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Abstract. We determine for which exotic tori T of dimension d , 4 the homomorphism from the

group of isotopy classes of orientation-preserving di�eomorphisms of T to SLd (Z) given by the

action on the �rst homology group is split surjective. As part of the proof we compute the mapping

class group of all exotic tori T that are obtained from the standard torus by a connected sum with an

exotic sphere. Moreover, we show that any nontrivial SLd (Z)-action on T agrees on homology with

the standard action, up to an automorphism of SLd (Z). When combined, these results in particular

show that many exotic tori do not admit any nontrivial di�erentiable action by SLd (Z).
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A homotopy d-torus T is a d-dimensional smooth manifold that is homotopy equivalent to the

standard torus T d = ×dS1 and hence also homeomorphic to it, by a known instance of the Borel

conjecture; see [HW69] for d > 4, [FQ90, 11.5] for d = 4, [Wal68, 6.5] and the Poincaré conjecture

for d = 3. If T is not di�eomorphic to the standard torus T d
, it is called exotic. For instance, given

an exotic sphere Σ of dimension k ≤ d , the connected sum (T k ]Σ) ×T d−k
is an exotic d-torus.

One of the prominent features of the standard torus T d � Rd/Zd is that it admits a faithful

action SLd (Z) → Di�
+ (T d ) by SLd (Z) through orientation-preserving di�eomorphisms, induced

by the linear action of SLd (Z) on Rd . For a general homotopy d-torus T one might thus wonder:

(A) Is there a faithful action SLd (Z) → Di�
+ (T )? If not, is there even any nontrivial action?

As the SLd (Z)-action on the standard torus splits the homomorphism Di�
+ (T d ) → SLd (Z) induced

by the action on the �rst homology group H1 (T
d ) � π1 (T

d ) � Zd , it seems natural to approach

Question (A) by �rst considering the following weaker question which is an instance of a high-

dimensional version of a Nielsen realisation problem posed by Thurston [Kir97, Prob. 2.6]:

(S) Is the homomorphism Di�
+ (T ) → SLd (Z) given by the action on H1 (T ) split surjective?

This homomorphism factors through the mapping class group π0 Di�
+ (T ) of isotopy classes of

orientation-preserving di�eomorphisms, so one can weaken the question further to:

(S0) Is the homomorphism π0 Di�
+ (T ) → SLd (Z) given by the action on H1 (T ) split surjective?

This work establishes several results regarding these three questions. Note that a positive answer

to (S) implies positive answers to (A) and (S0). As part of our results, we

• answer Question (S0) in all dimensions d , 4,

• show that Questions (S) and (A) are in fact equivalent, and

• conclude that for many exotic tori the answer to all three questions is negative.

In what follows, we describe these results and various extensions of them in more detail.
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Splitting the homology action up to isotopy. Our �rst main result answers (S0) for d , 4:

Theorem A. For a homotopy torus T of dimension d , 4, the morphism

π0 Di�
+ (T ) −→ SLd (Z)

induced by the action on H1 (T ) is split surjective if and only if T is di�eomorphic to T d ]Σ for a
homotopy sphere Σ ∈ Θd such that η · Σ ∈ Θd+1 is divisible by 2 in the abelian group Θd+1.

Here Θd is Kervaire–Milnor’s �nite abelian group of homotopy d-spheres [KM63] and η · Σ ∈
Θd+1 for Σ ∈ Θd is the value ofη⊗Σ under the Milnor–Munkres–Novikov pairing π1 S⊗Θd → Θd+1
where η ∈ π1 S � Z/2 is the generator of the �rst stable homotopy group of spheres (see [Bre67]

for more on this pairing). The question whether η · Σ ∈ Θd+1 for a given Σ ∈ Θd is divisible by

2 can in most instances be reduced to a problem in stable homotopy theory which can in turn

be solved in many cases. This approach is discussed in Section 1.3, but to already illustrate its

practicability at this point, we display in Table 1 below the �rst groups of homotopy spheres Θd
together with the subgroups Θ

split

d ≤ Θd of split spheres, i.e. those Σ ∈ Θd for which η ·Σ is divisible

by 2, which is by Theorem A equivalent to π0 Di�
+ (T d ]Σ) → SLd (Z) being split. Note that among

the dimensions d for which Θd is nontrivial, there are dimensions in which all spheres are split

such as d = 7, dimensions in which none are split such as d = 8, as well as dimensions in which

some but not all are split such as d = 9. In Section 1.3 we also explain why both cases—the sphere

Σ being split or not—occur for exotic spheres Σ in in�nitely many dimensions.

d ≤ 6 and , 4 7 8 9 10 11 12 13

Θd 0 Z/28 Z/2 (Z/2)⊕2 ⊕ Z/2 Z/6 Z/992 0 Z/3
Θ
split

d 0 Z/28 0 (Z/2)⊕2 ⊕ 0 Z/6 Z/992 0 Z/3

14 15 16 17 18 19

Z/2 Z/2 ⊕ Z/8128 Z/2 (Z/2)⊕3 ⊕ Z/2 Z/8 ⊕ Z/2 Z/2 ⊕ Z/523264
0 Z/2 ⊕ Z/8128 0 (Z/2)⊕3 ⊕ 0 Z/8 ⊕ Z/2 Z/2 ⊕ Z/523264

Table 1. The groups Θd of homotopy d-spheres for d ≤ 19 together with the

subgroups Θ
split

d ≤ Θd of those Σ ∈ Θd for which η · Σ is divisible by 2.

Actions of SLd (Z) on homotopy tori. Our second main result shows that all nontrivial SLd (Z)-
actions on homotopy tori agree on homology with the standard action up to an automorphism.

Theorem B. Fix d ≥ 3, a homotopy d-torus T , and an automorphism group

G ∈ {Di�+ (T ),Homeo
+ (T )}.

Any homomorphism SLd (Z) → G is either trivial or has the property that its postcomposition

SLd (Z) −→ G −→ SLd (Z)

with the action on H1 (T ) is an automorphism. Moreover, if also d , 4, 5, then the same holds when
replacing G by the group π0G of isotopy classes.

In particular, given any nontrivial homomorphism φ : SLd (Z) → G , we obtain a splitting of the

action α : G → SLd (Z) on �rst homology, given by φ ◦ (α ◦ φ)−1. Applying this to G = Di�
+ (T )

shows that the above questions (S) and (A) are in fact equivalent. Applying it to π0G = π0 Di�
+ (T )

also shows that (S0) is equivalent to the following isotopy-analogue of (A).
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(A0) Is there a faithful action SLd (Z) → π0 Di�
+ (T )? If not, is there even any nontrivial action?

Combining these implications with Theorem A results in the following corollary which answers

all questions (A), (S), (S0), (A0) in the negative for a large class of homotopy tori and partially

answers Question 1.4 and Problem 1.5 in work of Bustamante and Tshishiku [BT21].

Corollary C. Let T be a homotopy torus of dimension d , 4. If

(i) T is not di�eomorphic to a connected sum T d ]Σ with Σ ∈ Θd , or
(ii) T is di�eomorphic to T d ]Σ for some Σ ∈ Θd such that η · Σ ∈ Θd+1 is not divisible by 2,

then every homomorphism from SLd (Z) to Di�+ (T ) or to π0 Di�+ (T ) is trivial.

Remark (The Zimmer programme). One motivation for considering Question (A) stems from the

Zimmer programme, part of which studies actions of SLd (Z) on manifolds. For instance, it follows

from a version of Zimmer’s conjecture, now a theorem due to Brown–Fisher–Hurtado [BFH20],

that SLd (Z) does not act faithfully on smooth manifolds of dimension ≤ d − 2. For actions of

SLd (Z) on d-manifolds, there is a conjectural classi�cation by Fisher–Melnick [FM22, Conjecture

3.6] which would imply that if SLd (Z) acts faithfully on a homotopy d-torus T , then T is the

standard torus. Corollary C implies this for a large class of homotopy tori.

Mapping class groups of exotic tori. The proof of Theorem A involves a result that may be of

independent interest: we determine the mapping class groups π0 Di�
+ (T ) of exotic tori of the

form T = T d ]Σ for Σ ∈ Θd in all dimensions d ≥ 7 in terms of the known mapping class group

π0 Di�
+ (T d ) of the standard torus. Note that Θd is trivial when d ≤ 6 and d , 4, so in these cases

there is nothing to show. To state the result, we �rst recall the previously known description of

π0 Di�
+ (T d ). As mentioned above, the action of SLd (Z) on T d

induces a splitting of the action

map π0 Di�
+ (T d ) → SLd (Z), so there is a semidirect product decomposition

π0 Di�
+ (T d ) = SLd (Z) n π0 TorDi� (T d ) with π0 Tor

Di� (T d ) B ker

(
π0 Di�

+ (T d ) → SLd (Z)
)
.

For d ≥ 6, the kernel π0 Tor
Di� (T d ) is abelian and isomorphic to the sum of Z[SLd (Z)]-modules

(1) Ω B
(⊕

0≤j≤d (Λ
jZd ) ⊗ Θd−j+1

)
⊕

(
(Λd−2Zd ) ⊗ Z/2

)
⊕

(
(Z/2)[Zd ]/(Z/2)[1]

)
C2

where SLd (Z) acts through the standard action on Zd , and (−)C2
denotes the coinvariants with

respect to the involution induced by multiplication by −1 on Zd (see [Hat78, Theorem 4.1, Remark

(3) on p. 9]
1

and [HS76, Theorem 2.5]). In addition to this description of π0 Tor
Di� (T d ), our

identi�cation of π0 Di�
+ (T d ]Σ) involves the aforementioned homotopy sphere η · Σ ∈ Θd+1 and

the unique nontrivial central extension

0 −→ Z/2 −→ SLd (Z) −→ SLd (Z) −→ 0

of SLd (Z) by Z/2; see Section 2.1. Our result identi�es the group π0 Di�
+ (T d

#Σ) as a semidirect

product of SLd (Z) or SLd (Z) acting on a quotient of Ω by a nontrivial subgroup depending on Σ
which is contained in the summand Θd+1 ⊕ (Zd ⊗ Θd ) of (1) corresponding to the terms j = 0, 1.

Theorem D. For a homotopy sphere Σ ∈ Θd of dimension d ≥ 7, there is an isomorphism

π0 Di�
+ (T d

#Σ) �




SLd (Z) n
[
Ω/

(
〈η · Σ〉 ⊕ (Zd ⊗ 〈Σ〉

)]
if η · Σ ∈ Θd+1is not divisible by 2

SLd (Z) n
[
Ω/

(
Zd ⊗ 〈Σ〉

)]
if η · Σ ∈ Θd+1 is divisible by 2

which is compatible with the homomorphisms to SLd (Z).

1
[Hat78, Theorem 4.1] asserts that the computation of π0 TorDi� (T d ) also holds for d = 5. However, this relies on a

claim attributed to Igusa (see the middle of p. 7 loc.cit.) for which—to our knowledge—no proof has been provided so far.
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In particular, this result shows that the mapping class group π0 Di�
+ (T d

#Σ) for Σ ∈ Θd is given

by a quotient of SLd (Z) n Ω by a �nite abelian subgroup which is always of order at least 2 and

has order precisely 2 if and only if Σ is the standard sphere, so from this mapping class point of

view the standard torus admits “the most symmetries”, as one would expect.

Remark (Regularity). Our results are phrased in terms of the groupDi�
+ (T ) ofC∞-di�eomorphisms,

but they also hold for the groups Di�
+,k (T ) of Ck

-di�eomorphisms for �nite k ≥ 1. For Theo-

rems A and D, this follows from the isomorphism π0 Di�
+ (T ) � π0 Di�

+,k (T ). For Theorem B

it follows from the observation that the statement for the group Homeo
+ (T ) also implies the

statement for all its subgroups. The deduction of Corollary C from Theorems A and B works

the same way. In particular, this shows that homotopy tori as in Corollary C do not admit any

C1
-action by SLd (Z).
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1. Collar twists

As preparation to the proof of Theorems A and D, we collect various results on a certain map

SO(d ) → BDi�∂ (M\int(D
d )) de�ned by twisting a collar of the complement of an embedded

d-disc in a closed smooth d-manifold M . After explaining the construction, we discuss how this

map behaves under taking products and connected sums, followed by some results on the collar

twisting map for speci�c choices of M , �rst homotopy spheres and then homotopy tori.

1.1. The collar twist. Given a closed connected oriented d-dimensional manifold M , we write

M◦ B M\int(Dd )

for the complement of a �xed embedded disc Dd ⊂ M that is compatible with the orientation

(which is unique up to isotopy), and we write Di�∂ (M
◦) for the group of di�eomorphisms of M◦

that �x a neighbourhood of the boundary sphere ∂M◦ = Sd−1 pointwise, equipped with the smooth

topology. The latter is homotopy equivalent to the larger group Di�T∗M (M ) of di�eomorphisms

of M that �x the centre of the disc ∗ ∈ M as well as the tangent space at this point. The group

Di�T∗M (M ) is the �bre of the �bration d : Di�+∗ (M ) → GL
+
d (R) assigning to a di�eomorphism

that �xes ∗ its (orientation-preserving) derivative at that point, so after delooping and using the

equivalence GL
+
d (R) ' SO(d ), there is a homotopy �bration sequence

(2) BDi�∂ (M
◦)

ext

−→ BDi�
+
∗ (M )

d
−→ BSO(d ).

where ext is induced by extending a di�eomorphism of M◦ to M by the identity. The connecting

map SO(d ) ' ΩBSO(d ) → BDi�∂ (M
◦) has the following geometric description: there is a

homomorphism ΩSO(d ) → Di�∂ ([0, 1] × S
d−1) which sends a smooth loop γ ∈ ΩSO(d ) that is

constant near the endpoints to the self-di�eomorphism of [0, 1] × Sd−1 given by mapping (t ,x ) to

(t ,γ (t ) · x ), and a homomorphism ext : Di�∂ ([0, 1] × S
d−1) → Di�∂ (M

◦) induced by a choice of

collar of the boundary sphere in M◦. Delooping their composition gives a map

ϒM : SO(d ) −→ BDi�∂ (M
◦)

that agrees the aforementioned connecting map; see e.g. [Kra21, p. 9]. Following Section 3 of

loc.cit., we call ϒM the collar twisting map ofM . This map is relevant to the study of the mapping

class groups of M and M◦, since the sequence (2) induces an exact sequence of groups

(3)
*
,
π1 SO(d ) �




Z if d = 2

Z/2 if d ≥ 3

+
-

(ϒM )∗
−→ π0 Di�∂ (M

◦)
ext

−→ π0 Di�
+
∗ (M ) −→ 0,
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so the second morphism in this sequence is an isomorphism if and only if the image

tM B (ϒM )∗ (1) ∈ π0 Di�∂ (M
◦)

of the standard generator of the leftmost group under the �rst map (ϒM )∗ is trivial. We call this

element the collar twist ofM . Note that the collar twist lies in the centre of π0 Di�∂ (M
◦), because

the image of the connecting map π2 (F ) → π1 (X ) in the long exact sequence of homotopy groups

for any �bration F → E → X has this property. Alternatively, one could use that the collar twist

is supported in a collar and that every di�eomorphism �xing boundary can be isotoped to also �x

any chosen collar, thereby having disjoint support from the collar twist.

1.2. Collar twists of products and connected sums. The following proposition shows that

collar twisting maps behave well with respect to products and connected sums. Here and in what

follows, we identify (M]N )◦ with the boundary connected sum M◦\N ◦ via the preferred isotopy

class of di�eomorphisms between these two manifolds.

Proposition 1.1. LetM and N be closed oriented connected manifolds of dimensionm and n.
(i) The compositions

SO(m) ⊂ SO(m + n)
ϒM×N
−→ BDi�∂ ((M × N )◦)

and

SO(m)
ϒM
−→ BDi�∂ (M

◦)
(−)×idN
−→ BDi�∂ (M

◦ × N )
ext

−→ BDi�∂ ((M × N )◦)

are homotopic. In particular,

tM×N = tM × idN ∈ π0 Di�∂ ((M × N )◦) form ≥ 2.

(ii) IfM and N are of the same dimension d =m = n, then the map

SO(d )
ϒM ]N
−→ BDi�∂ ((M]N )◦) = BDi�∂ (M

◦\N ◦)

and the composition

SO(d )
diag

−→ SO(d ) × SO(d )
ϒM×ϒN
−→ BDi�∂ (M

◦) × BDi�∂ (N
◦)

(−)\ (−)
−→ BDi�∂ (M

◦\N ◦)

are homotopic after restriction to the subspace SO(d − 1) ⊂ SO(d ). In particular, we have

tM]N = (tM \idN ◦ ) + (idM \tN ) ∈ π0 Di�∂ (M
◦\N ◦) for d ≥ 3.

In order to prove Proposition 1.1, it is convenient to view the collar twisting map as the

instance P = ∗ of a more general construction for a compact smooth p-dimensional manifold P
equipped with an embedding P×Dd−p ⊂ M . First, one extends the latter inclusion to an embedding

P × D
d−p
2
⊂ M whereD

d−p
2
⊂ Rd−p is the disc of radius 2 and P B P∪∂P×{0} (∂P×[0, 1]) is obtained

by attaching an external collar to P . This extension is unique up to isotopy. Given a smooth

function λ : P×[0, 2]→ [0, 1] and a smooth loopγ ∈ ΩSO(d−p) that is constant near the endpoints,

consider the di�eomorphismϕλ (γ ) : P × D
d−p
2
→ P × D

d−p
2

by sending (p,x ) to (p,γ (λ(p, ‖x ‖)) ·x ).
In other words, thinking of P × D

d−p
2

as foliated by the leaves Sp,r B {p} × Dd−p
r for p ∈ P and

r ∈ [0, 2], the di�eomorphism ϕλ (γ ) preserves the leaves and acts on the leaf Sp,r by rotation with

the element at time λ(p, r ) of the loop γ . If one additionally assumes that

(i) λ = 1 on a neighbourhood of P × Dd−p
where Dd−p = D

d−p
1
⊂ D

d−p
2

is the unit disc,

(ii) λ = 0 on a neighbourhood of ∂(P × D
d−p
2

),

then ϕλ (γ ) agrees with the identity on a neighbourhood of P × Dd−p ⊂ P × D
d−p
2

so restricts

to a di�eomorphism of the complement. This di�eomorphism of the complement extends via

the identity to a di�eomorphism of M\int(P × Dd−p ) �xing a neighbourhood of the boundary

pointwise, so we obtain a map

ϕλ (−) : ΩSO(d − p) −→ Di�∂ (M\int(P × D
d−p ))
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which depends continuously on λ and is a homomorphism with respect to pointwise multiplication

on the domain and composition on the target. Since the space of smooth functions λ satisfying (i)

and (ii) is contractible by linear interpolation, the delooping of ϕλ (−)

ΦP : SO(d − p) −→ BDi�∂ (M\int(P × D
d−p ))

is independent of λ up to homotopy, so only depends on the isotopy class of the embedding

P × Dd−p ⊂ M . This map generalises the collar twisting map in the following sense.

Lemma 1.2. For 0 ≤ p ≤ d , the maps

ϒM |SO(d−p ) : SO(d − p) −→ BDi�∂ (M
◦) and

ΦDp : SO(d − p) −→ BDi�∂ (M\int(D
p × Dd−p ))

ext

' BDi�∂ (M
◦).

are homotopic. Here the embedding Dp × Dd−p ⊂ M is chosen to be compatible with the orientation.

Proof. It su�ces to show that the two maps ΩSO(d − p) → Di�∂ (M
◦) before delooping are

homotopic as maps of topological groups. Going through the construction, one sees that both

maps are instances of the following construction applied to smooth loops γ ∈ SO(d − p) that are

constant near the ends: pick a smooth map λ : D
p
2
× [0, 2]→ [0, 1] which is 0 in a neighbourhood

of ∂(D
p
2
× D

d−p
2

), and 1 in a neighbourhood of Dd
, consider the self-di�eomorphism of D

p−2
2
× D

p
2

sending (p,x ) to (p,γ (λ(p, ‖x ‖)) · x ), restrict it to a di�eomorphism of (D
p−2
2
× Dp )\int(Dd ), and

extend the result to a di�eomorphism of M◦ by the identity. As the space of choices for λ is

contractible by linear interpolation, all maps constructed this way are homotopic. �

A similar argument also shows the following naturality property of the map ΦP .

Lemma 1.3. Given a compact submanifold Q ⊂ int(P ) of codimension 0, the map

SO(d − p)
ΦQ
−→ BDi�∂ (M\int(Q × D

d−p ))

and the composition

SO(d − p)
ΦP
−→ BDi�∂ (M\int(P × D

d−p ))
ext

−→ BDi�∂ (M\int(Q × D
d−p ))

are homotopic. Here the embeddingQ ×Dd−p ⊂ M is the restriction of the embedding P ×Dd−p ⊂ M .

Equipped with Lemmas 1.2 and 1.3, we now turn to the proof of Proposition 1.1.

Proof of Proposition 1.1. For part (i), note that the composition SO(m) → BDi�∂ (M
◦ × N ) is an

instance ofΦN using the embeddingDm×N ⊂ M×N , so its postcomposition with ext : BDi�∂ (M
◦×

N ) → BDi�∂ ((M × N )\int(Dm × Dn )) is homotopic to ΦDn by Lemma 1.3, which in turn implies

the claim as a result of Lemma 1.2. For part (ii), view (M]N )◦ as being obtained from M◦ t N ◦ by

gluing on a pair-of-pants bordismW : Sd−1 t Sd−1 { Sd−1. To show the claim, it su�ces to show

that the maps tin, tout : SO(d − 1) → BDi�∂ (W ) are homotopic, where tin simultaneously twists

collars of the two incoming boundary spheres and tout twists a collar of the outgoing boundary

sphere. ViewingW as Dd\int((e (D1 t D1)) × Dd−1) for an embedding e : D1 t D1 ↪→ int(D1), the

map tin is given by ϒD1tD1 : SO(d − 1) → BDi�∂ (D
d\int(e (D1 t D1) × Dd−1)) and the map tout as

the composition of ϒD1 : SO(d − 1) → BDi�∂ (D
d\int(D1 × Dd−1) with ext : BDi�∂ (D

d\int(D1 ×

Dd−1)) → BDi�∂ (D
d\int((e (D1 t D1)) × Dd−1)), so the claim follows from Lemma 1.3 applied to

P = D1
, Q = D1 t D1

, and M = Dd
. �

Remark 1.4. Proposition 1.1 (ii) is a more general version of the “pants relation" in [CT22, Lemma

2.5], where a proof of this relation is given by constructing an explicit isotopy.

1.3. Collar twists of exotic spheres. We now turn to the collar twisting map ϒΣ for homotopy

spheres Σ, but we actually restrict our attention to the collar twist tΣ ∈ π0 Di�∂ (Σ
◦) it induces on

fundamental groups. We begin with a recollection of the classi�cation of homotopy spheres.
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1.3.1. Classi�cation of homotopy spheres. Recall (e.g. from [Lev85, p. 90-91]) that Kervaire–Milnor’s

�nite abelian group Θd of homotopy d-spheres [KM63] �ts for d ≥ 5 into an exact sequence

(4) 0→ bPd+1 → Θd
[−]
−−→ coker(J )d →




Z/2 if d = 2
k − 2, for some k

0 otherwise

where bPd+1 ≤ Θd is a certain cyclic subgroup and coker(J )d is the cokernel of the stable J -
homomorphism πd O→ πd S from the homotopy groups of the stable orthogonal group (which

are known by Bott periodicity) to the stable homotopy groups of spheres. The order of the

cyclic subgroup bPd+1 is known in all cases except d = 125 (combine [Lev85, Corollaries 2.2, 3.20,

Theorem 4.9] with [HHR16, Theorem 1.3]):

]bPd+1 =




2
2k−2 (22k−1 − 1) num(4|B2k |/k ) if d = 4k − 1 for k ≥ 1

2 if d = 4k + 1 for k ≥ 1 but d , 2
k+1 − 3 if k ≤ 7

0 if d is even or if d = 2
k+1 − 3 for k ≤ 6

2 or 0 if d = 2
k+1 − 3 for k = 7.

The map coker(J )d → Z/2 in the sequence (4) is known to be trivial as long as d , 2
k+1 − 2 for

k ≤ 7. It is known to be nontrivial for k ≤ 6, but the case k = 7 (i.e. d = 126) is still open (see

[HHR16, Theorem 1.4]). The question whether bP126 = 0 or bP126 = Z/2 and the question whether

coker(J )126 → Z/2 is surjective or not (these questions turn out to be equivalent; see [Lev70, p. 88])

is the last remaining case of the Kervaire invariant one problem. The upshot of this discussion is

that apart from the two problematic dimensions d = 2
k+1 − 3, 2k+1 − 2 for k = 7 (i.ed = 125, 126),

the group Θd is described in terms of the group coker(J )d up to extension problems. In most cases,

also these extension problems have been resolved:

• For d even, bPd+1 vanishes and the map to coker(J )d is trivial as long as d , 2
k+1 − 2 for k ≤ 7,

so in these cases we have Θd � coker(J )d and there are no extension problems.

• For d = 2
k+1 − 2 for k ≤ 6, we have an exact sequence 0 → Θd → coker(J )d → Z/2 → 0

which admits a splitting since in these dimensions coker(J )d is known to be annihilated by 2

(see e.g. the table [IWX20, Table 1]), so Θd � coker(J )d ⊕ Z/2. For k = 7 the question whether

the map coker(J )126 → Z/2 is split surjective (rather than just surjective which is open too;

see above) is known as the strong Kervaire invariant one problem.

• For d ≡ 3 (mod 4), the map Θd → coker(J )d is split surjective by [Bru68, Theorem 1.3] or

[Fra73, Theorem 5], so Θd � bPd+1 ⊕ coker(J )d .

• For d ≡ 1 (mod 4), the map Θd → coker(J )d is split surjective if d is not of the form 2
k − 3

for some k ≥ 1 by [Bru69, Theorem 1.2] and [Bru70, Theorem 1.1], so Θd � Z/2 ⊕ coker(J )d .

1.3.2. Collar twists of homotopy spheres and the Milnor–Munkres–Novikov pairing. We begin the

discussion of collar twists of homotopy spheres with a general observation: ifM is a closed oriented

manifold of dimension d ≥ 5 and Σ ∈ Θd is a homotopy sphere, then writing Σ ∈ Θd for the

inverse sphere obtained by reversing the orientation, the maps

(−)\idΣ◦ : BDi�∂ (M
◦) −→ BDi�∂ (M

◦\Σ◦) = BDi�∂ ((M]Σ)
◦)

(−)\idΣ◦ : BDi�∂ ((M]Σ)
◦) −→ BDi�∂ ((M]Σ)

◦\Σ
◦
) = BDi�∂ (M

◦).

are inverse homotopy equivalences, so in particular induce an isomorphism π0 Di�∂ (M
◦) �

π0 Di�∂ ((M]Σ)
◦) on fundamental groups. For M = Sd , combining the latter with the usual

isomorphism π0 Di�∂ (D
d ) � Θd+1 given by gluing together two copies Dd+1

along their boundary

via di�eomorphisms of Sd supported on a hemisphere results in a chain of isomorphisms

π0 Di�∂ (Σ
◦) � π0 Di�∂ (D

d ) � Θd+1

We write

TΣ ∈ Θd+1
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for the image of the collar twist tΣ ∈ π0 Di�∂ (Σ
◦) under these isomorphisms. This de�nes a

set-theoretical function T(−) : Θd → Θd+1 which can be rephrased (see Proposition 1.5 below)

in terms of a well-known construction in the study of homotopy spheres, namely the bilinear

Milnor–Munkres–Novikov pairing (see e.g. [Bre67]) πk S ⊗ Θd → Θk+d for k < d − 1. The latter is

related to the multiplication in the stable homotopy groups of spheres by a commutative diagram

(5)

πk S ⊗ Θd Θk+d

πk S ⊗ coker(J )d coker(J )k+d

(−) ·(−)

idπk S⊗[−] [−]

(−) ·(−)

for k < d − 1

with bottom horizontal map induced by the multiplication on the stable stems, using that products

of elements in im(J )k and πd S contained in im(J )k+d if k < d − 1 (see p. 442 of loc.cit.).

Proposition 1.5 (Kreck, Levine). We have TΣ = η · Σ where η ∈ π1 S � Z/2 is the generator.

Proof. Levine writes γ (Σ) ∈ Θd+1 for TΣ ∈ Θd+1 [Lev70, p. 245-246] and Kreck writes ΣΣ ∈ Θd+1
for it [Kre79, p. 646]. For even d , the claim is [Kre79, Lemma 3 c)]. For odd d , the subgroup

bPd+2 ≤ Θd+1 is trivial, so it su�ces to show the claimed equality after passing to coker(J )d+1
(see Section 1.3.1). The latter follows from [Lev70, Corollary 4] using that Levine’s subgroup

I1 (Σ) ⊂ Θd+1 is generated by γ (Σ) ∈ Θd+1 by de�nition; see p. 246 loc.cit.. �

Remark 1.6. Proposition 1.5 has immediate consequences for collar twists of homotopy spheres.

For example, since η is 2-torsion and the Milnor–Munkres–Novikov pairing is bilinear, the sphere

TΣ = η · Σ is trivial if Σ ∈ Θd has odd order, so the collar twist of Σ is in these cases trivial too.

The combination of Proposition 1.5, the classi�cation of homotopy spheres as recalled in

Section 1.3.1, and the diagram (5) allows one to reduce most questions on collar twists of exotic

spheres to questions in stable homotopy theory. As an example of this principle, we rephrase the

condition featuring in the statements of Theorem A and D (whether TΣ = η · Σ ∈ Θd+1 is divisible

by 2 or not) in most cases in terms of the cokernel of the stable J -homomorphism:

Lemma 1.7. If η · Σ ∈ Θd+1 is divisible by 2, then so is η · [Σ] ∈ coker(J )d+1. The converse holds
(i) for d . 4, 5 (mod 8),
(ii) for d ≡ 5 (mod 8) for d , 125, and
(iii) for d ≡ 4 (mod 8) for d = 2

k − 4 with k ≤ 6.

Proof. By commutativity of (5), the class η · [Σ] ∈ coker(J )d+1 is the image of η · Σ ∈ Θd+1 under

the morphism [−] : Θd+1 → coker(J )d , so if the latter is divisible by 2, then so is the former. To

prove the partial converse, we distinguish some cases and make frequent use of the classi�cation

of homotopy spheres as recalled in Section 1.3.1, without further reference.

• For d + 1 ≡ 3, 7 mod 8, the map [−] : Θd+1 → coker(J )d+1 is split surjective, so Θd+1 �
bPd+2 ⊕ coker(J )d+1. Since η · Σ has order two and bPd+2 is cyclic of order divisible by 4, the

bPd+2-component of the order 2 element η · Σ has to be divisible by 2, so the full element η · Σ
is divisible by 2 if and only if its image η · [Σ] ∈ coker(J )d+1 is divisible by 2.

• For d + 1 ≡ 1 mod 8, the map [−] : Θd+1 → coker(J )d+1 is also split surjective, so Θd+1 �
bPd+2 ⊕ coker(J )d+1 . In this case the bPd+2-component of η · Σ ∈ Θd+1 turns out to vanish,

which implies the result. The reason for this vanishing is that η · Σ ∈ Θd+1 is contained in

the subgroup bSpind+2 ≤ Θd+1 of homotopy spheres that bound a spin manifold [Law73, §4 +

Diagram (6)] and on this subgroup the bPd+2-component with respect to the can be computed

as the image of the f -invariant from [Bru69, §3] which vanishes for η ·Σ by [Law73, Proposition

4.1] (this uses that the pairings denoted τn,k and ρn,k in loc.cit. are compatible, by diagram (B)

on p. 835 of loc.cit.).

• For d + 1 ≡ 0, 2, 4, 6 mod 8 and d + 1 , 2
k − 2 for k ≤ 7, and for d + 1 ≡ 5 (mod 8) with

d + 1 = 2
k − 3 for k ≤ 6 we have Θd+1 � coker(J )d+1 and there is nothing to show.
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• For d + 1 ≡ 6 (mod 8) with d + 1 = 2
k − 2 for k ≤ 6 we have Θd+1 � coker(J )d+1 ⊕ Z/2, so an

element in Θd+1 is divisible by 2 if and only if this holds for its image in coker(J )d+1. �

Remark 1.8. To extend Lemma 1.7 to d + 1 ≡ 5 (mod 8) for d + 1 , 2
k − 3, it would su�ce to show

that the bPd+2-component of η · Σ for Σ ∈ Θd under the splitting Θd+1 � coker(J )d+1 ⊕ bPd+2
recalled in Section 1.3.1 is trivial. We do not know whether this is the case.

In view of Lemma 1.7, the question whether η ·Σ ∈ Θd+1 is divisible by 2 can in many dimensions

be analysed with inputs from stable homotopy theory. The following two remarks contain some

applications in this direction:

Remark 1.9. As η has order two, whether η ·Σ ∈ Θd+1 is divisible by 2 or not can be tested 2-locally.

At the prime 2, the groups coker(J )d and multiplication by η on them have been computed up to

dimensions about 90. The result is summarised in [IWX20, Figure 1] where every dot represents

a nontrivial element, the diagonal and vertical lines indicate that two elements are related by

multiplication with η or 2, respectively, and the image of J consists of the blue dots, apart from

the blue dots in degrees ≡ 1, 2 (mod 8). Combining this with Lemma 1.7 and the classi�cation of

homotopy spheres recalled in Section 1.3.1, one can in most dimensions up to about 90 determine

the groups Θd and the subgroups Θ
split

d ≤ Θd of those Σ ∈ Θd such that η · Σ is divisible by 2. The

result of this analysis for d ≤ 19 is recorded in Table 1 of the introduction.

Remark 1.10. There are also many in�nite families of homotopy spheres Σ ∈ Θd for which one

can decide whether η · Σ ∈ Θd+1 is divisible by 2 or not. We again rely on Section 1.3.1.

• As an in�nite family of nontrivial Σ ∈ Θd in odd dimensions such that η · Σ is divisible by

2, one may for instance take any Σ ∈ Θd for d ≡ 1, 3, 7 (mod 8) that lies in the nontrivial

subgroup bPd+1 ≤ Θd . This is because η · Σ ∈ Θd+1 � coker(J )d+1 is trivial as a result

of (5), so it is in particular divisible by 2. There are also examples in even dimensions: as

bP8k+3 = 0, the class in coker(J )8k+2 of Adams’ element µ8k+2 ∈ π8k+2 S (which is nontrivial

in coker(J )8k+2 as π8k+2 O = 0) lifts uniquely to a homotopy sphere Σµ
8k+2 ∈ Θ8k+2. As

η · [µ8k+2] = 0 ∈ coker(J )8k+2 since η · µ8k+2 ∈ π8k+3 S is known to be contained in im(J )8k+3,
it follows from Lemma 1.7 that Σµ

8k+2 is divisible by 2.

• As an in�nite family of nontrivial Σ ∈ Θd in odd dimensions such that η · Σ is not divisible by

2, one may take any Σ ∈ Θ8k+1 that maps to the class in coker(J )8k+1 represented by Adams’

element µ8k+1 ∈ π8k+1 S which is known to have the property that η · µ8k+1 ∈ coker(J )8k+2 =
π8k+2 S is not divisible by 2. In even dimensions, one may use the families of nontrivial

homotopy spheres Σ ∈ Θd for d ≡ 8 (mod 192) from [Kra21, Proposition 2.11 (i)] which

have the property that η · [Σ] ∈ coker(J )d is nontrivial and detected in the spectrum tmf

of topological modular forms (see the proof of the cited proposition). Moreover, in these

dimensions πd+1 tmf is known to be annihilated by 2 (see e.g. [Beh20, Figure 1.2]), so η · [Σ] is

not divisible by 2 in πd+1 tmf and hence neither in coker(J )d+1.

1.4. Collar twists of tori. The next class of manifolds for which we establish some results on their

collar twisting maps are homotopy tori. For this class of manifolds, it is convenient to study the

�bre sequence (2) involving the collar twisting maps by comparing it to an analogous sequence for

block-homeomorphisms (see e.g. [HLLRW21, Section 2] for a discussion of block-automorphisms

suitable for our needs) via a map of �bre sequences

(6)

BDi�∂ (M
◦) BDi�

+
∗ (M ) BSO(d )

BKHomeoT∗M (M ) BKHomeo
+
∗ (M ) BSTop.

The bottom row of this diagram deserves an explanation. To construct it, �rst consider the forgetful

map KHomeo
+ (M ) → hAut

+ (M ) from the space of orientation-preserving block-homeomorphisms
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of M to the space of orientation-preserving homotopy self-equivalences. The space KHomeo
+
∗ (M )

is de�ned as the homotopy pullback of this map along the inclusion map hAut
+
∗ (M ) → hAut

+ (M )
of those orientation-preserving self-equivalences of M that preserve the chosen point ∗ ∈ M .

The delooping of the latter map is the universal M-�bration, so BKHomeo
+
∗ (M ) is by construction

equivalent to the total space of the universal oriented M-block-bundle. The right-hand map in

the bottom sequence is the delooping of the map KHomeo
+
∗ (M ) → STop that takes the stable

topological derivative of a block-homeomorphism of M at ∗ ∈ M , or equivalently, it classi�es the

stable vertical topological tangent bundle of the universal oriented M-block-bundle (see Section 2

loc.cit.), similarly to how the right-hand map of the upper sequence classi�es the vertical tangent

bundle of the universal oriented smooth M-bundle. The rightmost vertical map classi�es the

underlying stable Euclidean bundle of an oriented d-dimensional vector bundle and the middle

vertical map is induced by the forgetful map Di�
+
∗ (M ) → KHomeo

+
∗ (M ). The left-hand map of the

bottom sequence is de�ned as the homotopy �bre inclusion of the right-hand map, or equivalently,

as the delooping of the derivative map.

Note that the bottom row only depends on the underlying topological manifold of M , so in

particular agrees for homotopy tori M = T with the corresponding sequence of the standard torus

M = T d
. For the latter, the middle space BKHomeo

+
∗ (M ) has a very simple description:

Lemma 1.11. For any d ≥ 1, the map

BKHomeo
+
∗ (T

d ) −→ BSLd (Z)

induced by the action on H1 (T
d ) � Zd is an equivalence.

Proof. As T d ' K (Zd , 1), the analogous map hAut
+
∗ (T

d ) → SLd (Z) from the space of orientation

homotopy self-equivalences of M is an equivalence, so it su�ces to show that the forgetful map

KHomeo
+
∗ (T

d ) → hAut
+
∗ (T

d ) is an equivalence. We will do so by proving that the right-hand map

in the map of homotopy �bre sequences

T d
BKHomeo

+
∗ (T

d ) BKHomeo
+ (T d )

T d
BhAut

+
∗ (T

d ) BhAut
+ (T d )

comparing the universalT d
-block-bundle with the universalT d

-�bration, is an equivalence. Using

the action of SLd (Z) on T d � Rd/Zd and the action of T d
on itself, a diagram chase in the ladder

of long exact sequences induced by this map of �bre sequences shows that the middle arrow is

surjective on all homotopy groups. Injectivity on homotopy groups is equivalent to the claim that

for k ≥ 0, any self-homeomorphism of T d × Dk
�xing on the boundary that is homotopic to the

identity relative to the boundary is also concordant to the identity relative to the boundary. For

d ≥ 5, this from the fact that the topological structure sets S
Top

∂
(T d × Dk ) in the sense of surgery

theory are trivial as long as k + d ≥ 5 [KS77, p. 205, Theorem C.2], but there is also a more direct

proof in all dimensions [Law76]. �

Corollary 1.12. Let T be a homotopy torus of dimension d ≥ 1. The collar twisting map

ϒT : SO(d ) −→ BDi�∂ (T
◦)

is injective on πk (−) for k ≤ d − 2. In particular, tT ∈ π0 Di�∂ (T
◦) is nontrivial for d ≥ 3.

Proof. From the map of long exact sequences induced by the map (6) together with the fact that

the higher homotopy groups of BKHomeo
+
∗ (T ) ' BKHomeo

+
∗ (T

d ) vanish as a result of Lemma 1.11,

we see that the map in question is injective on πk (−) if the map πk SO(d ) → πk Top is injective.

This maps factors as the stabilisation map SO(d ) → SO followed by the forgetful map SO→ Top.

The latter is injective on all homotopy groups (combine [Bru68] with [KS77, p. 246, 5.0.(1)]) and

the former for k ≤ d − 2 by stability, so the claim follows. �
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Remark 1.13. The collar twist tT ∈ π0 Di�∂ (T
◦) is also nontrivial for d = 2 which follows for

instance from Lemma 2.2 below. Moreover, for d = 2, 3 the map ϒT induces an isomorphism on all

higher homotopy groups since the component of the identity Di�∗ (T
d )id ' ∗ is contractible. This

is well-known for d = 2 and follows for d = 3 from a combination of [Hat83] and [Hat76] using

that T 3
is Haken.

Remark 1.14. Replacing SLd (Z) with Aut(π1M ), the statement of Lemma 1.11 (and thus also that

of Corollary 1.12) holds for many other closed aspherical manifolds M , in particular for those

of dimension d ≥ 5 whose fundamental group satis�es the Farrell–Jones conjecture and also

for those of dimension d = 4 if the fundamental group is good in the sense of [FQ90, p. 99] (see

e.g. [HLLRW21, Proposition 5.1.1] for an explanation of this).

2. Mapping class groups of exotic tori and the proof of Theorem D

Equipped with the results on collar twists from the previous section, we turn towards studying

the mapping class groups of homotopy tori of the form T d ]Σ.

2.1. Central extensions of special linear groups. The strategy will be to relate the mapping

class groups of homotopy tori to well-known central extensions of special linear groups. We �rst

recall these extensions and discuss some of their properties. The universal cover of the stable

special linear group over the reals SL(R) = colimd SLd (R) gives a central extension

0 −→ Z/2 −→ SL(R) −→ SL(R) −→ 0

which we may pull back along the lattice inclusion SLd (Z) ≤ SL(R) to a central extension

(7) 0 −→ Z/2 −→ SLd (Z) −→ SLd (Z) −→ 0

for d ≥ 1. For d = 2, also a di�erent central extension will play a role, namely the pullback

(8) 0 −→ Z −→ S̃L2 (Z) −→ SL2 (Z) −→ 0

along the inclusion SL2 (Z) ≤ SL2 (R) of the universal cover central extension

0 −→ Z −→ S̃L2 (R) −→ SL2 (R) −→ 0.

Since the inclusion map SLd (R) → SLd+1 (R) is surjective on fundamental groups for d ≥ 2, the

extension (7) agrees with the pushout of (8) along the quotient map Z → Z/2. Everything we

need to know about these extensions, together with some useful information on the low-degree

(co)homology of SLd (Z) is summarised in the following lemma.

Lemma 2.1.
(i) The �rst two homology groups of SLd (Z) are given by the following table

d H1 (SLd (Z);Z) H2 (SLd (Z);Z)

2 Z/12 0

3 0 Z/2 ⊕ Z/2
4 0 Z/2 ⊕ Z/2
≥ 5 0 Z/2

(ii) The map
H2 (SLd (Z);Z) −→ H2 (SLd+1 (Z);Z)

induced by stabilisation is nontrivial for d ≥ 3. For d = 3 its image has order two.
(iii) The extension (8) is classi�ed by a generator of

H
2 (SL2 (Z);Z) � Z/12.

(iv) The extension (7) is nontrivial for d ≥ 2. For d ≥ 5, it is classi�ed by the generator of

H
2 (SLd (Z);Z/2) � Z/2.
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Proof. That the abelianisation H1 (SLd (Z);Z) is cyclic of order 12 for d = 2 can be read o�

from the standard presentation of SL2 (Z) (see e.g. [Mil71, Corollary 10.5]), and the fact that

H1 (SLd (Z);Z) vanishes for d ≥ 3 follows for instance from [Mil71, Corollary 10.3] together with

the observation that for d ≥ 3 every elementary square matrix can be written as a commutator

of two elementary matrices. The computation of H2 (SLd (Z);Z) for d = 2 follows from the

isomorphism SL2 (Z) � Z/4 ∗Z/2 Z/6 [Ser03, 1.5.3] and the Mayer–Vietoris sequence for group

homology of amalgamated products [Bro94, Corollary II.7.7] (c.f. Exercise 3 on p. 52 of loc.cit.), for

d = 3, 4 from [vdK75], and for d ≥ 5 from [Mil71, Corollary 5.8, Remark on p. 48, Theorem 10.1].

Using these calculations, the computations H
2 (SL2 (Z);Z) � Z/12 and H

2 (SLd (Z);Z/2) � Z/2 for

d ≥ 5 implicitly claimed in (iii) and (iv) follow from the universal coe�cient theorem. The latter

also implies the part of (ii) for d ≥ 3 once we show (iv). The claim on the stabilising map for d = 3

can be proved via the arguments in [vdK75].

To prove (iii), we use the general fact that for a given central extension 0→ A→ E → G → 0,

the Serre spectral sequence induces an exact sequence 0→ H
1 (G;A) → H

1 (E;A) → H
1 (A;A) →

H
2 (G;A) → H

2 (E;A). The identity map induces a preferred class in H
1 (A;A) and its image in

H
2 (G;A) is the class that classi�es the given extension. Applying this to the extension (8), we

see that in order to show that this extension generates H
2 (SL2 (Z);Z) it su�ces to show that

H
2 (S̃L2 (Z);Z) vanishes. Now S̃L2 (Z) agrees up to isomorphism with the braid group B3 on three

strands (see e.g. [Mil71, p. 83]), so the claim follows from the universal coe�cient theorem and the

facts that H1 (B3;Z) � Z and H2 (B3;Z) � Z/2 [Arn14, p. 32].

For (iv), we use the universal coe�cient theorem to see that H
2 (SL2 (Z);Z/2) � Z/2 is surjected

upon by the map H
2 (SLd (Z);Z) → H

2 (SLd (Z);Z/2) induced by reduction modulo 2, so it follows

from (iii) that the extension (7) is nontrivial for d = 2 and hence also for all higher values

of d since the former is the pullback of the latter along the inclusion SL2 (Z) → SLd (Z). As

H
2 (SLd (Z);Z/2) � Z/2 has only a single nontrivial element for d ≥ 5, this gives (iv). �

2.2. Mapping class groups of homotopy tori and Theorem D. We now determine the map-

ping class groups of homotopy tori of the form T = T d ]Σ. The argument has three steps.

Step 1© Determine π0 Di�
+
∗ (T

d ]Σ) in terms of π0 Di�∂ ((T
d ]Σ)◦).

Step 2© Determine π0 Di�
+
∗ (T

d ]Σ).
Step 3© Determine π0 Di�

+ (T d ]Σ).

Throughout this section, we �x a basis of H1 (T
d,◦) � Zd and use the bases for the �rst homology

groups of T d
, T d,◦\Σ◦ = (T d ]Σ)◦, and T d ]Σ that are induced by the chosen basis of H1 (T

d,◦).

Step 1©. Fixing a disc or a point. We �rst determine the group π0 Di�∂ (T
◦) in terms of the group

π0 Di�
+
∗ (T ). This step works for general homotopy tori T , not just those of the form T d ]Σ.

Lemma 2.2. For a homotopy d-torus T , there are pullback squares

π0 Di�∂ (T
◦) π0 Di�

+
∗ (T )

S̃Ld (Z) SLd (Z),

ext

� � for d = 2 and
π0 Di�∂ (T

◦) π0 Di�
+
∗ (T )

SLd (Z) SLd (Z).

ext

for d ≥ 3

Proof. If d = 2, then T is the standard 2-torus T 2
for which the claimed square is well-known

(for a reference, compare the standard presentations of π0 Di�∂ (T
d,◦) and S̃Ld (Z) e.g. in [Mil71,

p.82–83] and [Kor02, Section 5]). For d ≥ 3, we consider the map of central extensions

(9)

0 π1 SO(d ) π0 Di�∂ (T
◦) π0 Di�

+
∗ (T ) 0

0 π1 STop π0 KHomeoT∗T d (T d ) π0 KHomeo
+
∗ (T

d ) 0.

�
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induced by (6) for M = T , using that the bottom sequence only depends on the underlying

topological manifold. Exactness at π1 STop follows from the fact that π1 KHomeo
+
∗ (T

d ) = 0 by

Lemma 1.11 and exactness at π1 SO(d ) follows from exactness at π1 STop. Lemma 1.11 also shows

that the homology action map π0 KHomeo
+
∗ (T

d ) → SLd (Z) is an isomorphism, so we are left to

show that the bottom extension is isomorphic to 0→ Z/2→ SLd (Z) → SLd (Z) → 0. It su�ces to

show this for large enough d , since the bottom extension in dimension d maps by taking products

with S1 to the corresponding extension in dimension d + 1 (which have both kernel π1STop), so the

extension for d is the pullback of the extension for d + 1 along the inclusion SLd (Z) → SLd+1 (Z).
We may thus assume d ≥ 5 in which case there is a single nontrivial central extension of SLd (Z)
by Z/2 (see Lemma 2.1), so we only need to exclude that the bottom extension in (9) is trivial. To

show this, we consider (9) for T = T d
and extend it to the top as

0 π1 SO(2) π0 Di�∂ (T
2,◦) π0 Di�

+
∗ (T

2) 0

0 π1 SO(d ) π0 Di�∂ (T
d,◦) π0 Di�

+
∗ (T

d ) 0

0 π1 STop π0 KHomeoT∗T d (T d ) π0 KHomeo
+
∗ (T

d ) 0.

inc∗

�

where the top middle vertical map is induced by taking products with idT d−2 followed by restriction,

commutativity of the left upper square follows by an application of Proposition 1.1 (i) to M = T 2

and N = T d−2
, and the right upper square is induced by the commutativity of the left upper

square. We will show that the bottom extension is nontrivial by showing that its pullback along

the composition π0 Di�
+
∗ (T

2) → π0 KHomeo
+
∗ (T

d ) is nontrivial. This composition is isomorphic

to the inclusion SL2 (Z) → SLd (Z) and the composition π1 SO(2) → π1 STop to the quotient map

Z→ Z/2, so it follows that the pullback in question is isomorphic to the mod 2 reduction of the

extension 0→ Z→ S̃L2 (Z) → SL2 (Z) → 0, i.e. the extension 0→ Z/2→ SL2 (Z) → SL2 (Z) → 0.

The latter is nontrivial by Lemma 2.1 (iv). �

Step 2©. The pointed mapping class group of T d ]Σ. Next, we determine the group π0 Di�
+
∗ (T

d ]Σ).
For Σ = Sd the evaluation �bration Di�

+ (T d ) → T d
whose �bre is Di�

+
∗ (T

d ) has a splitting given

by the standard action of T d
on itself, so the long exact sequence in homotopy groups induces the

�rst out of two isomorphisms

π0 Di�
+
∗ (T

d ) � π0 Di�
+ (T d )

d≥6
� SLd (Z) n Ω;

the second isomorphism was explained in the introduction. Combining this with Lemma 2.2 for

T = T d
, we obtain an isomorphism

(10) π0 Di�∂ (T
d,◦) � SLd (Z) n Ω for d ≥ 6.

Now recall that the collar twist tT d ∈ π0 Di�∂ (T
d,◦) generates the kernel of the map to π0 Di�

+
∗ (T

d )

so it corresponds under the isomorphism (10) to the element (td , 0) where td ∈ SLd (Z) is the

central element that generates the kernel of the map to SLd (Z). The composition

(11) Θd+1 � π0 Di�∂ (D
d )

idTd,◦ \ (−)
−−−−−−−−→ π0 Di�∂ (T

d,◦),

which we abbreviate by ιd : Θd+1 → π0 Di�∂ (T
d,◦), can be identi�ed in terms of (10) as follows:

Lemma 2.3. With respect to the isomorphism (10), the composition (11) agrees with the inclusion
Θd+1 ≤ SLd (Z) n Ω given by the (j = 0)-summand in (1).

Proof. By an application of Lemma 2.2, this would follow from showing the analogous statement

for π0 Di�
+
∗ (T

d ) � SLd (Z)nΩ instead of for π0 Di�∂ (T
d,◦) once we know that the postcomposition

of (11) with the isomorphism (10) has image in Ω ≤ SLd (Z) n Ω. That the statement holds in
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π0 Di�
+
∗ (T

d ) � π0 Di�
+ (T d ) follows from [Hat83, p. 9, Remark (5)], so it su�ces to show that

(11) lands in the subgroup Ω. To show that, note that di�eomorphisms in the image of (11) are

topologically isotopic to the identity since Homeo∂ (D
d ) is contractible by the Alexander trick.

In particular, (11) lands in the kernel of the forgetful map π0Di�∂ (T
d,◦) → π0 KHomeoT∗T d (T d )

which agrees via the isomorphism π0 Di�
+
∗ (T

d ) � π0 Di�
+ (T d ) � SLd (Z) n Ω precisely with the

subgroup Ω (see the proof of Lemma 2.2), so the claim follows. �

Given a homotopy sphere Σ ∈ Θd and d ≥ 7, we have the isomorphism discussed in Section 1.3

(12) π0 Di�∂ (T
d,◦)

(−)\idΣ◦
� π0 Di�∂ ((T

d ]Σ)◦),

so from the exact sequence (3), we see that π0 Di�∗ (T
d ]Σ) is isomorphic to the quotient of

π0 Di�∂ (T
d,◦) � SLd (Z) n Ω by the central subgroup generated by the preimage of the collar

twist tT d ]Σ ∈ π0 Di�∂ ((T
d ]Σ)◦) under (12).

Lemma 2.4. The preimage of tT d ]Σ ∈ π0Di�∂ ((T
d ]Σ)◦) in SLd (Z) nΩ under the combined isomor-

phisms (12) and (10) is (td ,η · Σ) ∈ SLd (Z) n Ω. Consequently, we have an isomorphism

(13) π0 Di�
+
∗ (T

d ]Σ) �
(
SLd (Z) n Ω

)
/〈(td ,η · Σ)〉.

for d ≥ 7 which is compatible with the homomorphisms to SLd (Z).

Proof. We already explained how the second part follows from the �rst. To prove the �rst, we

use the relation tT d ]Σ = tT d \idΣ◦ + idT d,◦ \tΣ in π0 Di�∂ ((T
d ]Σ)◦) ensured by Proposition 1.1 (ii),

using which we express the element in question in π0 Di�∂ ((T
d )◦) as(

tT d \idΣ◦ + idT d,◦ \tΣ
)
\idΣ◦ = tT d + idT d,◦ \(tΣ\idΣ◦ ) = tT d + ιd (η · Σ) ∈ π0 Di�∂ ((T

d ]Σ)◦).

Here we used the equalityTΣ = η · Σ from Proposition 1.5 and the de�nition ofTΣ from Section 1.3.

By the discussion above, tT d and ιd (η · Σ) corresponds under the isomorphism (10) to the elements

(td , 0) and (0,η · Σ) in SLd (Z) n Ω, so the element we are looking for is indeed (td ,η · Σ). �

The quotient of SLd (Z) n Ω appearing in Lemma 2.4 can be further simpli�ed:

Lemma 2.5. There is an isomorphism of groups(
SLd (Z) n Ω

)
/〈(td ,η · Σ)〉 �




SLd (Z) n
(
Ω/〈η · Σ〉

)
if η · Σ ∈ Θd+1is not divisible by 2

SLd (Z) n Ω if η · Σ ∈ Θd+1is divisible by 2

that is compatible with the homomorphisms to SLd (Z).

Proof. Since the element η · Σ of the �nite abelian group Θd+1 is of order 2, it is not divisible

by 2 if and only if it generates a direct Z/2-summand. We �rst assume that this is the case, so

Θd+1 � (Θd+1/〈η ·Σ〉)⊕Z/2. Writing Ω′ ≤ Ω for the SLd (Z)-invariant subgroup complementary to

the central summand Θd+1 ≤ Ω in (1), we have SLd (Z) n Ω � SLd (Z) n (Ω′ ⊕ (Θd/〈η · Σ〉) ⊕ Z/2).
The latter admits an epimorphism to SLd (Z) n (Ω′ ⊕ (Θd/〈η · Σ〉)) given by sending (A,a+Σ′+x )
to (x · td · A,a + Σ′). This is well-de�ned since the central element td ∈ SLd (Z) has order 2 and

acts trivially on Ω since the action factors by construction through SLd (Z). The kernel of this

epimorphism is the subgroup generated by (td ,η · Σ), so we obtain an isomorphism between(
SLd (Z) n Ω

)
/〈(td ,η · Σ)〉 and SLd (Z) n

(
Ω/〈η · Σ〉)

)
, as claimed.

Now assume that η · Σ ∈ Θd+1 does not generate a direct summand, so is divisible by 2. We

have a (non-central) extension

(14) 0 −→
(
Ω ⊕ Z/2)/〈η · Σ + [1]〉 −→

(
SLd (Z) n Ω

)
/〈(td ,η · Σ)〉 −→ SLd (Z) −→ 0.

As η · Σ has order 2, the SLd (Z)-equivariant map from Ω = Ω ⊕ 0 into the kernel of (14) in-

duced by inclusion is an isomorphism, so in order to show that

(
SLd (Z) n Ω

)
/〈(td ,η · Σ)〉 is

isomorphic to SLd (Z) n Ω it su�ces to show that (14) splits. Writing Ω = Θd+1 ⊕ Ω′ as in the
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previous case, the extension (14) is by construction the sum of the trivial SLd (Z)-extension by

the SLd (Z)-module Ω′ with the central extension classi�ed by the image of the unique nontrivial

element in H
2 (SLd (Z);Z/2) under the composition H

2 (SLd (Z);Z/2) → H
2 (SLd (Z);Z/2⊕Θd+1) →

H
2 (SLd (Z); (Z/2⊕Θd+1)/(td ,η ·Σ)) induced by the inclusion and quotient maps of coe�cients, so it

su�ces to show that this image is trivial. From the universal coe�cient theorem and the computa-

tions in Lemma 2.1, we see that for any abelian group, the map H
2 (SLd (Z);A) → H

2 (SLd (Z);A/2)
induced by reducing modulo 2 is an isomorphism, so to show that the class in question is nontrivial,

it su�ces to do so after reducing modulo 2. The latter follows by noting that the composition

of SLd (Z)-modules Z/2 ⊂ Z/2 ⊕ Θd+1 →
(
Z/2 ⊕ Θd+1)/(td ,η · Σ)

)
is trivial after passing to(

Z/2 ⊕ Θd+1)/(td ,η · Σ)
)
/2 since η · Σ vanishes in Θd+1/2 by assumption. �

Step 3©. Fixing a point or not. Using the description of π0 Di�
+
∗ (T

d ]Σ) from the previous step, we

are now in the position to determine π0 Di�
+ (T d ]Σ). In view of the �bration sequence

(15) T d ]Σ −→ BDi�
+
∗ (T

d ]Σ) −→ BDi�
+ (T d ]Σ)

this amounts to understanding the image of the “point-pushing” homomorphism p: π1T
d ]Σ →

π0 Di�
+
∗ (T

d ]Σ). For Σ = Sd , the image is trivial a result of the action of T d
on itself (see the

beginning of Step 2©), but for any other homotopy sphere such an action is not available and it in

fact follows from the following lemma that the image is never trivial.

Lemma 2.6. For d ≥ 7 and Σ ∈ Θd , the map

Zd = π1T d ]Σ
p

−→ π0 Di�
+
∗ (T

d ]Σ)

agrees with the composition

Zd
(−)⊗Σ
−→ Zd ⊗ Θd ≤ SLd (Z) n Ω � π0 Di�∂ (T

d,◦)
(−)\idΣ◦
� π0 Di�∂ ((T

d ]Σ)◦)
ext

−→ π0 Di�
+
∗ (T

d ]Σ)

involving the isomorphism π0 Di�∂ ((T
d ]Σ)◦) � SLd (Z) n Ω from (10).

Proof. It su�ces to show that the two compositions agree on the �rst standard basis vector e1 ∈ Zd ,

since both compositions are π0 Di�∂ (T
d,◦)-equivariant (the action on the source is through SLd (Z)

and the action on the target is by conjugation after extending di�eomorphisms from T d,◦
to T d ]Σ

by the identity) and the orbit of e1 ∈ Zd under the SLd (Z)-action spans Zd .

We work with the following model of T d ]Σ: view T d−1
as Rd−1/Zd−1, choose an orientation-

preserving embedding ι : Dd−1 ↪→ T d−1 = Rd−1/Zd−1 disjoint from the origin [0] ∈ Rd−1/Zd−1 =
T d−1

and a representative fΣ ∈ Di�∂ (D
d−1) of Σ ∈ π0 Di�∂ (D

d−1) � Θd , extend fΣ by the identity

to a di�eomorphism FΣ ∈ Di�
+ (T d−1) supported in int(ι (Dd )), and form the mapping torus

T d ]Σ B ([0, 1] ×T d−1)/((1,x ) ∼ (0, FΣ (x )). We parametrise this quotient by [0, 1) ×T d−1
in the

evident way, use [0, 0] ∈ T d ]Σ as base point, and we viewT d,◦
as the complement of an embedded

disc Dd ⊂ T d ]Σ that contains the part where the nontrivial gluing happened (i.e. the image of{0} × ι (Dd ) in the quotient) and is disjoint from the image of [0, 1] × {0} in the quotient. The

latter is so that the loop ([(t , 0)])t ∈[0,1] inT d ]Σ is contained inT d,◦
. We chose a basis for H1 (T

d,◦)

such that this loop represents e1 ∈ Zd .

The �rst claim we show is that the image of e1 ∈ Zd under the map p: π1T
d ]Σ→ π0 Di�

+
∗ (T

d ]Σ)
is represented by the di�eomorphism ϕ ∈ Di�

+
∗ (T

d ]Σ) given by using id × fΣ on the image of

id× ι inT d ]Σ, and extending it to all ofT d ]Σ by the identity. This is because being the connecting

map in the long exact sequence induced by the evaluation �bration ev[0,0] : Di�
+ (T d ]Σ) → T d ]Σ

with �bre Di�
+
∗ (T

d ]Σ), the map point-pushing map sends e1 ∈ Zd to the isotopy class of any

di�eomorphism ϕ1 that arises as the value at time t = 1 of a path (ϕt )t ∈[0,1] in Di�
+ (T d ]Σ) with

ϕ0 = id and ϕt ([0, 0]) = [t , 0]. A possible choice of such path is given by ϕt ([s,x]) B [s + t ,x] for

s + t < 1 and ϕt ([s,x]) B [s + t − 1, FΣ (x )] for s + t ≥ 1, which indeed agrees with ϕ at time 1.
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The second claim we make is that the image of e1 ∈ Zd under the second composition in

the statement is given by the di�eomorphism obtained by choosing an orientation-preserving

embedding ι′ : Dd−1 ↪→ T d−1
such that the image of id× ι′ inT d ]Σ is contained inT d,◦

and avoids

the origin, using id× fΣ on the image of id×ι′ inT d ]Σ and extending it to a di�eomorphism ofT d ]Σ
by the identity. This would imply the result, since the image of e1 under both maps in consideration

arises from the following construction: choose an embedding S1 × Dd−1 ↪→ T d ]Σ\{[0, 0]} that

represents e1 ∈ Zd = H1 (T
d ]Σ) (which is unique up to isotopy as d ≥ 4), use id× fΣ on this image,

and extend by the identity.

To show this claim, we prove more generally that the composition Zd ⊗Θd ≤ Ω ≤ SLd (Z)nΩ �
π0 Di�∂ (T

d,◦) is given by sending x⊗Σ′ ∈ Zd ⊗Θd to the di�eomorphism obtained by representing

x ∈ π1T
d,◦

by an embedding S1 × Dd−1 ⊂ T d,◦
and Σ′ ∈ Θd � π0 Di�∂ (D

d ) by a di�eomorphism

fΣ′ ∈ Di�∂ (D
d ), using id× fΣ′ on S1×Dd−1

and extending it toT d
by the identity. By the argument

from the proof of Lemma 2.3, it su�ces to show that the described di�eomorphism considered

as a di�eomorphism of π0 Di�∗ (T
d ) � SLd (Z) n Ω agrees with the image of e1 ⊗ Σ′ under the

inclusion Zd ⊗ Θd ≤ Ω. This follows from [Hat78, p. 9, Remark (5)]. �

Combining Lemma 2.6 with Lemma 2.4, the long exact sequence induced by (15) implies:

Corollary 2.7. For d ≥ 7 and Σ ∈ Θd there is an isomorphism

π0 Di�
+ (T d ]Σ) �

(
SLd (Z) n Ω

)
/
(
〈(td ,η · Σ)〉 ⊕ (Zd ⊗ 〈Σ〉)

)
which is compatible with the homomorphisms to SLd (Z).

From this, the asserted identi�cation of π0 Di�
+ (T d ]Σ) in Theorem D follows by proving that

the right-hand quotient in the previous corollary can be simpli�ed to the semidirect product




SLd (Z) n
[
Ω/

(
〈η · Σ〉 ⊕ (Zd ⊗ 〈Σ〉

)]
if η · Σ ∈ Θd+1is not divisible by 2

SLd (Z) n
[
Ω/

(
Zd ⊗ 〈Σ〉

)]
if η · Σ ∈ Θd+1 is divisible by 2

which follows by replacing Ω by Ω/(Zd ⊗ 〈Σ〉) in the proof of Lemma 2.5.

3. Splitting the homology action and the proof of Theorem A

To deduce Theorem A from Theorem D, we �rst determine for which homotopy tori T the

map π0 Di�
+ (T ) → SLd (Z) is surjective. The following was stated in [BT21, p. 4] without proof.

Lemma 3.1. For a homotopy torus T of dimension d , 4, the map π0 Di�+ (T ) → SLd (Z) is
surjective if and only if T is di�eomorphic to T d

#Σ for some Σ ∈ Θd .

Proof. The direction ⇐ is easy: if T � T d ]Σ, then π0 Di�
+ (T ) → SLd (Z) is surjective be-

cause we can precompose it with the map ext∗ : π0 Di�∂ ((T
d )◦) → π0 Di�

+ (T ) and use that

π0 Di�∂ ((T
d )◦) → SLd (Z) is surjective which holds for instance as a result of Lemma 2.2.

For the direction⇒, we may assume d ≥ 5 since for d ≤ 3 any torus T is di�eomorphic to

the standard torus T d
. This allows us to use smoothing theory [KS77, Essay V] which we brie�y

recall in a form suitable for our purposes: given a closed topological manifold M of dimension

d ≥ 5, the set Sm
con (M ) of concordance classes of smooth structures on M is the set of equivalence

classes of pairs (T ,ψ ) of a smooth manifold T together with a homeomorphismψ : T → M , where

two pairs (T ,ψ ) and (T ′,ψ ′) are equivalent if there is a di�eomorphism Φ : T → T ′ such that the

homeomorphismsψ andψ ′ ◦ Φ are concordant. The group π0 KHomeo(M ) of concordance classes

of homeomorphisms acts on Sm
con (M ) by postcomposition and the set of orbits is in bijection with

the set Sm
di� (M ) of di�eomorphism classes of smooth manifolds homeomorphic to M , induced by

sending (T ,ψ ) to T . There is a map

η : Smcon (M ) −→ Li�(M,BO→ BTop)
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to the set of isomorphism classes of pairs of a stable vector bundle over M together with an

isomorphism of the underlying stable Euclidean bundle with the stable topological tangent bundle

τ
Top

M of M . The map η is given by assigning a pair (T ,ψ ) to the pullback (ψ−1)∗τDi�T of the

stable tangent bundle of T along ψ−1, together with the isomorphism induced by the stable

topological derivative of ψ−1. The map η turns out to be a bijection, by one of the main results

of smoothing theory. Unwrapping de�nitions, one sees that the action of α ∈ π0 KHomeo(M )
on [T ,ψ ] ∈ Sm

con (M ) is induced by pulling back the bundle along ψ−1 and postcomposing the

isomorphism with the stable topological derivative of ψ−1. The set Li�(M,BO → BTop) is a

torsor for the group [M,Top/O] of stable vector bundles on M together with a trivialisation of

the underlying stable Euclidean bundle; the group structure and the action are induced by taking

direct sums. Thus, if M comes already equipped with a smooth structure then we obtain a bijection

Li�(M,BO→ BTop) � [M,Top/O], postcomposition with which gives a bijection

δ : Smcon (M ) −→ [M,Top/O].

Going through the de�nition, the action of α ∈ π0 KHomeo(M ) on [T ,ψ ] ∈ Sm(M ) translates to

δ (T ,α ◦ψ ) = (α−1)∗δ (T ,ψ ) + δ (M,α ).
We now specialise to M = T d

. Given a homotopy torus T of dimension d ≥ 5, a choice of home-

omorphism φ : T → T d
induces a class [T ,φ] ∈ Sm

con (T d ) and a morphism π0 Di�
+ (T ) →

π0 KHomeo

+
(T d ) by conjugation with φ. This agrees with the map to SLd (Z) when precom-

posed with the action map π0 KHomeo

+
(T d ) → SLd (Z). The latter is an isomorphism as a re-

sult of Lemma 1.11 and the isomorphism π0 KHomeo

+

∗ (T
d ) � π0 KHomeo

+
(T d ) (use the action of

T d
on itself to see this), so it su�ces to show that π0 Di�

+ (T ) → π0 KHomeo

+
(T d ) is not sur-

jective unless T is di�eomorphic to T d ]Σ for some Σ ∈ Θd . The image of π0 Di�
+ (T ) →

π0 KHomeo(T d ) is contained in the stabiliser of [T ,φ] ∈ Smcon (T d ), so it is enough to show that

[T ,φ] ∈ Sm(T d ) is not contained in the invariants of this action unless T � T d ]Σ for some

Σ ∈ Θd . Since any α ∈ π0 KHomeo

+
(T d ) � SLd (Z) is isotopic to a di�eomorphism of T d

, the

terms δ (T d ,α ) in the above description of the π0 KHomeo(T d )-action Sm
con (T d ) � [T d ,Top/O]

vanishes, and thus the action is simply by precomposition. In particular, it is an action by group

homomorphisms if we equip [T d ,Top/O] with the group structure induced by the in�nite loop

space structure on Top/O. Using this in�nite loop space structure and the fact that T d
sta-

bly splits into a wedge of spheres we also get a direct sum decomposition of SLd (Z)-modueles

[T d ,Top/O] � ⊕dr=1Hom(ΛrZd ,πr Top/O). We will show below that the invariants of this ac-

tion are given by the subgroup Hom(ΛdZd ,πd Top/O) � πd Top/O � Θd . This will imply the

claim, since the subgroup Θd ≤ [T d ,Top/O] � Sm
con (T d ) corresponds to the classes of the pairs

(T d ]Σ, idT d ]β ) where β : Σ→ Sd is the unique homeomorphism up to isotopy that �xes the disc

where the connected sum is taken, so in particular [T ,φ] ∈ Sm
con (T d ) is not contained in this

subgroup unless T is di�eomorphic to T d ]Σ for some Σ ∈ Θd .

To �nish the proof, it thus su�ces to show that for a �nitely generated abelian group A,

the SLd (Z)-action on Hom(ΛrZd ,A) by precomposition with the inverse has no invariants for

0 < r < d . This is isomorphic to the standard action on ΛrZd ⊗A up to the automorphism of SLd (Z)
given by taking inverse transpose, so we may equivalently show that ΛrZd ⊗ A has no invariants

. Without loss of generality we may assume that A = Z/n is cyclic. In this case, ΛrZd ⊗ Z/n
has a basis as a Z/n-module indexed by subsets I ⊂ {1, . . . ,d} of cardinality r , where the basis

vector xI corresponding to I ⊂ {1, . . . ,d} is xi1 ∧ · · · ∧ xir for i1 < . . . < ir and I = {i1, . . . , ir }
where x1, . . . xd is the standard Z/n-basis of Zd ⊗ Z/n. Now observe that an elementary matrix

(I + Ei j ) ∈ SLd (Z) for 1 ≤ i, j ≤ d acts by sending xI to xI ± x (I \i )∪j if i ∈ I and j < I , and to itself

otherwise. On a general element v =
∑

I λI (v ) · xI ∈ Λ
rZd ⊗ Z/n, the matrix (I + Ei j ) thus acts by

v 7−→
∑

i ∈I or j<I
λI (v ) · xI +

∑
i<I and j ∈I

(λI (v ) + λ (I \j )∪i (v )) · xI ,
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so if v is an invariant, then λ (I \j )∪i (v ) = 0 for all I with i < I and j ∈ I . But since 1 ≤ i, j ≤ d were

arbitrary and 0 < r < d , these are in fact all coe�cients, so all invariants are zero. �

3.1. Proof of Theorem A. We conclude this section with the proof of Theorem A, which says

that the map π0 Di�
+ (T ) → SLd (Z) given by the action on H1 (T ) = Zd admits a splitting if and

only if T = T d ]Σ for Σ ∈ Θd such that η · Σ ∈ Θd+1 divisible by 2.

Proof of Theorem A. We distinguish the cases whether a given homotopy torus T of dimension

d , 4 is di�eomorphic to T d ]Σ for some Σ ∈ Θd or not. If it is not, then the map π0 Di�
+ (T ) →

SLd (Z) is not surjective by Lemma 3.1, so it is in particular not split surjective. If it is, then

by Theorem D the group π0 Di�
+ (T ) is isomorphic, compatibly with the map to SLd (Z), to a

semidirect product of SLd (Z) or SLd (Z) depending on whether η · Σ ∈ Θd+1 is divisible by 2 or not.

In the �rst case, the map to SLd (Z) visibly admits a splitting. In the second case, a hypothetical

splitting would in particular induce a splitting of the projection SLd (Z) → SLd (Z), which does

not exist since this extension is nontrivial. This �nishes the proof. �

4. Endomorphisms of SLd (Z) and the proof of Theorem B

The main algebraic input for the proof of Theorem B is the following classi�cation result for

endomorphisms of SLd (Z) for d ≥ 3, which may be of independent interest.

Theorem 4.1. Fix d ≥ 3. Every nontrivial endomorphism of SLd (Z) is an automorphism. Moreover,
all automorphisms of SLd (Z) agree, up to postcomposition with a conjugation by an element in
GLd (Z), with either the identity or the inverse-transpose automorphism.

Remark 4.2. Some comments on Theorem 4.1 are in order.

(i) The proof of Theorem 4.1 below is “elementary” in that it does neither rely on Margulis’

superrigidity or normal subgroup theorem, nor on the congruence subgroup property.

Using these results, there are likely other proofs of Theorem 4.1. The argument we present

below was hinted at by Ian Agol in a comment to a question on MathOver�ow [Mat17]

and sketched by Uri Bader in the case d = 3 as a response to the question (however this

sketch has a small gap; see Remarks 4.5 and 4.10).

(ii) For d = 2, the statement of Theorem 4.1 fails: consider the composition

SL2 (Z) −→ H1 (SL2 (Z)) � Z/12 −→ SL2 (Z)

where the �rst arrow is abelianisation and the second sends a generator to −id ∈ SL2 (Z).
(iii) The second part of Theorem 4.1 holds more generally; see [O’M66, Theorem A].

4.1. Proof of Theorem B assuming Theorem 4.1. Assuming Theorem 4.1, we �nish the proof

of Theorem B. We �rst assume G = Homeo
+ (T ) � Homeo

+ (T d ). Given a nontrivial homo-

morphism φ : SLd (Z) → Homeo
+ (T d ) for d ≥ 3, the composition with the action on homology

Homeo
+ (T d ) → SLd (Z) is by Theorem 4.1 either trivial or an isomorphism, so we have to exclude

the former. If it were trivial, then φ would have image in Tor
Top (T d ) = ker(Homeo

+ (T d ) →
SLd (Z)). Suppose for contradiction that φ : SLd (Z) → Tor

Top (T d ) is nontrivial. Its kernel is a

normal subgroup, so by [Men65, Corollary 1, p. 36] it is either (a) contained in the centreZ (SLd (Z)),
which is trivial or Z/2 depending on the parity of d , or (b) of �nite index. In either case, the

image of ϕ contains a nonabelian �nite group H : in case (a) it contains SLd (Z) or PSLd (Z), so

in particular a nonabelian �nite group H , and in case (b) the image of φ is �nite itself, and also

nonabelian since otherwise φ would be trivial since SLd (Z) is perfect for d ≥ 3 (see Lemma 2.1).

To make use of the nonabelian �nite subgroup H ≤ Tor
Top (T d ), following [LR81], we consider

the extension 0 → Zd → NHomeo(T̃ d ) (Zd ) → Homeo(T d ) → 0 whose middle group is the

normalizer of Zd = π1 (T d ) considered as a subgroup of the homeomorphism group Homeo(T̃ d )
of the universal cover. Note that the induced action of Homeo(T d ) by Zd agrees by construction

with the action on the fundamental group. The pullback 0→ Zd → E → H → 0 of this extension
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along H ≤ Homeo(T d ) is, by the Corollary on p. 256 of loc.cit. admissible in the sense of p. 256

loc.cit.. The proof of Proposition 2 loc.cit. then shows that the centraliser CE (Zd ) of Zd in E is

abelian. But since H ≤ Tor
Top (T d ) acts trivially on Zd we have CE (Zd ) = E, so E is abelian and

thus the same holds for H which cannot be true by the choice of H , so φ has to be trivial.

The case G = Di�
+ (T ) follows from the case Homeo

+ (T ) by postcomposing a given homo-

morphism φ : SLd (Z) → Di�
+ (T ) with the inclusion Di�

+ (T ) ≤ Homeo
+ (T ), so we are left to

prove the addendum concerning homomorphisms from SLd (Z) into π0 Di�
+ (T ) or π0 Homeo

+ (T )
under the additional assumption d , 4, 5. By the same argument as before, it su�ces to show

that all homomorphisms from SLd (Z) into π0 Tor
Di� (T ) or π0 Tor

Top (T ) are trivial. Lemma 4.3

below says that the latter two groups are abelian, so such morphisms factor over the (trivial)

abelianisation of SLd (Z) (see Lemma 2.1) and are therefore trivial, as claimed.

Lemma 4.3. For a homotopy torus T of dimension d , 4, 5, the kernels of the homology actions

π0 Tor
Top (T ) = ker

[
π0 Homeo

+ (T ) → SLd (Z)
]

π0 Tor
Di� (T ) = ker

[
π0 Di�

+ (T ) → SLd (Z)
]

are both abelian.

Proof. For d ≤ 3, the homotopy torus T is di�eomorphic to the standard torus and both ker-

nels π0 Tor
Top (T ) and π0 Tor

Di� (T ) are trivial, so in particular abelian. To show the claim

for d ≥ 6, note that π0 Tor
Top (T ) � π0 Tor

Top (T d ) because T is homeomorphic to T d
, so

π0 Tor
Top (T ) is abelian since we have π0 Tor

Top (T d ) � (Z/2)∞ by [Hat78, Theorem 4.1]. To show

that π0 Tor
Di� (T ) is abelian, note that as T ' K (Zd , 1) we may view the map π0 Di�

+ (T ) →
SLd (Z) as the induced map on path components of the map Di�

+ (T ) → hAut
+ (T ) to the space

of orientation-preserving homotopy equivalences, so π0 Tor
Di� (T ) receives an epimorphism from

π1 (hAut
+ (T )/Di�+ (T )). Replacing T d

by T in the argument for (3) on page 8 of [Hat78] and

using that T is homeomorphic to T d
, we get that π1 (hAut

+ (T )/Di�+ (T )) is isomorphic to the

abelian group (⊕0≤j≤d (Λ
jZd ) ⊗ Θd−j+1) ⊕ ((Λd−2Zd ) ⊗ Z/2) ⊕ Z/2∞, so the claim follows (the

�nal step can also be proved via smoothing theory). �

4.2. Proof of Theorem 4.1. In the remainder of this section, we prove Theorem 4.1. The proof

makes use of the subgroup Ud < SLd (Z) of unipotent upper triangular matrices which in particular

contains the elementary matrices Ei j for 1 ≤ i < j ≤ d ; these have 1 on the diagonal and at the

(i, j )th entry, and 0 at all other entries. It is well-known that Ud is an (d − 1)-step nilpotent group

whose centre is generated by the elementary matrix E1d , which is an iterated commutator of

length (d − 1), namely E1d = [E12, [E23, [. . . , [Ed−2,d−1,Ed−1,d ]]]]. An important ingredient in the

proof of Theorem 4.1 is the following lemma on complex representations of Ud . In its statement

and in all that follows, we write

(−)−t : SLd (Z) −→ SLd (Z)

for the automorphism of SLd (Z) given by taking inverse-transpose.

Lemma 4.4. Fix d ≥ 3 and a homomorphism ϕ : Ud → GLm (C) withm ≤ d .
(i) Assume d ≥ 4. Ifm < d , or ifm = d and ϕ (E1d ) is not a scalar, then ϕ (E1d ) is unipotent.
(ii) Ifm < d and ϕ (Ei j ) is unipotent for each i < j, then ϕ (E1d ) = id.
(iii) Ifm = d , ϕ (Ei j ) is unipotent for each i < j, and ϕ (E1d ) , id, then ϕ (E1d ) − id has rank 1.
(iv) If ϕ (Ei j ) is unipotent and ϕ (Ei j )− id has rank 1 for all i < j , then after possibly precomposing

ϕ with (−)−t , the matrices ϕ (E1d ), . . . ,ϕ (Ed−1d ) all have the same �xed set.

Remark 4.5. The argument in Bader’s MathOver�ow post [Mat17] contains the claim that for any

representation ϕ : U3 → GL3 (C) the matrix ϕ (E13) is unipotent. This is incorrect: Lemma 4.6 (iii)

gives a representation U3 → GL3 (C) for which ϕ (E13) is a nontrivial scalar. Also Lemma 4.4 (i)
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fails for d =m = 3 (the case (ii) of Lemma 4.6 below involves representations U3 → GL3 (C) for

which ϕ (E13) is a non-scalar semisimple matrix).

For d = 3, we will circumvent the use of Lemma 4.4 (i) in later proofs by means of the following:

Lemma 4.6. Fix a homomorphism ϕ : U3 → GLm (C). Ifm = 2, then either
(i) ϕ (E13) is unipotent, or
(ii) there are µ,ν ∈ C× and C ∈ GL2 (C) so that after postcomposing ϕ with conjugation by C ,

E12 7→

(
µ
−µ

)
E23 7→

(
ν

1

)
E13 7→

(
−1

−1

)
.

Ifm = 3, then either
(i) ϕ (E13) is unipotent,
(ii) ϕ = ϕ1 ⊕ ϕ2, where ϕi : U3 → GLi (C), up to conjugation, or
(iii) there are λ, µ,ν ∈ C× and C ∈ GL3 (C) so that λ is a nontrivial cube root of 1, and after

postcomposing ϕ with conjugation by C ,

E12 7→
*.
,

µ
λµ

λ2µ

+/
-

E23 7→
*.
,

ν
1

1

+/
-

E13 7→
*.
,

λ
λ

λ

+/
-
.

We omit the proof of Lemma 4.6 since it is based on similar (and easier) analysis as the base

case in the proof of Lemma 4.4 (i) which we explain now.

Proof of Lemma 4.4 (i). We do an induction on d . To simplify the notation we set ui j B ϕ (Ei j ).

Base case. We treat the case d = 4 by hand. To show that u14 is unipotent, it su�ces to prove

that all its eigenvalues λ equal 1. Let Vλ be the λ-eigenspace for u14. Since E14 is central in U4,

restricting to Vλ gives a homomorphism U4 → GL(Vλ ) whose image of Ei j we denote by u ′i j . Next

we distinguish cases depending on the dimension of Vλ . By the assumption that u14 = ϕ (E14) is

not a scalar when m = d , we know dim(Vλ ) ≤ 3. If dimVλ = 1, then since GL1 (C) = C× is abelian,

we have u ′
14
= 1 because E14 = [E13,E34] is a commutator, so λ = 1. If dimVλ = 2, we consider

the subgroup 〈u ′
13
,u ′

34
,u ′

14
〉 ≤ GL(Vλ ) generated by the images of E13, E34, and E14 in GL(Vλ ). By

assumption u ′
14
= λ · id2×2. Let x ∈ Vλ be an eigenvector for u ′

13
with eigenvalue µ. Using the

relation [E13,E34] = E14 we conclude that (u ′
34
)i (x ) is an eigenvector for u ′

13
with eigenvalue λiµ.

Since dimVλ = 2, this forces λ2 = 1 because eigenvectors with di�erent eigenvalues are linearly

independent, and thus λ = ±1. Suppose for a contradiction that λ = −1. Then u ′
13

has two distinct

eigenvalues µ and −µ. Since E13 is central in 〈E12,E23〉 � U3, we deduce that u ′
12

and u ′
23

are

simultaneously diagonalisable; in particular they commute. But since E13 = [E12,E23], this implies

u ′
13
= id, which is a contradiction, so λ has to be 1. Finally, suppose that dimVλ = 3. In this case

the argument is very similar to the preceding case: by assumption u ′
14
= λ · id3×3, and the relation

[E13,E34] = E14 implies that 〈λ〉 ⊂ C× acts freely on the eigenvalues of u ′
13

which implies λ3 = 1.

If λ , 1, then u ′
13

has distinct eigenvalues µ, λµ, and λ2µ for some µ. Using the fact that E13 is both

central and a commutator in 〈E12,E23〉 ⊂ U4, we reach a contradiction.

Induction step. Fix an eigenvalue λ for u1d = ϕ (E1d ), and let Vλ be the corresponding eigenspace.

We have to show λ = 1. As in the base case, since u1d is not a scalar if d =m, so dim(Vλ ) ≤ d − 1
and since E1d is central in Ud , the representation restricts to Ud → GL(Vλ ). As before we write u ′i j
for the image of Ei j under this homomorphism. Consider the subgroup 〈E1,d−1,Ed−1,d ,E1,d 〉 � U3

of Ud . Let µ be an eigenvalue of u ′
1,d−1 and letVµ ≤ Vλ be the corresponding eigenspace. As above,

λiµ is also an eigenvalue for u ′
1,d−1 for each i . Consider the subgroup 〈Ei j | i < j ≤ d − 1〉 � Ud−1

of Ud . Since E1,d−1 is central in this copy of Ud−1, there is an induced map Ud−1 → GL(Vµ ),
Ei j 7→ u ′′i j . If λ , 1, then Vµ is a proper subspace of Vλ (since the eigenspaces for µ and λµ are

linearly independent). Then dim(Vµ ) ≤ d − 2, so the induction hypothesis implies that u ′′
1,d−1 is
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unipotent, so µ = 1. Since the same argument applies for each eigenspace of u ′
1,d−1, we conclude

that 1 = µ = λµ, so λ = 1 as claimed. �

Proof of Lemma 4.4 (ii). Fixing ϕ : Ud → GLm (C) such that ϕ (Ei j ) is unipotent for all 1 ≤ i <
j ≤ d , we want to show ϕ (E1d ) = id. As before we write ui j = ϕ (Ei j ). Note that the special case

m = d − 1 implies the casem < d − 1, because ifm < d − 1 then we may restrict ϕ to the subgroup

Um+1 � 〈Ei j | 1 ≤ i < j ≤ m + 1〉 ≤ Ud to conclude u1,m+1 = id from the special case, so using

E1d = [E1,m+1,Em+1,d ] we get u1d = [u1,m+1,um+1,d ] = id. To prove the special casem = d − 1, we

do an induction on the dimension d .

Base case. To settle the case ϕ : U3 → GL2 (C), suppose for a contradiction that u13 is not the

identity. Since it is unipotent by assumption, it has up to conjugation the form

(
1 1

0 1

)
, so by

postcomposing ϕ with this conjugation we may assume that u13 equals this matrix. Since E13 is

central in U3, the image of ϕ is contained in the centraliser of

(
1 1

0 1

)
which consists of matrices of

the form

(
a b
0 a

)
. This is an abelian subgroup, so u13 = [u12,u23] is identity, a contradiction.

Induction step. For the induction step, we �x ϕ : Ud → GLd−1 (C) and suppose for a contradiction

that u1d , id. Consider the subspaces K1 ⊂ K2 ⊂ Cd−1
where Ki = ker(u1d − id)i . Writing

ki B dimKi we have k1 > 0 since u1d is unipotent, ` B k2 − k1 > 0 since u1d , id, and ` ≤ k1
(one way to see this is to consider the Jordan normal form). Note that since E1d is central in Ud ,

the image of ϕ preserves K2 so we obtain a morphism ϕ ′ : Ud → GL(K2) by restriction. We write

u ′i j for its image of Ei j . Settingm B k1 − ` ≥ 0, we choose a basis for K2 that extends a basis for

K1 and that has the property that

(16) u ′
1d =

*.
,

id`×` 0 id`×`

0 idm×m 0

0 0 id`×` .

+/
-

in this basis. To see that such a basis exists, it is again helpful to use the Jordan normal form. Since

E1d is central in Ud , the morphism Ud → GL(K2) � GL2`+m (C) lands in the centraliser of (16)

which are the matrices of the form

(17)
*.
,

A X Z
0 B Y
0 0 A

+/
-
.

We claim that u ′
1, `+m+1 and u ′

`+m+1,2`+m+1 have the form

(18) u ′
1, `+m+1 =

*.
,

id`×` 0 Z
0 idm×m 0

0 0 id`×`

+/
-

and u ′`+m+1,2`+m+1 =
*.
,

id`×` X Z ′

0 B Y
0 0 id`×`

+/
-

for some B,X ,Y ,Z , and Z ′. Assuming this claim for now, we observe that the matrices (18)

commute, so u ′
1,2`+m+1 = [u ′

1, `+m+1,u
′
`+m+1,2`+m+1] is the identity. If 2` +m + 1 = d then we are

done since this contradicts (16). If 2` +m + 1 < d then the relation u ′
1d = [u ′

1,2`+m+1,u
′
2`+m+1,d ]

shows that u ′
1d is the identity, which again contradicts (16). This leaves us with showing (18). We

�rst treat u ′
1, `+m+1. Since ϕ ′ has image in (17), we may postcompose it with

*.
,

A X Z
0 B Y
0 0 A

+/
-
7→

(
A X
0 B

)
and

*.
,

A X Z
0 B Y
0 0 A

+/
-
7→

(
B Y
0 A

)
.

to obtain two homomorphisms Ud → GL`+m (C). We may apply the induction hypothesis to the

restriction of these to the subrgoup U`+m+1 � 〈E1,i | 1 < i ≤ ` +m + 1〉 to conclude that the image

of u ′
1, `+m+1 under these two homomorphism is the identity, so u ′

1, `+m+1 has the claimed form.

To deal with the second matrix u ′
`+m+1,2`+m+1 we argue similarly: postcompose ϕ ′ with the

restriction to A to obtain a morphism Ud → GL` (C), restrict them to the subgroup U`+1 �
〈E`+m+1,i | ` +m + 1 < i ≤ 2` +m + 1〉 in Ud , and apply the induction hypothesis. �



22 MAURICIO BUSTAMANTE, MANUEL KRANNICH, ALEXANDER KUPERS, AND BENA TSHISHIKU

Proof of Lemma 4.4 (iii). Fix ϕ : Ud → GLd (C) such that u1d = ϕ (E1d ) is unipotent and nontrivial.

The subspace K2 = ker(u1d − id)
2

is nontrivial, preserved by the image of ϕ, each ϕ (Ei j ) acts on it

by a nontrivial unipotent, and ϕ (E1d ) acts nontrivially on it, so Lemma 4.4 (ii) implies K2 = Cd
.

Arguing as in the proof of Lemma 4.4 (ii), up to changing basis (corresponding to postcomposing

ϕ with a conjugation), we can assume that (16) holds and by the same argument as in the previous

proof ϕ has image in matrices of the form (17) and u1, `+m+1 has the form (18). We are left to show

` = 1 since then u1d has rank 1 in view of (16). Assuming for a contradiction that ` > 1, then

` +m + 1 < d , so u1d = [u1, `+m+1,u`+m+1,d ]. Written out in matrices this equation reads as

*.
,

id 0 id

0 id 0

0 0 id

+/
-
=

*.
,

id 0 Z
0 id 0

0 0 id

+/
-

*.
,

A X Z ′

0 B Y
0 0 A

+/
-

*.
,

id 0 −Z
0 id 0

0 0 id

+/
-

*.
,

A X Z ′

0 B Y
0 0 A

+/
-

−1

which implies ZA−AZ = A, but this is a contradiction because the trace of ZA−AZ is 0, whereas

that of A is nonzero since A is unipotent because so is u ′
1d , by assumption. �

Before proving Lemma 4.4 (iv), we discuss some properties of rank-1 operators. Given subspaces

H ,L ≤ Cd
with dimH = d − 1, dimL = 1, there is a rank-1 operator with kernel H and image L,

which is unique up to a unit, namely the composition Cd � Cd/H � C→ C � L ↪→ Cd
. In what

follows, it will be convenient to consider rank-1 operators up to scalars; abusing notation, we will

use ΠH,L to denote either this equivalence class of rank-1 operator with kernel H and image L. In

terms of equivalence classes, the composition behaves as

ΠH,L ◦ ΠH ′,L′ =



0 if L′ ⊂ H ,

ΠH ′,L if L′ 1 H .

The operatoruH,L B id+ΠH,L (which is well-de�ned up to scalinguH,L− id by a unit) is unipotent

if and only if L ⊂ H (otherwise uH,L is diagonalisable and nontrivial). In this case the �xed set of

uH,L is H and its inverse is id − ΠH,L which is another representative of uH,L . Fixing two such

equivalence classes of unipotent operators uH,L and uH ′,L′ , we have the commutator relation

(19) [uH,L , uH ′,L′] =




uH ′,L if L ⊂ H ′ and L′ 1 H ,

uH,L′ if L 1 H ′ and L′ ⊂ H ,

id if L ⊂ H ′ and L′ ⊂ H .

If L 1 H ′ and L′ 1 H , then the commutator is not unipotent.

The following oberservation will play a role in the proof of Lemma 4.4 (iv): Fixing unipotent

operators uHi ,Li as above for i = 1, 2, 3 and assuming �rstly that uH1,L1 commutes with uHj ,Lj for

j = 2, 3 and secondly that uH1,L1 = [uH2,L2 , uH3,L3], we may use the commutator formula from

above to conclude that Lj ⊂ H1 for j = 2, 3 and that H2 = H1 or H3 = H1.

Proof of Lemma 4.4 (iv). Since ϕ (Ei j ) − id has rank 1 for i < j, the operators ui j B ϕ (Ei j ) =
id + (ϕ (Ei j ) − id) are for i < j of the form uHi j ,Li j as discussed above where Hi j is the kernel

of ϕ (Ei j ) − id, i.e. the �xed set of ϕ (Ei j ). We claim that either H1d = H2,d = · · · = Hd−1,d or

H1d = H1,d−1 = · · · = H12. This would imply the result, because the two cases are interchanged

when precomposing ϕ with (−)−t . To show this claim, we use that u1d commutes with ui j for

i < j. Since u1d = [u12,u2d ], it follows from the discussion after (19) that either H12 = H1d or

H2d = H1d . In the �rst case, we also have H1j = H1d for all 2 ≤ j ≤ d , using u1j = [u12,u2j ] and

the fact that u2j preserves H1d since it commutes with u1d . Similarly, in the second case we also

have Hj,d = H1d for all 2 ≤ j ≤ d using uj,d = [uj,2,u2,d ] and that uj,2 commutes with u1,d . �

We illustrate the utility of Lemma 4.4 to study representations of SLd (Z) by the following two

corollaries, which will both play a role in the proof of Theorem 4.1.

Corollary 4.7. For d ≥ 3 andm < d , all homomorphisms ϕ : SLd (Z) → GLm (C) are trivial.
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Under the additional assumption that ϕ factors through SLm (Z) ≤ GLm (C), this corollary is

proved in [Wei97, Lemma 3] using superrigidity and the congruence subgroup property.

Proof of Corollary 4.7. If d ≥ 4 then ϕ (E1d ) is unipotent by Lemma 4.4 (i) and since the Ei j are

conjugate in SLd (Z) so are all ϕ (Ei j ). We then apply Lemma 4.4 (ii) to see that ϕ (E1d ) is trivial, so

also the conjugates ϕ (Ei j ) are. As the Ei j generate SLd (Z) the result follows. For (d,m) = (3, 1)
we use that SL3 (Z) is perfect (see Lemma 2.1) and GL1 (C) is abelian. For (d,m) = (3, 2) we apply

the �rst part of Lemma 4.6: in case (i) we proceed as for d = 4 and the case (ii) is ruled out because

the images of E12 and E13 are not conjugate. �

Corollary 4.8. Fix d ≥ 3 and a nontrivial homomorphism ϕ : SLd (Z) → SLd (C).
(i) If d ≥ 4, then for all i , j the matrix ϕ (Ei j ) is unipotent and ϕ (Ei j )− id has rank 1. Moreover,

after possibly precomposing ϕ with (−)−t , the matrices ϕ (E1d ), . . . ,ϕ (Ed−1,d ) all have the
same �xed set.

(ii) If d = 3, then the same conclusion holds under the additional assumption im(ϕ) ⊂ SLd (Z).

Proof. We begin with two observations based on the fact that Ei j ∈ SLd (Z) is for all i , j conjugate

to E1d . Firstly, to show the �rst claim of (i) and (ii), it su�ces to consider ϕ (E1d ). Secondly, ϕ (E1d )
is nontrivial since otherwise ϕ were trivial as SLd (Z) is generated by the Ei j .

In the case d ≥ 4, it su�ces to prove that ϕ (E1d ) is not a scalar, for then everything follows

from Lemma 4.4, using that E1d is conjugate in SLd (Z) to Ei j for any i , j. If ϕ (E1d ) were

a scalar, then all ϕ (Ei j ) are scalars, so ϕ would have image in scalar matrices because the Ei j
generate SLd (Z). But since E1d is a commutator and scalar matrices commute, this would imply

ϕ (E1d ) = [ϕ (E12),ϕ (E2d )] = id, which is not the case.

Next we consider the case d = 3. To show the case m = 3, for which we imposed the additional

assumption im(ϕ) ≤ SLd (Z). It su�ces by Lemma 4.4 to prove that the nontrivial matrix ϕ (E13) is

unipotent which we prove by contradiction. We consider the restriction of ϕ to 〈E12,E23〉 � U3 and

consult the classi�cation in Lemma 4.6. Since we assumed that ϕ (E13) , id is not unipotent, we

do not need to consider the case (i). Cases (ii) and (iii) of Lemma 4.6 can be excluded by showing

that for these representations the matrices ϕ (E12),ϕ (E23),ϕ (E13) are not all conjugate in SL3 (Z).
In almost all cases this can be seen considering their eigenvalues, except in the case

ϕ (E12) =
*.
,

1 0 0

0 −1 0

0 0 −1

+/
-

ϕ (E23) =
*.
,

0 1 0

1 0 0

0 0 −1

+/
-
.

Also these matrices are not conjugate in SL3 (Z) which one can see by reducing modulo 2. �

Theorem 4.9. Fix d ≥ 3 and a nontrivial homomorphism ϕ : SLd (Z) → SLd (Z). There exist linearly
independent vectors v1, . . . ,vd ∈ Zd so that, after possibly after precomposing ϕ with (−)−t , the
image of ϕ preserves the lattice Λ = Z{v1, . . . ,vd} and for allA ∈ SLd (Z) the matrix of the restriction
ϕ (A) |Λ with respect to the basis v1, . . . ,vd is A.

Remark 4.10. One might suspect that given ϕ : SLd (Z) → SLd (C) there exists a basis v1, . . . ,vd
for Cd

so that the same conclusion of Theorem 4.9 holds (this is claimed in the MathOver�ow post

mentioned in Remark 4.5). This is not the case. For example, there is a nontrivial representation

ϕ : SL3 (Z) → SL3 (C) with �nite image, constructed by setting

ϕ (E12) =
*.
,

1 0 0

0 −1 0

0 0 −1

+/
-

ϕ (E23) =
*.
,

0 1 0

1 0 0

0 0 −1

+/
-

ϕ (E32) =
*.
,

−1 0 0

0 0 1

0 1 0

+/
-

ϕ (E21) =
*...
,

− 1

2
− 1

2

−1−
√
−7

4

− 1

2
− 1

2

1+
√
−7

4

−1+
√
−7

4

1−
√
−7

4
0

+///
-
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and then de�ning ϕ (E13) B [ϕ (E12),ϕ (E23)] and ϕ (E31) B [ϕ (E32),ϕ (E21)]. One can then check

directly that this extends to a morphism SL3 (Z) → SL3 (Q(
√
−7)) ⊂ SL3 (C) by checking that these

matrices satisfy the relations in the standard presentation of SL3 (Z) in terms of Ei j (see [Mil71,

Corollary 10.3]). This peculiar representation has �nite image because for each i , j, the matrix

ϕ (Ei j ) has order 2, and the subgroup generated by {E2i j} has �nite index in SL3 (Z) by a general

theorem of Tits [Tit76] (see also [Mei17, Theorem 3]).

Proof of Theorem 4.9. Fix a nontrivial homomorphism ϕ : SLd (Z) → SLd (Z). We write ui j =
ϕ (Ei j ), considered as a matrix in SLd (C). After possibly precomposing ϕ with (−)−t , we know

from Corollary 4.8, that for i , j, the matrix ui j is unipotent and ui j − id has rank 1, and that

H1d = H2d = · · · = Hd−1,d where Hi j ≤ Cd
be the �xed set of the matrix ui j for i , j. Note that

eachHi j is (d−1)-dimensional, sinceui j−id has rank 1. Using the fact that for each �xed 1 ≤ k ≤ d ,

the matrices E1k ,E2k , . . . ,Edk (skipping Ekk ) are simultaneously conjugate to E1d , . . . ,Ed−1,d , we

�nd that also the d − 1 hyperplanes H1k ,H2k , . . . ,Hdk (skipping Hkk ) all agree. We abbreviate this

hyperplane by Hk . Next we claim that the intersection of hyperplanes Li = H1∩ · · ·∩ Ĥi ∩ · · ·∩Hd
for 1 ≤ i ≤ d are all lines. For this it su�ces to show that H1 ∩ · · · ∩ Hd is trivial. Assume

by contradiction that this intersection is nontrivial. By construction, it is the common �xed

set for the ui j for all i , j, so it is in fact �xed by the whole image of ϕ since the ui j = ϕ (Ei j )
generate the image because the Ei j generate SLd (Z). Moreover, since the Hi are de�ned over Q,

also L B H1 ∩ · · · ∩Hd ∩Zd is nontrivial, so the free abelian group Zd/L has rank < d . Combining

this with Corollary 4.7, we see that the morphism SLd (Z) → SL(Zd/L) induced by ϕ is trivial, so

ϕ factors over the additive group Hom(Zd/L,L). The latter is abelian, so ϕ must be trivial since

SLd (Z) is perfect (see Lemma 2.1). This contradicts our choice of ϕ.

Claim. The image of ui j − id is Li .

Proof of Claim. For de�niteness, we prove the statement for u1d . Since u1d − id has rank 1 and

L1 = H2 ∩ . . . ∩ Hd is 1-dimensional, it su�ces to show that the image of u1d − id is contained

in Hj for all j , 1. Recall that Hj = H1j is the �xed set of u1j . Since u1j commutes with u1d , the

matrix u1j preserves the image of u1d − id, but since this image is only one dimensional, it is an

eigenspace for u1j , which implies im(u1d − id) ⊂ H1j since u1j is unipotent. This proves the claim.

Now we construct the basis v1, . . . ,vd . Fix a nonzero vector vd ∈ Ld which we may choose to

be an integer vector as Ld is de�ned over Q since ϕ has image in SLd (Z). Now de�ne inductively

vi = (ui,i+1 − id) (vi+1) ∈ Li . Note that the vi are integer vectors as ui,i+1 = ϕ (Ei,i+1) ∈ SLd (Z).
Moreover, each vi is nonzero: if vi were trivial then vi+1 would be contained in Li+1 ∩ Hi+1 =

H1 ∩ · · · ∩Hd which we saw above is trivial, so we get vi+1 = 0 and inductively vd = 0 whic is not

true. Now we examine what properties the vectors v1, . . . ,vd have. First observe that they form a

basis for Cd
, by the general fact that if H1, . . . ,Hd are hyperplanes of Cd

with trivial intersection,

then a choice of nonzero vector from each of the lines Li = H1∩· · ·∩Ĥi∩· · ·∩Hd gives a basis forCd
.

By construction, with respect to the basis v1, . . . ,vd , the matrix of ui,i+1 = ϕ (Ei,i+1) is Ei,i+1. Now

using the commutator relations in Ud , we conclude that after this change of basis the restriction of

ϕ to upper triangular matrices is the inclusion, so to �nish the proof su�ces to show the same for

the lower triangular matrices since SLd (Z) is generated by upper and lower triangular matrices.

As for upper triangular matrices, it su�ces to consider Ei+1,i for every i . By construction, ϕ (Ei+1,i )
has �xed set 〈v1, . . . , v̂i , . . . ,vd 〉 and (ϕ (Ei+1,i ) − id) (vi ) = ai · vi+1 for some scalar ai , so we are

left to show ai = 1. This follows from the braid relation E−1i,i+1 Ei+1,i E
−1
i,i+1 = Ei+1,i E

−1
i,i+1 Ei+1,i . �

Proof of Theorem 4.1. Fix a nontrivial homomorphism ϕ : SLd (Z) → SLd (Z) and let v1, . . . ,vd ∈
Zd be the linearly independent vectors promised by Theorem 4.9, so that possibly after precom-

posing ϕ with (−)−t , the matrix ϕ (A) for A ∈ SLd (Z) preserves the lattice Λ = Z{v1, . . . ,vd},

and the restriction ϕ (A) |Λ is represented by the matrix A when written in the basis v1, . . . ,vd . In

particular, this has as consequence that every orientation-preserving automorphism of Λ ≤ Zd

extends to an orientation-preserving automorphism of Zd . We claim that this in turn implies
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Λ = `Zd for some ` > 0. Dividing the basis by `, this would show that we can choose v1, . . . ,vd
to form a basis of Zd , so ϕ is given by conjugation by an element of GLd (Z). That Λ = ` · Zd

for some ` > 0 follows from two facts: (a) for every non-characteristic subgroup L ⊂ Zd of full

rank, there exists an (orientation-preserving) automorphism of L that does not extend to Zd , so Λ
has to be characteristic, and (b) every characteristic subgroup L ≤ Zd of full rank has the form

` · Zd for some ` > 0. To see these two facts, we �x a subgroup L ≤ Zd of full rank. By the

elementary divisor theorem, there is a basis b1, . . . ,bd of Zd and natural numbers `1, . . . , `d such

that `1 · b1, . . . , `d · bd is a basis of L. If L is non-characteristic, then `i , `j for some i and j

(since ` · Zd ≤ Zd is clearly characteristic), so the automorphism of L that interchanges `i · bi
and `j · bj does not extend to Zd (by interchanging a second pair of basis vectors we also �nd

an orientation-preserving example of such an automorphism). This shows (a). Moreover, if we

assume `i , `j for some i and j, then the automorphism of Zd that interchanges bi and bj does

not restrict to L, so L cannot be characteristic. This shows (b). �
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