked points, and let
Mod(S , z) be its (pure) mapping class group (see §2 for the definition). This note focuses on the cohomol-
ogy of Mod(S , z) and its finite index subgroups. One source of cohomology classes is the representation
Mod(S , z)→ Sp2g(Z) arising from the action of Mod(S , z) on H1(S;Z) ' Z2g. The image lies in Sp2g(Z)
because Mod(S , z) preserves the algebraic intersection pairing on H1(S;Z). A theorem of Borel [Bor74]
calculates Hk(Sp2g(Z);Q) in the stable range, i.e. when g � k. One can then ask about the image of the
stable classes under H∗(Sp2g(Z);Q)→ H∗(Mod(S , z);Q). A well-known computation [Ati69] shows that
their span is the algebra generated by the odd Miller–Morita–Mumford (MMM) classes {κ2i+1 : i ≥ 0}.

In this paper, we extend the above example. Let G be a finite group of diffeomorphisms of S. Let
z = Fix(G), and define ModG(S , z) < Mod(S , z) as the subgroup of mapping classes that can be re-
alized by diffeomorphisms that commute with G. The group G injects into Sp2g(Z); let SpG2g(Z) be its

centralizer. The image of ModG(S , z) under α lands in SpG2g(Z). Again, we can ask about the image

of α∗ : H∗(SpG2g(Z);Q) → H∗(ModG(S , z);Q), and this is a reasonable question since SpG2g(Z) is an
arithmetic group, so it’s cohomology can be computed in a range of degrees.

Our main result is a computation of the image of

α∗ : H2(SpG2g(Z);Q)→ H2(ModG(S , z);Q)

when G ' Z/mZ is a finite cyclic group. To describe the image, we need some notation. Consider
the classes in H2(ModG(S , z);Q) that are pulled back from H2(Mod(S , z);Q): there is the first MMM
class κ1, and for each z ∈ z, there is an Euler class ez. Fix a generator G = 〈t〉, and decompose the

fixed set z = tm−1
j=1 zj , where zj is the set of fixed points z where t acts on TzS by rotation by 2πj

m . Set

εj =
∑

z∈zj ez. By convention if zj = ∅, then εj = 0.

Theorem 1. Let S be a genus-g, closed, oriented surface with an orientation-preserving action of a cyclic
group G of order m. Assume that the stabilizer of each x ∈ S is either trivial or equal to G. Denote
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z = Fix(G), and define zj ⊂ z and εj ∈ H2(ModG(S , z);Q) as in the preceding paragraph. If the genus of

S/G is at least 6, then the image of α∗ : H2(SpG2g(Z);Q) → H2(ModG(S , z);Q) is the subspace spanned
by κ1 and εj + εm−j for 1 ≤ j < m/2.

Remark. In §2, we show that the classes κ1 and ez are nonzero in H2(ModG(S , z);Q) if g � 0. In par-
ticular, there is more information captured by α∗ than by the map H∗(Sp2g(Z);Q)→ H∗(Mod(S , z);Q).

Remark. The assumption that G is cyclic and the assumptions on point stabilizers in Theorem 1 are
added to make the statement simpler and because it is all we need for our applications. The more general
cases when G is not cyclic or some point stabilizer is a nontrivial proper subgroup of G can also be treated
by the methods of this paper.

Theorem 1 has the following corollary for the cohomology of the Torelli subgroup of ModG(S , z).

Corollary 2. Fix S and G as in Theorem 1. Define IG < ModG(S , z) as the kernel of ModG(S , z) →
SpG

2g(Z). For each 1 ≤ j < m/2, if zj ∪ zm−j 6= ∅, then εj + εm−j is nontrivial and is in the kernel of

H2(ModG(S , z);Q)→ H2(IG;Q).

At the heart of Theorem 1 is an index theorem, stated in Theorem 4 below. Before discussing this, we
give some further applications of Theorem 4.

1.1 Applications. In Section 5 we discuss the following applications of the index formula:

Geometric characteristic classes after Church–Farb–Thibault.

Following [CFT12], a characteristic class c ∈ Hk
(
BDiff(F )

)
is called geometric with respect to cobordism

if two F bundles M → Bk and M1 → Bk
1 have the same characteristic numbers c#(M → B) = c#(M1 →

B1) whenever the manifolds M and M1 are cobordant. In particular, such a characteristic class is
insensitive to the fibering M → B.

The cohomology H∗(ModG(S , z);Q) can be interpreted as the ring of characteristic classes for (S,G)-
bundles, which we define as surface bundles S → M → B with a fiberwise G action that can locally
be identified with the given action G < Diff(S). One source of characteristic classes is from the Hodge
bundle E (which is a complex vector bundle over the moduli space of Riemann surfaces – see §2): let
ci(E) ∈ H2i(Mod(S , z);Q) be its Chern classes. In the presence of the G action, the Hodge bundle
decomposes into eigenbundles E =

⊕
qm=1 Eq, and this gives classes ci(Eq) ∈ H2i(ModG(S , z);Q) for

each m-th root of unity qm = 1. Below we will abbreviate ci,q = ci(Eq).

Our first application is that c1,q ∈ H2(ModG(S , z);Q) is geometric with respect to G-cobordism.

Corollary 3. Fix S and G as in Theorem 1. Let S →M → Σ be an (S,G)-bundle over a surface. Then

for each qm = 1, the characteristic number c#
1,q(M → Σ) is a G-cobordism invariant, i.e. it depends only

on the G-cobordism class of M .

This corollary is an equivariant version of a theorem of Church–Farb–Thibault. For example, the standard
Atiyah–Kodaira example is a surface bundle S6 → M → S129 with a fiberwise G = Z/2Z action. The
manifold M also fibers as S321 →M → S3, and we have Hodge eigenbundles

C3 → E1 → S129 and C3 → E−1 → S129 , C104 → E′1 → S3 and C217 → E′−1 → S3.

The corollary says that〈
c1(E1), [S129]

〉
=
〈
c1(E′1), [S3]

〉
and

〈
c1(E−1), [S129]

〉
=
〈
c1(E′−1), [S3]

〉
,

where 〈·, ·〉 denotes the pairing between cohomology and homology.

Surface group representations. From a S-bundle M → Σ with monodromy in ModG(S , z) one
obtains a collection of surface group representations π1(Σ) → H where H is either Sp2k(R) or SU(a, b).
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The Toledo invariant of such a representation coincides with the Chern class c1(Eq) of one of the Hodge

eigenbundles Eq → Σ. The index formula (1) relates these Chern classes c1,q ∈ H2(ModG(S , z);Q) to the

classes κ1, ez ∈ H2(ModG(S , z);Q), which allows one to compute these Toledo invariants. For example,
the Atiyah–Kodaira construction for G = Z/7Z can be used to produce a representation

α : π1(Σ717+1)→ SU(8, 13)× SU(9, 12)× SU(10, 11).

whose Toledo invariants (obtained by projecting to individual factors) are nonzero and distinct. See §5.

Hirzebruch’s formula for signature of branched covers. The index formula can be used to express
how the odd MMM classes behave under fiberwise branched covers. In the case of κ1 this allows us
to derive Hirzebruch’s formula for the signature of a branched cover. One interesting thing about this
derivation is that it emphasizes the connection to arithmetic groups.

1.2 Methods of proof. The index theorem described below is the common ingredient in our main
result and applications. As in §1.1, denote E =

⊕
qm=1 Eq the decomposition of the Hodge bundle into

eigenbundles. Denote the Chern character by ch(Eq).

Theorem 4 (Index formula). Fix S and G as in the statement of Theorem 1. Denote θj = 2πj
m . For

1 ≤ r ≤ m− 1,

(1)
∑
qm=1

qr
[

ch(Eq)− ch(Ēq̄)
]

=
∑

1≤j≤m−1
zj 6=∅

coth

(
εj + i rθj

2

)
.

Remark. The assumption on point stabilizers implies that zj 6= ∅ only if gcd(j,m) = 1.

Theorem 4 is a families version of the G-index theorem for the signature operator. The left-hand side of
(1) is a families version of the g-signature Sig(g, S) of [AS68c]. For g = e2πir/m 6= 1 this index is computed
using the Atiyah–Segal localization theorem [AS68a] and this gives the right-hand side of (1). The case
g = 1 is special, where one obtains instead the more familiar formula (see [AS68c, §6] and [AS71, Thm
5.1]) from the families index theorem:

(2) ch(E−Ē) = π!

(
x

tanh(x/2)

)
,

where π!(x
2i) = κ2i−1 (the power series on the right-hand side is a polynomial in x2).

As a consequence formulas (1) and (2), we see that under α∗ : H∗(SpG
2g(Z);Q) → H∗(ModG(S , z);Q),

the stable cohomology is mapped into the subalgebra generated by the odd MMM classes {κ2i+1 : i ≥ 0}
and the classes εj . Moreover, Theorem 1 describes the image precisely in degree 2. The precise image of

α∗ : Hk(SpG
2g(Z);Q)→ Hk(ModG(S , z);Q) for k > 2 is more complicated.

Remark on proofs. Theorem 4 is obtained by combining the results of [AS68a, AS68c, AS71]. As far
as the author knows this does not appear in the literature, although it is surely known to experts (see
the last sentence of [AS71, §5]). Theorem 1 is proved by computing the stable cohomology of SpG

2g(Z)
(following Borel), relating this cohomology to the Chern classes of the Hodge eigenbundles, and applying
the index formula to reduce the problem to the linear algebra of circulant matrices.

1.3 Outline of paper. In §2 we relate ModG(S , z) to a finite index subgroup of a mapping class group
and interpret H∗(ModG(S , z)) as the ring of characteristic classes of (S,G)-bundles. The index formula
of Theorem 4 is proved in §3. In §4 we prove Theorem 1, and in §5 we discuss the applications mentioned
in §1.1.

Acknowledgement. The author would like to thank O. Randal-Williams for several useful conversations
about index theory and for his interest in this project. The author thanks T. Church, S. Galatius, N.
Salter, L. Starkson, and G. Szűcs for helpful conversations. Thanks also to B. Farb and N. Salter for
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2 Mapping class groups, subgroups, and surface bundles

Throughout this section we assume S is a closed surface of genus at least 2 with a smooth action of a
finite cyclic group G. Denote z ⊂ S the set points fixed by each g ∈ G.

It is well-known that a surface bundle S → M → B is determined by its monodromy π1(B)→ Mod(S).
In this section we record an equivariant version of this fact that gives a monodromy characterization of
(S,G)-bundles (defined below). Then we define the liftable subgroup Modµ(S̄, z̄) < Mod(S̄, z̄) associated
to a branched cover µ : S → S̄ with branched set z̄ ⊂ S̄. We show that Modµ(S̄, z̄) is finite index in

Mod(S̄, z̄) and show that it contains a finite index subgroup that is a subgroup of ModG(S , z). Finally,
we define the characteristic classes of (S,G) bundles that appear in this paper.

2.1 Defining (S,G) bundles. Let Diff(S , z) denote the group of orientation-preserving diffeomor-
phisms that fix each z ∈ z, and define the mapping class group Mod(S , z) = π0

(
Diff(S , z)

)
. Our

primary interest in Mod(S , z) is in its relation to surface bundles. In this paper by a surface bundle with
fiber (S, z) we mean is a locally trivial fibration π : M → B with structure group Diff(S, z). The bundle
π is determined up to isomorphism by a homotopy class of map B → BDiff(S, z) to the classifying space.
The monodromy is the induced homomorphism

π1(B)→ π1

(
BDiff(S , z)

)
' π0

(
Diff(S , z)

)
≡ Mod(S , z) .

If the structure group of π reduces to the group DiffG(S , z) of diffeomorphisms that commute with the
G < Diff(S , z), then the total space M has a G action that preserves each fiber and this action can
locally be identified with the G action on (S, z). In this case we call π : M → B an (S,G)-bundle. The
monodromy of an (S,G) bundle is contained in the centralizer ModG(S , z) of G in Mod(S , z).

Remark. The embedding i : G ↪→ Diff(S , z) is part of the data of an (S,G) bundle. Since we fix i at the
beginning, we omit it from the notation.

Remark. The primary known examples of (S,G) bundles are obtained by the fiberwise branched covering
constructions of Atiyah–Kodaira [Ati69] and Morita [Mor01].

2.2 Classifying (S,G)-bundles. One of the miracles in the study of surface bundles is that an (S, z)
bundle π : M → B is determined by its monodromy. The following theorem gives the analogue for (S,G)
bundles, and is a consequence of Earle–Schatz [ES70].

Theorem 5. Fix a closed surface S with an action of a finite group G. For each manifold B, there is a
bijection  (S,G)-bundles

M → B
up to isomorphism

↔


homomorphisms

π1(B)→ ModG(S , z)
up to conjugacy


Proof. Let Diff0 denote the path component of the identity in Diff(S , z). There is a fiber sequence

Diff0 ∩DiffG(S , z)→ DiffG(S , z)→ ModG(S , z)

(which is also an exact sequence of groups). It follows from [ES70, §5(F)], that Diff0 ∩DiffGu (S, z) is
contractible, which implies that BDiffG(S , z) → BModG(S , z) is a homotopy equivalence, and the
theorem follows. �

Remark.
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(1) The theorem of Earle–Schatz says, in particular, that DiffG(S , z)∩Diff0 is connected, so if φ ∈
DiffG(S , z) is isotopic to the identity, then it has an isotopy through diffeomorphisms that com-
mute with G (compare with [BH72]). Consequently the surjection π0

(
DiffG(S , z)

)
→ ModG(S , z)

is an isomorphism.
(2) By Theorem 5, if the monodromy π1(B)→ Mod(S , z) of an (S, z)-bundle M → B factors through

ModG(S , z), then M → B has the structure of a (S,G)-bundle. Without the theorem of Earle–
Schatz, it is not obvious why a bundle with monodromy ModG(S , z) admits a fiberwise G-action.

(3) As a consequence of (the proof of) Theorem 5, the cohomology H∗
(

ModG(S , z)
)

can be identified
with the ring of characteristic classes of (S,G)-bundles.

2.3 Liftable subgroups. For a finite regular G-cover µ : S → S̄ branched over z̄ with z = µ−1(z̄),
define the liftable subgroup

Modµ(S̄, z̄) = {[f ] ∈ Mod(S̄, z̄) | f admits a lift f̃ ∈ DiffG(S , z)}.
By definition, there is an exact sequence

(3) 1→ G→ ModG(S , z)→ Modµ(S̄, z̄)→ 1.

Our goal in this subsection is to explain the following proposition, which is a modification of an argument
of Morita [Mor01, Lemma 4.13] to the case of a branched cover. Although our standing assumption is
that G is cyclic, this proposition does not require this.

Proposition 6. Let G be a finite group, and fix a regular G-cover µ : S → S̄ branched over z̄ ⊂ S̄.
Assume S is closed and χ(S̄ \ z̄) < 0. Then the liftable subgroup Modµ(S̄, z̄) < Mod(S̄, z̄) is finite index
and contains a finite-index subgroup over which the exact sequence (3) splits.

Proof. Remove z̄ and z = µ−1(z̄) to get an unbranched regular cover Σ̂ → Σ. The group Mod(S̄, z̄) is
isomorphic to a finite subgroup of Mod(Σ) := π0

(
Diff(Σ)

)
(namely, the subgroup where the punctures

are not permuted). The same is true for (S, z) and Σ̂. Thus it suffices to prove the proposition for the
liftable subgroup Modµ(Σ) in Mod(Σ).

Set T̂ = π1(Σ̂) and T = π1(Σ). The cover gives an exact sequence 1 → T̂ → T
q−→ G → 1. Give T the

standard presentation T = 〈a1, b1, . . . , ag, bg, p1, . . . , pn |
∏

[ai, bi]
∏
pj = 1〉, where pj is a loop around

the j-th puncture (here n = |z|). By assumption χ(Σ) < 0, so we may realize T as a Fuchsian group
T < PSL2(R) so that the ai, bi are hyperbolic and the pj are parabolic. An automorphism φ ∈ Aut(T ) is
called type-preserving if it preserves hyperbolic (resp. parabolic) elements. Denote A(T ) < Aut(T ) the
group of type-preserving automorphisms. By [MH75, Theorem 1] there are isomorphisms

A(T ) ' Mod(Σ, ∗) and A(T )/ Inn(T ) ' Mod(Σ),

where ∗ ∈ Σ is a basepoint, and Mod(Σ, ∗) is the group of isotopy classes of diffeomorphisms of Σ that fix ∗.
Similarly, we can define A(T̂ ), and we have isomorphism A(T̂ ) ' Mod(Σ̂, ∗) and A(T̂ )/ Inn(T ) ' Mod(Σ̂).

Consider the group

Modµ(Σ, ∗) = {φ ∈ A(T ) : φ(T̂ ) = T̂ and q ◦ φ = q}.
By definition, we have a homomorphism Modµ(Σ, ∗)→ A(T̂ ). Transferring from group theory to topology,
we have the following diagram.

1 T̂ Mod(Σ̂, ∗) Mod(Σ̂) 1

1 T Mod(Σ, ∗) Mod(Σ) 1

Modµ(Σ, ∗)Modµ(Σ, ∗) ∩ T

// // // //

// // //
p

//

� � //

OO

� _

��

99

r
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The top and bottom rows are instances of the Birman exact sequence [FM12, §4.2]. Note that the
subgroup Modµ(Σ, ∗) < A(T ) ' Mod(Σ, ∗) is finite index because T has finitely many subgroups of index

|G| (permuted by A(T )), the stabilizer of T̂ acts on G = T/T̂ , and the group Aut(G) is finite.

By the argument in [Mor01, Lem 4.13], there is a finite-index subgroup Γ < Modµ(Σ, ∗) such that Γ∩T =
{e}, so Γ ↪→ Mod(Σ); furthermore, since Modµ(Σ, ∗) < Mod(Σ, ∗) is finite index and p is surjective, Γ is
finite index in Mod(Σ). By construction we have finite-index subgroups Γ < Modµ(Σ) < Mod(Σ) with a

homomorphism r : Γ→ ModG(Σ̂). This completes the proof. �

2.4 Invariants of (S,G) bundles. We describe the main invariants we will consider: the MMM classes
κi, Euler classes ez, and Chern classes of the Hodge (eigen)bundles ci,q. These are viewed as elements in

H∗(ModG(S , z);Q). The relation between these classes will be the focus of Sections 3 and 4.

Fix an (S, z) bundle π : M → B. Let TπM →M be the vertical tangent bundle, and denote e = e(TπM) ∈
H2(M) its Euler class. The i-th MMM class of the bundle π is defined as κi(π) := π!(e

2i+1) ∈ H2i(B),
where π! : H∗(M) → H∗(B) is the Gysin (or push-forward) homomorphism. For more information see
[Mor01, Ch. 4].

Since the structure group Diff(S , z) of π : M → B has fixed points, π admits a section σz : B → M
for each z ∈ z. The Euler class ez(π) ∈ H2(B) associated to z ∈ z is defined as the image of e under
σ∗z : H∗(M)→ H∗(B).

The cohomology classes κi(π), ez(π) ∈ H∗(B) are characteristic classes of (S, z) bundles (i.e. they are
natural with respect to bundle pullbacks). By the theory of classifying spaces, we can view these char-
acteristic classes as elements κi, ez ∈ H∗(Mod(S , z)). It’s well-known (see [Mor87]) that κi is nonzero in
H∗(Mod(Sg, z);Q) if g � i, and {ez : z ∈ z} are linearly independent for all g ≥ 2.

These characteristic classes are invariants of (S,G) bundles since ModG(S , z) < Mod(S , z).

Proposition 7. Assume S/G has genus at least 2. Then the restriction of

H∗(Mod(S , z);Q)→ H∗(ModG(S , z);Q)

to the subalgebra generated by {ez : z ∈ z} is injective.

Proof. The proposition would be obvious if ModG(S , z) < Mod(S , z) was finite index, since for a finite
index subgroup Λ′ < Λ the induced map H∗(Λ;Q) → H∗(Λ′;Q) is injective (use the transfer map).
Unfortunately, ModG(S , z) < Mod(S , z) is infinite index. Nevertheless, ModG(S , z) has the same rational
cohomology as Modµ(S̄, z̄) because of the exact sequence (3); this follows easily from examining the
associated spectral sequence, since H∗(G;Q) is trivial. By Proposition 6, Modµ(S̄, z̄) < Mod(S̄, z̄) is finite
index. So the subalgebra of H∗(Mod(S̄, z̄);Q) generated by {ez̄ : z̄ ∈ z̄} injects into H∗(Modµ(S̄, z̄);Q).
The proposition now follows by observing that for z ∈ z, the subspace Q{ez} is the image of the subspace
Q{eµ(z)} ⊂ H∗(Modµ(S̄, z̄);Q) under H∗(Modµ(S̄, z̄)) → H∗(ModG(S , z)). To see this, fix an (S,G)

bundle M → B. Note that M/G → B is an (S̄, z̄) bundle. We can interpret ez and eµ(z) as the Euler
classes of the normal bundles of σz(B) ⊂ M and σµ(z)(B) ⊂ M/G, respecitvely. Since M → M/G is a
branched cover that sends σz(B) diffeomorphically to σµ(z)(B), the two normal bundles have proportional
Euler classes; see [Mor01, Prop. 4.12]. �

Aside. Our original interest in studying H∗(SpG
2g(Z);Q) → H∗

(
ModG(S , z);Q

)
was to determine if the

isomorphism H∗
(

Modµ(S̄, z̄);Q
)
' H∗

(
ModG(S , z);Q

)
produced any cohomology in the cokernel of the

injection H∗(Mod(S̄, z̄);Q) ↪→ H∗
(

Modµ(S̄, z̄);Q
)
. Unfortunately this is not the case (at least stably)

by Theorem 4 and the proof of Theorem 1 – as mentioned in the introduction, together they show that, in
the stable range, the image of α∗ : Hk(SpG

2g(Z);Q)→ Hk(ModG(S , z);Q) is contained in the subalgebra
generated by the odd MMM classes and the Euler classes.
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Hodge bundle and eigenbundles. For an (S, z) bundle π : M → B, the Hodge bundle is the vector
bundle E → B where the fiber over b ∈ B is H1(Sb;R), where Sb = π−1(b). With this definition E is a
real vector bundle, but if π is equipped with a fiberwise complex structure (possible if B is paracompact
for example), then E → B is isomorphic to the realification of the complex vector bundle whose fiber
over b is the space of holomorphic 1-forms on Sb. If π is an (S,G) bundle, then the G action on M
induces a G action on E that covers the trivial action on B. Then we may decompose E =

⊕
qm=1Eq.

Fiberwise, this is the decomposition of the CG module H1(Sb;R) into isotypic components. The Chern
classes ci(Eq) ∈ H2i(B) are characteristic classes of (S,G) bundles, and so we can view them as elements

ci,q ∈ H2i(ModG(S , z);Q).

Remark. The classes ci,q can be interpreted as the Chern classes of the “universal” Hodge bundle E =⊕
Eq over an appropriate moduli space MG(S, z) (which is an orbifold Eilenberg–Maclane space for

ModG(S , z)). We will not need the moduli space here, so we will not elaborate further on this point.

3 The index formula

In this section G ' Z/mZ and for convenience we identify G ' {z ∈ C× : qm = 1}.

The goal of this section is to prove Theorem 4 by deriving the index formula (1). To the author’s
knowledge, this derivation (of a families version of the G-index theorem for the signature operator) is
not detailed in the literature, although it can be obtained by combining the contents of [AS68b, AS68a,
AS68c, AS71]. Since these references are quite accessible, we will be brief and refer the reader to these
papers for more detail.

The index formula (1) is an equality between certain classes in H∗(ModG(S , z);Q). To prove it, it
suffices to show that this equation holds for for every (S,G) bundle π : M → B where the base B is a
finite complex. Fix such a bundle, and introduce a G-invariant fiberwise Riemannian metric. Denoting
Sb = π−1(b) for b ∈ B, we have the de Rham complex Ω∗C(Sb), its exterior derivative d, the adjoint d∗ of
d (defined using the Hodge star operator ?), and a self-adjoint elliptic operator D = d+d∗. The operator

τ : Ωp
C → Ω2−p

C defined by τ = ip(p−1)+1? satisfies τ2 = 1 and Dτ = −τD, so D restricts to operators
D± : Ω± → Ω∓ on the ±1 eigenspaces Ω± of τ . The operators D+ and D− are mutually adjoint, and
ker(D±) is the ±1 eigenspace H∗(Sb;C)± of τ acting on harmonic forms H∗(Sb;C).

The collection D+
b : Ω+(Sb)→ Ω−(Sb) for b ∈ B defines a family of G-invariant differential operators on

S. The (analytic) index of the family D+ = {D+
b } is defined as ind(D+) = E+ − E− ∈ KG(B), where

E± is the (equivariant K-theory class of the) bundle whose fiber over b ∈ B is H∗(Sb;C)±. It’s not hard
to see that the contribution of H0(Sb;C) and H2(Sb;C) to the index is zero [AS68c, §6]. Furthermore,
the bundles

⋃
b∈BH1(Sb;C)+ → B and

⋃
b∈BH1(Sb;C)− → B are conjugate because H1(Sb;C)+ and

H1(Sb;C)− are conjugate vector spaces. Combining this with the fact that H1(Sb;C)+ can be identified
with the space of holomorphic 1-forms on Sb (with respect to the complex structure determined by the
conformal class of the metric), the index is given by

ind(D+) = E − Ē ∈ KG(B),

where E → B is the Hodge bundle (§2.4).

The index theorem gives a topological description of the index: associated to D+ is a symbol class
σ ∈ KG(TπM), where TπM → M is the vertical (co)tangent bundle1 of π : M → B (and KG(·) denotes
equivariant K-theory with compact supports). In [AS68c] (see also [Sha78, pg. 40] and [LM89, pgs. 236,
264]) it is shown that

σ = Ω+ − Ω− = (1 + L̄)− (1 + L) = L̄− L ∈ KG(TπM),

where L is the pullback of TπM → M along TπM → M . The Thom isomorphism K(M) → K(TπM)
is given by multiplication by the Thom class u ∈ K(TπM), and in this case u = 1 − L. Note that

1The tangent and cotangent bundles are isomorphic.
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(1 + L̄)(1− L) = L̄− L. Thus under inverse Thom isomorphism K(T ∗πM)→ K(M) we have

σ = L̄− L = (1 + L̄)(1− L) 7→ 1 + T ∗πM.

The topological index is defined as t-ind = π!(σ), where π! : KG(M) → KG(B) is the push-forward in
K-theory. By the index theorem, ind(D+) = t-ind, so

(4) E − Ē = π!(1 + T ∗π ).

We want to understand (4) on the level of ordinary cohomology, i.e. under the map

(5) chg : KG(B) ' K(B)⊗R(G)
1⊗χg−−−→ K(B)⊗ C ch−→ H∗(B)⊗ C,

where R(G) is the representation ring and χg : R(G) → C is the ring homomorphism that sends a
representation V to its character χg(V ) at g ∈ G.

The image of the left-hand side of (4) under (5) is easily expressed. In K(B)⊗R(G), we have

E =
∑
qm=1

Eq ⊗ ρq and Ē =
∑
qm=1

Ēq ⊗ ρq̄,

where q̄ denotes the complex conjugate of q ∈ C, and ρq is the CG module C[x]/(x− q). It follows that

(6) chg
(
E − Ē

)
=
∑
qm=1

(
ch(Eq)− ch(Ēq̄)

)
· χg(ρq).

Observe that for g = e2πir/m, we have χg(ρq) = qr.

In the remainder of the section we compute chg
(
π!(1 +T ∗π )

)
. The push-forward π! in K-theory is difficult

to understand directly, so we want to commute ch and π!, and compute π! in ordinary cohomology. This
can be done after passing to the fixed point set Mg, using the Atiyah–Segal localization theorem [AS68a].

Atiyah–Segal localization theorem. The character homomorphism χg : R(G) → C factors through the
localization R(G)g at the (prime) ideal ker(χg). Denoting KG(M)g the localization of the R(G) module
KG(M), there is a commutative diagram

KG(M)g KG(Mg)g

KG(B)g KG(B)g

//
i∗/e

��

p!

��

π!

Here i∗ is induced by i : Mg ↪→ M , the map p is the restriction π
∣∣
Mg , and e = 1 − T ∗π ∈ K(Mg) is the

Thom class (in K-theory) of the normal bundle of Mg ↪→M . The top arrow is an isomorphism by [Seg68,
Proposition 4.1]. Dividing by the Euler class makes the diagram commute (compare [LM89, pg. 261]).

In the diagram above, σ = 1 + T ∗π ∈ KG(M)(g) maps to 1+T ∗π
1−T ∗π

∈ KG(Mg)g. Now we can compute

chg ◦p!

(
1+T ∗π
1−T ∗π

)
using the following diagram

KG(Mg)g K(Mg)⊗ C H∗(Mg)⊗ C

KG(B)g K(B)⊗ C H∗(B)⊗ C

//
χg

//ch

//
χg

//ch��

pK!
��

pK!
��

pH!

If g = 1, then the right square doesn’t commute, but the failure to commute is the defect formula
ch
[
π!

(
σ(D)

)]
= πH!

[
ch
(
σ(D)

)
· Td(Tπ)

]
, where Td is the Todd class (this formula is also called the
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Grothendieck–Riemann–Roch computation). Since σ(D) = 1 + T ∗π , we have ch
(
σ(D)

)
= 1 + e−x, where

x = e(TπM). Combining this with Td(Tπ) = x
1−e−x (see [AS68c, pg. 555]), this recovers (2).

If g = e2πir/m 6= 1, then the right square commutes because p : Mg → B is a covering map. To express the

class ch ◦χg
(

1+T ∗π
1−T ∗π

)
in H(Mg)⊗ C, note that the character of χg(T

∗
π ) will vary on different components

of Mg. Decompose Mg = tMj , so that e2πi/m ∈ G acts on Tπ
∣∣
Mj

by rotation by θj = 2πj
m . Let xj denote

the restriction of e(TπM) to Mj . Then, on Mj , we have

ch ◦χg

(
1 + T ∗π

∣∣
Mj

1− T ∗π
∣∣
Mj

)
=

1 + e−i rθje−xj

1− e−i rθje−xj
=

e(xj+i rθj)/2 + e−(xj+i rθ)/2

e(xj+i rθj)/2 − e−(xj+i rθj)/2
= coth

(
xj + i rθj

2

)
Combining these terms for all j, denoting εj = p!(xj), and combining with (6) gives the desired index
formula ∑

qm=1

[
ch(Eq)− ch(Ēq̄)

]
· qr =

∑
1≤j≤m−1
Mj 6=∅

coth

(
εj + i rθj

2

)
.

Remark. We record here for later use the first two terms of the Taylor series of coth
(
x+iϕ

2

)
at x = 0:

(7) coth

(
x+ iϕ

2

)
≈ −i cot(ϕ/2) +

1

2
csc2(ϕ/2) x.

Remarks.

(1) The discussion above works generally when S is replaced by an orientable manifold of even
dimension; for more details, see [AS68c] and [ERW15].

(2) In the case B = pt and G = {e} (i.e. the non-families, non-equivariant version of the index
theorem), ind(D+) ∈ K(pt) = Z is equal to dimH+ − dimH−, which is zero because the ±1-
eigenspaces of τ acting on H1(S;C) are conjugate (as complex vector spaces), so in particular they
have the same dimension. However, in the families and/or equivariant case, ind(D+) is nontrivial
in general.

4 Computing α∗ : H2
(

SpG
2g(Z);Q

)
→ H2

(
ModG(S , z);Q

)
In this section we prove Theorem 1. We proceed as follows.

• Step 1: We define classes xq ∈ H2(SpG
2g(Z);Q) such that

H2(SpG
2g(Z);Q) ' Q{xq : qm = 1, Im(q) ≥ 0},

using results of Borel [Bor74]. For our computation, in order to be in the stable range, we require
S/G to have genus h ≥ 6.
• Step 2: We show that c1,q = α∗(xq) = c1,q̄ in H2(ModG(S , z)), where c1,q is the class defined in
§2.4. This involves comparing two complex structures on the Hodge bundle of an (S,G) bundle.
• Step 3: The index formulas (1) and (2) give a system of linear equations relating κ1, e1, . . . , em−1 ∈
H2(ModG(S , z);Q) classes to the classes α∗(xq). Upon investigating this linear system, the result
will follow from some character theory and a result about circulant matrices.

4.1 The arithmetic group SpG
2g(Z). In this section we compute H2(SpG

2g(Z);Q). This involves work-

ing out some of the general theory of arithmetic groups in the special case SpG
2g(Z). Specifically, we (i)

use restriction of scalars to show SpG
2g(Z) is a lattice in a group G = Sp2h(R)× Sp2h′(R)×

∏
q SU(aq, bq),

(ii) use Borel–Matsushima to relate Hj(SpG
2g(Z);Q) to the cohomology of a product of Grassmannians

in some range 0 ≤ j ≤ N , and (iii) determine the range N by giving a lower bound the Q-rank of the
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irreducible factors of SpG
2g(Z). To those familiar with arithmetic groups and their cohomology, (i) and

(ii) are routine exercises. Our proof of (iii) uses the topology of the branched cover S → S/G to find
isotropic subspaces in sub-representations of H1(S;Q).

Restriction of scalars. The group SpG
2g(Z) acts by G-module maps on H = H1(S;Q), so it preserves

the decomposition

(8) H =
⊕

k|m
Hk

into isotypic components for the irreducible representations of G over Q. Recalling that the simple QG-
modules are isomorphic to Q(ζk), where ζk = e2πi/k and k | m, the group Hk is defined as Q(ζk)⊗QG H.

As we explain below, (8) leads to a decomposition SpG
2g(Z) =̇

∏
k|m Γk into irreducible lattices (here =̇

means commensurable). Furthermore, we identify Γk and determine the real semisimple Lie group Gk

that contains Γk as a lattice.

Fix k | m. For simplicity, denote ζ = ζk and Γ = Γk. The representation V = Hk is naturally a vector
space over Q(ζ), and the intersection form ω on H determines a form β : V × V → Q(ζ) given by

(9) β(u, v) = −i
k∑
j=1

ω(u, tjv) · ζj .

Compare [GLLM15, §3.1]. If k = 1, 2, then β is symplectic, the group G = Sp(V ) preserving β is an
algebraic group defined over Q, and Γ

.
= G(Z). For k ≥ 3, β is Hermitian with respect to the involution

τ(ζ) = ζ−1 on Q(ζ), the group G = SU(V, β) of Q(ζ)-linear automorphisms preserving β with determinant
1 is an algebraic group defined over F = Q(ζ + ζ−1) (the maximal real subfield of Q(ζ)), and Γ

.
= G(O),

where O ⊂ F is the ring of integers. For a similar discussion, see [Loo97].

Restriction of scalars applied to G = SU(V, β) gives an algebraic group G′ defined over Q such that G′(Z)
is commensurable with G(O). To define G′, define an embedding σq : F → R by ζ + ζ−1 7→ q + q−1 for
each primitive k-th root of unity q with Im(q) > 0, and denote Gσ = SU(V, σq ◦ β). By the restriction
of scalars construction, G′ =

∏
Gσ is an algebraic group over Q, the Z-points G′Z is a lattice in G′, and

GO =̇ G′Z. Hence Γ is a lattice in G′. Furthermore, for each σq the real points of Gσq is SU(aq, bq) for
some aq, bq ≥ 0 [Mor15, Prop. 18.5.7].

In addition, we remark that Γ < G′ is irreducible: By [Mor15, §5.3, Exercise 4], Γ is irreducible if and
only if G′ is a Q-simple group. It’s a basic property of restriction of scalars that G′ is Q-simple if G is
F -simple [Mar91, §1.7], and the latter is well-known, c.f. [PR94, §2.3.4].

Varying over all k, we find that

(10) SpG
2g(Z) =̇ Sp(H1)Z × Sp(H2)Z ×

∏
k|m

2<k≤m
2

SU(Hk, βk)Ok

is a lattice in

(11) SpG
2g(R) = Sp2h(R)× Sp2h′(R)×

∏
qm=1

Im(q)>0

SU(aq, bq).

The second factor on the right-hand side of (10) and (11) appears only when m is even.

Remark. In §5 we describe how to determine the integers aq, bq using the Chevalley–Weil formula and
the degree-0 term in the index formula (1).

Borel–Matsushima. In this section we recall the Borel–Matsushima description of Hj(Γ;Q) when
Γ = Γk is an irreducible factor of SpG

2g(Z) as in (10). In what follows we will only use the case j = 2.

For Γ ' Sp2n(Z), it is well-known that H2(Sp2n(Z);Q) ' Q when n ≥ 3 (see [ERW15, Theorem 3.4] or
[Put12, Theorem 5.3]). Thus we focus on the Hermitian case k > 2.
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Proposition 8. Let G be an algebraic group defined over a field F whose associated real semisimple Lie
group G(R) is a product of unitary groups SU(aq, bq) for q in some set Q. For a lattice Γ

.
= G(OF ), the

map

(12) ϕ : BΓ→
∏

B SU(aq, bq) ∼
∏

BS
(

U(aq)×U(bq)
)
→
∏

BU(aq)

induces an isomorphism on Hj(−;Q) for 0 ≤ j ≤
⌊
(rkF (Γ) − 1)/2c, where rkF (Γ) ≡ rkF (G) is the

F -rank.

Focusing on degree 2, since H2
(
BU(p);Q

)
= Q{c1} for p ≥ 1, combining with the computation for

H2(Sp2h(Z);Q) mentioned above, we have

Corollary 9. Let SpG
2g(Z) < SpG

2g(R) be as in (10) and (11). Assume h, h′ ≥ 3 and aq, bq ≥ 1. If

2 ≤ min2<k≤m/2
⌊
(rkFk(Γk)− 1)/2c, then

(13) H2(SpG
2g(Z);Q) = Q{xq : qm = 1, Im(q) ≥ 0},

where x1 and x−1 are pulled back from SpG
2g(Z)→ Sp2h(R) and SpG

2g(Z)→ Sp2h′(R), respectively, and xq
is pulled back from SpG

2g(Z)→ SU(aq, bq) ∼ S
(

U(aq)×U(bq)
)
→ U(aq).

Proof of Proposition 8. The map on cohomology induced by (12) can be realized more geometrically as
follows (compare [Bor74, Proposition 7.5] and [Gia09, §3.2]). The cohomology H∗(Γ;Q) can be identified
with the cohomology of the complex Ω∗(X)Γ of Γ-invariant differential forms on the symmetric space
X = G(R)/K, whereK < G(R) is a maximal compact subgroup. A first approximation to the cohomology

of Ω∗(X)Γ is the cohomology of the subalgebra Ω∗(X)G(R) of G(R)-invariant forms, which can be identified
with the cohomology H∗(XU ;Q) of the compact dual symmetric space

XU =
∏

SU(aq + bq)/S
(

U(aq)×U(bq)
)
'
∏

Graq(Caq+bq).

According to Borel [Bor81, Theorem 4.4(ii)], the inclusion Ω∗(X)G(R) → Ω∗(X)Γ induces an isomorphism
Hj(XU ;R) → Hj(Γ\X;R) for 0 ≤ j ≤ min

{
c(G), m(G(R))

}
. In our case c(G) ≥

⌊
(rkF (G) − 1)/2

⌋
by [Bor74, §9(3)], and m(G(R)) ≥ rkR(G(R))/2 by [Mat62, Theorem 2] (see also [Bor74, §9.4]). Since
F -rank is always less than or equal to R-rank, we get an isomorphism for 0 ≤ j ≤

⌊
(rkF (G)− 1)/2

⌋
.

Furthermore, the obvious map Gra(Ca+b) → Gra(C∞) ' BU(a) induces a map XU →
∏
BU(aq) that

is a cohomology isomorphism in degrees 0 ≤ j ≤ 2 min bq. See [Hat02, Example 4.53]. Note that no
bq can be smaller than mink{rkFk(Γk)} because the F -rank for a unitary group is equal to the maximal
dimension of an isotropic subspace [Mor15, Ch. 9].

In summary the map H∗
(∏

BU(aq)
)
→ H∗(XU ) → H∗(Γ) induces an isomorphism in degrees 0 ≤ j ≤⌊

(rkF (G)− 1)/2
⌋
, as desired. �

F -rank and covers. To apply Proposition 8, we need to compute the F -rank of our lattice Γk <
SU(Hk, βk), or at least bound it from below.

Proposition 10. Let S be a surface with a G = Z/mZ action, and let h be the genus of S/G. Take
Γk < SU(Hk, βk) as above (for any k | m, k ≥ 3). Then rkFk(Γk) ≥ h− 1.

Proof. By [Mor15, Ch. 9], the Fk-rank of SU(Hk, βk) is the maximal dimension of an βk-isotropic subspace
of Hk (as a vector space over Fk). By the definition of βk, to prove the proposition, it suffices to exhibit
an (h− 1)-dimensional ω-isotropic subspace of H1(S;Q) (as a vector space over Q).

Denote S̄ = S/G and let µ : S → S̄ be the quotient map. After replacing the fixed points z = Fixed(G) ⊂
S and µ(z) with boundary components, the map π induces a covering map Σ→ Σ̄ between surfaces with
boundary. Associated to this cover is a surjective homomorphism ρ : π1(Σ̄) → H1(Σ̄;Z) → Z/mZ. By
Poincaré duality, there exists primitive c ∈ H1(Σ̄, ∂Σ̄;Z) so that ρ(γ) = [γ] · c mod m.
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Case 1. If ∂Σ̄ = ∅ (i.e. S̄ = Σ̄), then the homology class c is represented by a simple closed curve α ⊂ Σ̄.
The complement Σ̄ \α contains a subsurface N of genus (h− 1) that lifts to Σ = S (because it is disjoint
from our representative for c). Furthermore, H1(N ;Q) contains an (h−1)-dimensional isotropic subspace
that lifts to an (h− 1)-dimensional isotropic subspace of H1(S;Q), as desired.

Case 2. Assume Σ̄ has r ≥ 1 boundary components. We can express Σ̄ = Σh,1 ∪Σ0,r+1 as the union of a
genus-h surface with one boundary component with a genus-0 surface with (r+ 1) boundary components
b0, . . . , br, where the boundary component of Σh,1 is glued to b0. See Figure 1.

b0

b1

b2

b3

Σ0,4
Σ2,1

Figure 1. Decomposing Σ̄ = Σh,1 ∪ Σ0,r+1. The blue and red curves generate A and A′, respectively.

This leads by (relative) Mayer–Vietoris to a direct sum decomposition H1(Σ̄, ∂Σ̄) = A ⊕ A′, where
A ' H1(Σh,1) is spanned by curves on Σh,1, and A′ ' Zr−1 is spanned by arcs on Σ0,r+1 between distinct
pairs of the boundary components b1, . . . , br.

Now the class c ∈ H1(Σ̄, ∂Σ̄) can be expressed as c = ka + a′, where a ∈ A ' H1(Σh,1) is primitive,
k ∈ Z, and a′ ∈ A′ is represented by arcs supported in Σ0,r+1 ⊂ Σ̄. Since a ∈ H1(Σh,1) is primitive, we
can represent it by a simple closed curve α [MP78, Thm. 1].

Similar to Case 1, the complement of α in Σh,1 ⊂ Σ̄ contains a subsurface N of genus h − 1 that lifts
to Σ ⊂ S (because it is disjoint from our representative for c) and contributes an (h − 1)-dimensional
isotropic subspace to H1(S;Q). This completes the proof. �

Since b(rkFk(Γk)− 1)/2c ≥ b(h− 2)/2c ≥ 2 for h ≥ 6, this is the bound that appears in Theorem 1.

4.2 Relating H∗(SpG
2g(Z);Q) with Chern classes of the Hodge bundle. In order to study the

image of α∗ : H2(SpG
2g(Z)) → H2(ModG(S , z)), we want to relate the classes α∗(xq) ∈ H2(ModG(S , z))

to the Chern classes c1,q ∈ H2(ModG(S , z)) defined in §2.4. We will see that

(14) c1,q = α∗(xq) = c1,q̄

for qm = 1 with Im(q) > 0. This relation can be obtained by comparing two maps from BModG(S , z) to
the product of unitary groups. For the first map, consider the composition

(15) BModG(S , z)→ B SpG
2g(Z)→ B Sp2g(R)

∼−→ BU(g),

and note that it factors through BU(g)G → BU(g). The group U(g)G is a product of unitary groups,
one for each qm = 1. The map BModG(S , z)→ B SpG

2g(Z)→ BU(g)G classifies the Hodge eigenbundles
(for the universal bundle).

The second map

(16) BModG(S , z)→ B SpG
2g(Z)→ B SpG

2g(R) ∼ BU(h)×BU(h′)×
∏
qm=1

Im(q)>0

BS
(

U(aq)×U(bq)
)

is obtained using (11). On the bundle level this map is obtained by starting with an (S,G) bundle
M → B, taking the associated real vector bundle H1(S;R) → E → B, decomposing E according to
the decomposition of H1(S;R) as a G-representation over R, and giving this bundle a complex structure
induced from the action of G (the Hermitian forms (9) on sub-representations of H1(S;Q) give H1(S;R)
a natural complex structure).
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The maps (15) and (16) classify the same bundle, but with respect to different complex structures. From
this it follows that the terms in (14) differ by at most −1. The following proposition settles the difference.
Although it suffices to work with the universal (S,G) bundle, we find it more convenient to work on the
level of individual bundles.

Proposition 11. Let π : M → B be an (S,G)-bundle with Hodge bundle E =
⊕

qm=1Eq → B. Then

c1

(
Eq
)

= c1

(
Eq̄
)

= xq(π) in H2(B), where xq(π) is the pullback of the class xq defined in Corollary 9.

Proof of Proposition 11. There are two natural complex structures on the bundle H1(S;R) → E → B
induced from different complex structures on H1(S;R). The first J is the Hodge star operator ?2 = −1
on H1(S;R), and the second J ′ is induced by the G action on H1(S;R) (this depends on a choice of
generator of G). The proposition is proved by comparing J and J ′ and recalling how the definition of
the Chern classes is sensitive to a choice of complex structure (see Borel–Hirzebruch [BH58, §9.1]).

Decompose H1(S;R) = H(1) ⊕ H(−1) ⊕
⊕

qm=1
Im(q)>0

H(q, q̄) into isotypic components for the irreducible

representations of G over R. (Recall that the simple RG modules are the trivial representation V (1), the
sign representation V (−1) (if m is even), and V (q, q̄) = R[t]/

(
t2 − (q + q̄)t + 1

)
for qm = 1 such that

Im(q) > 0.)

The complex structure J on H1(S;R) induces an isomorphism H(q, q̄) ' H1(S;C)q = H1,0
q ⊕H0,1

q . This
decomposition coincides with the decomposition of H(q, q̄) into positive-definite and negative-definite
subspaces for the Hermitian form β in (9). Since H1,0 and H0,1 are +i and −i eigenspaces for J , the

same holds for H1,0
q and H0,1

q . This identifies the complex structure J on these two factors. On the other

hand, if we view V = H1,0
q ⊕H0,1

q as a real vector space V (q, q̄)N , the G action defines another complex
structure J ′ such that for any v ∈ V , the orientation (v, J ′v) on R{v, J ′v} agrees with the orientation

(v, τv), where τ = e2πi/m generates G. From this description, it follows that if Im(q) > 0, then J and J ′

agree on H1,0
q ' H0,1

q̄ , but differ by −1 on H1,0
q̄ ' H0,1

q .

Let c1(Eq) and c′1(Eq) denote the Chern class defined using J and J ′, respectively [BH58, §9.1]. The
proposition follows by noting the following equalities: If Im(q) > 0, then

(17) c1(Eq) = c′1(Eq) = xq(π),

and

(18) c1(Eq̄) = −c′1(Eq̄) = c′1(Eq) = xq(π).

The first equality in (17) and (18) follows because J = J ′ on H1,0
q and J = −J ′ on H1,0

q̄ . The middle
equality in (18) holds because the bundle Eq ⊕ Eq̄ → B is classified by a map B → B SU(aq, bq) ∼
BS
(

U(aq)×U(bq)
)

as in (16). Finally, c′1(Eq) = xq(π) by (13). �

4.3 Applying the index formula. The degree-1 terms of the index formulas (2) and (1) give a system
of linear equations:

(19) c1,1 + c1,−1 + 2
∑
qm=1

Im(q)>0

c1,q = κ1/12,

and for 1 ≤ r ≤ m− 1,

(20) c1,1 + (−1)rc1,−1 +
∑
qm=1

Im(q)>0

(qr + q̄r) c1,q =
∑

1≤j<m/2

csc2(rθj/2) (εj + εm−j)/4

The term c1(E−1) appears only when m is even. Note that εj +εm−j is nonzero only when zj ∪zm−j 6= ∅;
furthermore, our assumption on the point stabilizers for G acting on S implies that zj ∪ zm−j 6= ∅ only
if (j,m) = 1.
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Let d = bm/2c, and let 1 ≤ j1, . . . , jn < m/2 be the indices for which zj ∪ zm−j 6= ∅ (note that
n ≤ φ(m)/2). Equations (19) and (20) define a matrix equation of the form

J


c1(Eζ0)
c1(Eζ1)

...
c1(Eζd)

 = K


κ1

εj1 + εm−j1
...

εjn + εm−jn

 .

Here J is a (d+ 1)× (d+ 1) matrix and K is a (d+ 1)× (n+ 1) matrix.

We wish to show that Im
[
H2(SpG

2g(Z))→ H2(ModG(S , z))
]

= Q{κ1, εj1 + εm−j1 , . . . , εjn + εm−jn}. First
we show that J is invertible, which implies the containment ⊆. Then we show rk(K) ≥ n + 1, which
implies the other containment.

Proposition 12. J is invertible.

Proof. A row of J has the form
(
χg(V0) χg(V1) · · · χg(Vd)

)
for fixed g ∈ G ⊂ C× with Im(g) ≥ 0, and

where Vj = ρζj + ρζ−j for 1 ≤ j < m/2 and Vj = ρζj for j = 0,m/2.

If the columns of J are dependent, then there are constants a0, . . . , ad so that

a0 χg(V0) + · · ·+ ad χg(Vd) = 0

for g ∈ G ⊂ C× with Im(g) ≥ 0. But then this equation holds for all g ∈ G because χg(Vj) =
χg−1(Vj). But this is impossible because the characters of irreducible representations of G are linearly
independent. �

Proposition 13. rk(K) ≥ n+ 1.

Using (19) and (20), note that K =

(
1/12 0

0 K ′

)
, where K ′ is an d × n matrix. From inspection of

(20), to prove the proposition it suffices to show the following proposition.

Proposition 14. Fix m ≥ 2. Let V ' Rφ(m)/2 be a real vector space with basis {e`} for 1 ≤ ` < m/2
and gcd(`,m) = 1. Then the vectors

vk =
∑

1≤`<m/2
gcd(`,m)=1

csc2

(
πk`

m

)
e`

1 ≤ k ≤ φ(m)/2 also form a basis for V .

Proof. We will denote Z/mZ by Cm. For simplicity we start with the case m = p is prime. The case
m = pn is a prime power follows easily from this. Then we explain the general case.

Case 1: m = p is prime. Let q = p−1
2 . Consider functions fk : (Cp)

× → R defined by fk(x) = csc2
(
kπ
p x
)

,

and A = (Ak,`) be the q × q matrix Ak,` = fk(`) for 1 ≤ k, ` ≤ q. To prove the proposition, it is enough
to show that A is invertible.

To this end, define another q×q matrix B as follows. Consider the surjective homomorphism φ : (Cp)
× '

Cp−1 → Cq. For 0 ≤ i, j ≤ q − 1, define Bij by csc2
(
π
p · y

)
, where φ(y) = i + j. This is well defined

because csc2(x) is an even function.

Now observe

(1) A and B are the same matrix, up to permuting rows and columns. Thus it suffices to show that
det(B) 6= 0. We will show the eigenvalues of B are all nonzero.
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(2) B is a circulant matrix, up to permuting rows and columns (see [Dav79] for the definition). This is
easy to see because B is obtained by taking the multiplication table for Z/q and applying a fixed
function to each entry. (The multiplication table of a cyclic group is circulant up to permuting
the rows.)

Now the eigenvalues/eigenvectors of a circulant matrix are easily computed [Dav79]. The eigenvalues

have the form λj = c0 + c1ω
j + c2ω

2j + · · · + cq−1ω
(q−1)j , where ω = e2πi/q and 0 ≤ j ≤ q − 1 and

the ci are in bijection with csc2
(
kπ
p

)
, 1 ≤ k ≤ q. If λj = 0, then ωj is a solution to the polynomial

P (x) = c0 + c1x+ · · ·+ cq−1x
q−1 for some j. This is possible if and only if c0 = c1 = · · · = cq−1, which is

not the case.

Case 2: m = pn is a prime power. An important feature of the above argument is that when m is prime,
(Cm)× ' Cφ(m) is cyclic, as is (Cm)×/{±1}, so its multiplication table is given by a circulant matrix
whose determinant is easy to compute (even after applying a fixed function to each coordinate).

When p is an odd prime, then (Cpn)× ' Cφ(pn) is cyclic, so we may repeat the argument of Case 1.

When p = 2, the group (C2n)× ' C2 × C2n−2 is not cyclic. However, the fact that fk is even implies
that it factors through (C2n)×/{±1}, and the subgroup {±1} < (C2n)× corresponds to the subgroup
C2 × {0} < C2 × C2n−2 . This means fk : C2 × C2n−2 → R factors though the cyclic group C2n−2 , and we
can again apply the argument from Case 1.

Case 3: m is arbitrary. In this case we cannot assume that (Cm)× is cyclic, and in most cases the
multiplication table for (Cm)×/{±1} will not be circulant. However, if we write m = pn1

1 · · · pnrr , then
using the isomorphism (Cm)× ' (Cpn11

)× × · · · × (Cpnrr )×, the multiplication table for (Cm)×/{±1} may

be expressed as a special kind of block circulant matrix. Having this block circulant form will allow us
to apply the argument of Case 1 iteratively.

We begin by examining what the structure of the multiplication table of a product of cyclic groups. Fix
a finite group F and a cyclic group Cd = 〈t〉. If the multiplication table for F is given by a matrix A,
then the multiplication table for F × Cd has the form

A tA · · · td−1A
tA t2A · · · A
...

. . .
...

td−1A A · · · td−2A


This matrix becomes block circulant after permuting the rows. Thus the multiplication table of a product
of cyclic groups is an iterated block circulant matrix.

Next we determine the eigenvalues of a block circulant matrix. Fix d, n ≥ 1, fix A0, . . . , Ad−1 ∈ Mn(R),
and consider the block circulant matrix

B =


A0 A1 · · · Ad−1

Ad−1 A0 · · · Ad−2
...

. . .
...

A1 A2 · · · A0


Suppose that the matrices Ai share common eigenvectors x0, . . . , xn−1, so that Aixj = λijxj . Denoting

ζ = e2πi/d, the eigenvectors of B are

xkj =


xj
ζkxj

...

ζk(d−1)xj
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for 0 ≤ k ≤ d− 1 and 0 ≤ j ≤ n− 1, and the eigenvalues are

ηkj = λ0k + λ1kζ
j + · · ·+ λm−1,kζ

j(d−1)

These facts are easily checked.

Now the group (Cm)×/{±1} is a product of cyclic groups, so its multiplication table is an iterated block
circulant matrix B0. The matrix A =

(
fk(`)

)
is equivalent to the matrix B obtained by applying csc2( πm ·)

to each entry of B0. Since all n×n circulant matrices have the same eigenvectors, the above computation
applies for computing the eigenvalues of B. Now, as in Case 1, the eigenvalues are given as degree m− 1
polynomials P (exp2πi/m) with (nonconstant!) coefficients among the fk(`), so det(B) 6= 0. �

Since J is invertible and rk(K) ≥ n + 1, we conclude that H2(SpG
2g(Z)) surjects to the subspace of

H2(ModG(S , z)) generated by κ1 and {εji + εm−ji : 1 ≤ i ≤ n}, which finishes the proof of Theorem 1.

5 Further application of the index formula

5.1 The real points of SpG
2g(Z). We remark on how the degree-0 term of the index formula can be

used to determine the real semisimple Lie group SpG
2g(R) that contains SpG

2g(Z) as a lattice. Part of
the work was already done in §4.1; it remains to determine the numbers aq, bq in equation (11). This
computation is an elaboration of a remark in [McM13, §3] and will be used later in this section.

Chevalley–Weil. First one can use the Chevalley–Weil algorithm to determine the character χH of
H = H1(S;R). Obviously χH(e) = dimH = 2g, and by the Lefschetz formula, χH(g) = 2−# Fix(g) for
g 6= e. Since a representation is determined by its character, this gives the integers nq in the decomposition

H1(S;R) = V (1)n1 ⊕
⊕
qm=1

Im(q)>0

V (q, q̄)nq ⊕ V (−1)n−1 .

Here V (±1) are the trivial/alternating representations, and V (q, q̄) = R[t]/(t2 − (q + q̄)t+ 1).

Hodge star and index formula. The Hodge star gives a complex structure to H1(S;R), and hence an
isomorphism for each q with Im(q) > 0

V (q, q̄)nq ' V (q)aq ⊕ V (q̄)bq ,

where V (q) = C[t]/(t − q). The numbers aq, bq can be computed using the degree-0 term of the index
formula (1)

(21)
∑

qm=1, Im(q)>0

(aq − bq)(qr − q̄r) = −i
∑

1≤j≤m−1

cot(r θj/2) · |zj |,

where zj is as in the statement of Theorem 4.

Example. Here we consider a closed surface S of genus g = (m−1)(m−2)
2 +mh with an action of G = Z/mZ

with m fixed points. These surfaces arise in Morita’s m-construction [Mor01, §4.3].

An explicit model for S can be obtained as follows. Take m disks, stacked horizontally, and attach m
strips between each pair of adjacent levels, as pictured in Figure 2 (in the case m = 5). This gives a

surface of genus (m−1)(m−2)
2 with m boundary components. The rotation by 2π/m on the disk extends to

an action of Z/mZ on this surface with one fixed point in each disk. Along each boundary component,
we can attach a genus-h surface (with one boundary component) to obtain a closed surface of genus
(m−1)(m−2)

2 +mh with an action of Z/mZ with m fixed points.

Using Chevalley–Weil, one easily computes the decomposition of H1(S;Q) into isotypic components (as
was discussed in §4.1:

H1(S;Q) = Q2h ⊕
⊕
k|m
k≥2

Q(ζk)
2h+m−2.
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Figure 2. Schematic of a genus-6 surface with 5 boundary components and an action of Z/5Z.

In this case

SpG
2g(Z) =̇ Sp2g(Z)× Sp2h+m−2(Z)×

∏
k|m

2<k≤m/2

SU(Hk, βk)Ok .

The second factor appears only when m is even. Applying (21), we find that
∏

k|m
2<k≤m/2

SU(Hk, βk)Ok is

a lattice in G(R) =
∏N
i=0 SU(h+ i, h+m− 2− i), where N = bm−1

2 c. Equivalently, the factors in G(R)

are of the form SU(u+ vq) for u, vq ∈ Z2, where u = (h, h+m− 2) and for each qm = 1 with Im(q) > 0,
we define vq = (a,−a) where a the number of m-th roots of unity above the line from 1 to q in C. See
Figure 3 and also [McM13, Figure 1].

q

1

Figure 3. For m = 7 the group G(R) = SU(h, h+ 5)× SU(h+ 1, h+ 4)× SU(h+ 2, h+ 3).

5.2 Relation to Hirzebruch’s signature formula. Hirzebruch [Hir69] explained how the signature
changes in a branched cover. In this section we derive this result for surface bundles over surfaces from
our viewpoint. For simplicity we restrict to 2-fold branched covers.

Let M be a closed oriented 4-manifold with a G = Z/2Z action with fixed set Fix(G) = M0. In this case,
Hirzebruch proved that

(22) Sig(M) = 2 Sig(M/G)− Sig(M0 ·M0),

where M0 ·M0 is a closed oriented manifold and thus has a signature. This formula applies in the special
case when M is the total space of an (S,G)-bundle over a surface. Our main observation here is that
the terms Sig(M/G), Sig(M0 ·M0) can be understood in terms of cohomology of the arithmetic group
SpG

2g(Z) =̇ Sp2h(Z)× Sp2h′(Z).

To illustrate this, consider a G action on a genus-2h surface with two fixed points z = {z1, z2}. The
quotient µ : S → S̄ has genus h. Let z̄ = µ(z). In this case SpG

2g(Z) =̇ Sp2h(Z)× Sp2h(Z), and we have
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a commutative diagram

ModG(S , z) SpG
2g(Z)

Modµ(S̄, z̄) Sp2h(Z)
��

φ

//
f

//
g ��

ψ

The cohomology H2
(

SpG
2g(Z);Q

)
is generated by {x1, x−1} as in Corollary 9. Also H2

(
Sp2h(Z);Q

)
'

Q{y1} for h ≥ 3. Let κ1 and κ̄1 be the 1st MMM class in the cohomology of ModG(S , z) and Modµ(S̄, z̄),

respectively, and let ei ∈ H2
(

ModG(S , z)
)

be the Euler class at the fixed point zi for i = 1, 2.

By (2), g∗(y1) = κ̄1/12. Hirzebruch’s formula will come from determining φ∗(κ̄1). Since the diagram
commutes and ψ∗(y1) = x1, we want to compute f∗(x1). By the index formulas (19) and (20), we have
f∗(x1 + x−1) = κ1/12 and f∗(x1 − x−1) = (e1 + e2)/4, so

(23) φ∗(κ̄1) = f∗(12 x1) =
1

2
κ1 +

3

2
(e1 + e2).

To conclude, let M → B be an S bundle with B a surface and with monodromy ρ : π1(B)→ ModG(S , z).
By Hirzebruch’s signature formula Sig(M) = 1

3〈ρ
∗(κ1), [B]〉. The fixed set M0 = Fix(G) is a surface and

〈ρ∗(e1 + e2), [B]〉 = #(M0 ·M0). Then (23) gives

Sig(M/G) =
Sig(M)

2
+

#(M0 ·M0)

2
.

Since the signature of a 0-manifold is the number of points, this is the same as Hirzebruch’s formula (22).

5.3 Toledo invariants of surface group representations. The Toledo invariant τ is an integer
invariant of a representation α : π1(Σ) → H, where Σ is a closed oriented surface (genus ≥ 1) and H is
a Hermitian Lie group. In this section we will be interested in the case H = SU(p, q) with 1 ≤ p ≤ q.

To define τ(α), first construct a smooth α-equivariant map f : Σ̃→ X, where Σ̃ is the universal cover of
Σ and X = SU(p, q)/S

(
U(p) × U(q)

)
is the symmetric space associated to H. The Toledo invariant is

defined as

τ(α) =
1

2π

∫
F
f∗ω,

where ω is the Kähler form of X and F ⊂ Σ̃ a fundamental domain for the action of π1(Σ).

Domic–Toledo [DT87] showed that |τ(α)| ≤ −p χ(Σ), and Bradlow–Garcia-Prada–Gothen [BGPG03]
have shown that components of the representation variety Hom

(
π1(Σ), H

)
/H are in bijection with the

values achieved by τ . Here we simply observe that the Atiyah–Kodaira construction gives examples of
surface group representations whose Toledo invariant can be computed using the index formula.

We’ll explain this in a special case (see [Mor01, §4.3] for a general discussion of the Atiyah–Kodaira
construction). Let G = 〈τ〉 ' Z/7Z and let S̄ = S̄h be a closed surface with a free Z/7Z action. The
product bundle S̄ × S̄ → S̄ admits 7 disjoint sections Γ1,Γτ , . . . ,Γτ6 , where Γf denotes the graph of
f : S̄ → S̄. In order to branch over

⋃
Γτ i , we must first pass to a cover. Let p : Σ × S̄ be the Z/7Z

homology cover (Σ has genus 72h(h − 1) + 1). The bundle Σ × S̄ has sections Γp,Γτp, . . . ,Γτ6p, and

admits a Z/7Z branched cover M → Σ × S̄ with branching locus
⋃

Γτ ip. Projecting M → Σ × S̄ → Σ

defines a bundle with fiber S, which is a 7-fold branched cover µ : S → S̄ branched along 7 points (S has
genus 7h + 15). The homology H1(S;Q) is isomorphic to Q2h ⊕ Q(ζ7)2h+5 as a G-module. In this case,
SpG

2g(Z) =̇ Sp2h(Z)×Γ, where Γ is an irreducible lattice in SU(h, h+5)×SU(h+1, h+4)×SU(h+2, h+3).
Thus we have a homomorphism

α : π1(Σ)→ Γ ↪→ SU(h, h+ 5)× SU(h+ 1, h+ 4)× SU(h+ 2, h+ 3).
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Let αi be the representation obtained by projecting to the i-th factor, i = 1, 2, 3. By the index formula,
one obtains the following equations. For ζ = e2πi/7,

c1,1 = a κ1 + 4b ε1, c1,ζ = a κ1 + b ε1, c1,ζ2 = a κ1 − b ε1, c1,ζ3 = a κ1 − 2b ε1,

where a = 1
84 and b = 1

7 . Since the signature of M/G = Σ×S̄ is zero, it follows that c1,1 = 0, which allows
us to express τ(αi) = c1,ζi in terms of κ1/3, which computes the signature. Thus the Toledo invariants
are given by

τ(α1) =
3

112
σ, τ(α2) =

5

112
σ, τ(α3) =

6

112
σ,

where σ = Sig(M).

Remark. The Toledo invariants of representations obtained in this way will never have maximal Toledo
invariant. This is because the Gromov norm of the Toledo class decreases when pulled back the mapping
class group [Kot98], so in fact, no representation π1(Σ)→ SU(p, q) that factors through Mod(S) will be
maximal. However, one could also ask whether these representations are weakly maximal in the sense of
[BSBH+17].

5.4 Cobordism invariants. Church–Farb–Thibault [CFT12] show that the odd MMM classes κ2i−1

are cobordism invariants. This means that for an S bundle M4i → B, the characteristic number

κ#
2i−1(M → B) depends only on the cobordism class of M . In particular, the class κ2i−1 cannot dis-

tinguish between different fiberings of a 4i-manifold M .

If M → B admits a fiberwise G-action, we can ask about characteristic classes c that are G-cobordism
invariants, i.e. the corresponding characteristic number c#(M → B) depends only on the G-bordism class
of M (for more on the notion of G-bordsim, see e.g. [CF64, Chapter III]). Consider the case dim(M) = 4.

Of course κ#
1 (M → B) is also a G-cobordism invariant; below we prove Corollary 3 thus exhibiting more

classes that have this property.

Proof of Corollary 3. Let Σ be a closed surface and fix an (S,G) bundle M4 → Σ. Let E → Σ be the
Hodge bundle with eigenbundles E =

⊕
qm=1Eq. We aim to show that the numbers

c#
1 (Eq → Σ) =

〈
c1(Eq), [Σ]

〉
depend only on the G-bordism class of M .

Suppose that there is a G-manifold W 5 such that M = ∂W (as G-manifolds). To prove the corollary, we

must show that c#
1 (Eq → Σ) = 0. First observe that, by Theorem 1, c#

1 (Eq → Σ) is a linear combination
of the signature Sig(M) and the intersection numbers #(M τ

j ·M τ
j ), where τ generates Z/mZ, and we

decompose the fixed set M τ =
⋃m−1
j=1 M τ

j according to the action of τ on the normal bundle (as in the

statement of Theorem 4). Now Sig(M) = 0 because M = ∂W , and we claim that #(M τ
j ·M τ

j ) = 0

as well. To see the latter, note that M τ and W τ are submanifolds (average a metric so that τ acts by
isometries), and M τ = ∂(W τ ) because M = ∂W as G-manifolds. It follows that M τ ·M τ = ∂(W τ ·W τ ).
Since W τ is a 3-manifold, W τ ·W τ is a 1-manifold with boundary, and the boundary points occur in
pairs, which implies that #(M τ ·M τ ) = 0, as desired. �

Remark. It would be interesting to determine precisely which elements of H∗
(

ModG(S , z);Q
)

are G-
cobordism invariants following Church–Crossley–Giansiracusa [CCG13].
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