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Abstract. We produce new cohomology for non-uniform arithmetic lattices � < SO.p; q/
using a technique of Millson–Raghunathan. From this, we obtain new characteristic classes of
manifold bundles with fiber a closed 4k-dimensional manifold M with indefinite intersection
form of signature .p; q/. These classes are defined on finite covers of B Diff.M/ and are shown
to be nontrivial for M D #g.S2k � S2k/. In this case, the classes produced live in degree g
and are independent from the algebra generated by the stable (i.e. MMM) classes. We also give
an application to bundles with fiber a K3 surface.
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1. Introduction

The starting point of this paper is the following new result about the cohomology of
certain arithmetic groups � < SO.p; q/.
Theorem 1. Fix 1 � p � q such that p C q � 3. Let ƒ � RpCq be a lattice
with an integral bilinear form of signature .p; q/. Consider the group SO.ƒ/ of
automorphisms of ƒ with determinant 1. For every n � 1, there is a finite-index
subgroup � < SO.ƒ/ so that dimHp.�IQ/ � n.

A lattice ƒ as in Theorem 1 is determined up to isomorphism by its signature
.p; q/ and its parity (even or odd) [31, Ch. II, §4]. The group SO.ƒ/ is a nonuniform
lattice in SO.p; q/ Š SO.ƒ˝Z R/ and has Q-rank p. (Note we are using “lattice”
in two different ways. This should not cause any confusion.)

Constructing nonzero elements of H�.�IQ/ is a classical important problem in
the theory of arithmetic groups. Our primary interest is to use Theorem 1 to produce
new characteristic classes for certain fiber bundles. Recall that a characteristic class
for fiber bundles with structure group G is an element ofH�.BG/, where BG is the
classifying space of G. Our first application is as follows.
Corollary 2. Fix g � 2 and fix n even so that 2n � gC4. LetW 2n

g D #g.Sn�Sn/,
and denote the group of orientation-preserving diffeomorphisms ofWg by Diff.Wg/.
For every m � 1, there is a finite-index subgroup Diff�.Wg/ < Diff.Wg/ so that
dimHg.B Diff�.Wg/IQ/ � m.
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Before discussing further applications, we make several remarks.
The cohomology produced in Theorem 1 is new. Millson–Raghunathan [30]

produce uniform� < SO.p; q/with 1 � p � q andp even such thatHp.�IQ/ ¤ 0.
Note in particular that [30, p. 103] requires p to be even, whereas in Theorem 1 works
for any p. This “improvement” is obtained using some ideas from more recent work
of Avramidi–Nguyen-Phan [2].

The particular finite-index subgroup � < SO.ƒ/ in Theorem 1 is somewhat
difficult to make precise by the nature of the construction. The subgroup

Diff�.Wg/ < Diff.Wg/

appearing in Corollary 2 is defined as the preimage of a subgroup � < SO.ƒ/ under
a homomorphism

Diff.Wg/! SO.ƒ/;

where ƒ isHn.W 2n
g / with its intersection form.

When p D q, then if � < SO.ƒ/ is finite index and i � p � 2, then

H i .�IQ/ Š H i .SO.ƒ/IQ/:

This follows from Borel’s stability theorem (see [7], and see [42] for the stated range).
Moreover, in this range, the cohomology ring H�.SO.ƒ/IQ/ is a polynomial ring
with one generator in each degree 4k > 0. Theorem 1 shows that the stable range
given in Borel’s theorem is nearly sharp in this case. A similar observation for
uniform lattices in SO.p; q/ is mentioned in [30].

Another way to state Theorem 1 is that the p-th virtual Betti number of SO.ƒ/
is infinite. If SO.ƒ/ < SO.p; q/ was uniform, then to prove Theorem 1 it would
suffice to prove that there exists � < SO.ƒ/ such that Hp.�IQ/ ¤ 0. Then
since SO.ƒ/ has a large commensurator one can produce many linearly independent
classes in further finite-index subgroups by an argument that appears in [43]. For a
non-uniform lattice, the same argument works, but only up to the range in Borel’s
stability theorem. In our case, that range is less than p, so that argument cannot
be used toward proving Theorem 1. Our approach to showing dimHp.�IQ/ can
be made large is along the lines of Avramidi–Nguyen-Phan [2, Thm. 1.2], but the
argument is different.

For � < SO.ƒ/, a class

c 2 H�.�IQ/ Š H�.B�IQ/

can be viewed as a characteristic class for vector bundles W ! B with structure
group � < GLpCq.R/. We explain what the characteristic classes produced in
Theorem 1 measure using obstruction theory in §4. This gives a new perspective
on the Millson–Raghunathan construction. It also provides an interpretation for the
classes in Corollary 2. This becomes relevant in our application to bundles with fiber
a K3 surface; see §5.1.
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The cohomology produced in Corollary 2 is new. The previously known classes
in H�.B Diff�.Wg/IQ/ are the stable classes (also known as tautological or
generalized Miller–Morita–Mumford classes). For B Diff.Wg/, the stable classes
account for all of the cohomology in low degree � � g [16–18]. When g is odd,
the classes we produce live in odd degree, whereas the stable classes all have even
degree, so our classes are not in the algebra generated by the stable classes. A similar
statement can be made for g even. The nontriviality of these classes is detected
by a nontrivial bundles, so Corollary 2 gives a new way to produce topologically
nontrivial bundles Wg ! E ! Bg .

Corollary 2 illustrates that the unstable cohomology of arithmetic groups is a
source of cohomology of B Diff.Wg/. This phenomenon is largely unexplored; see
also Corollary 30 in the appendix.

About the proof of Theorem1. The cohomology classes in Theorem 1 are produced
using geometric cycles in locally symmetric spaces. Let X D SO.p; q/=K be the
symmetric space associated to SO.p; q/, and let Y D �nX be the locally symmetric
space for � < SO.ƒ/. There is an isomorphism

H�.�IQ/ Š H�.Y IQ/:

Each class c 2 Hp.�IQ/we produce is Poincaré dual to a cycle ŒZ� 2 H cl
pq�p.Y IZ/

in Borel–Moore homology with closed supports, and ŒZ� is represented by a totally-
geodesic, properly-embedded oriented submanifold Z � Y . To show ŒZ� ¤ 0, we
find a compact, totally-geodesic oriented submanifold Z0 � Y of dimension p so
that the intersection number ŒZ� � ŒZ0� 2 H0.Y IZ/ Š Z is nonzero.

The cycles ŒZ� and ŒZ0� are often called geometric cycles. The idea of finding
nontrivial homology of a locally symmetric space/arithmetic group byfinding a pair of
geometric cycles with ŒZ� � ŒZ0� ¤ 0 goes back toMillson [29]; see also [2,25,30,37].
In each of these works, the locally symmetric space Y D �nX is either compact,
or the lattice � is commensurable to SLn.Z/. The spaces �nSO.p; q/=K we are
interested in do not fall into either of these categories. Theorem 1 extends the known
results to this case.

In our argumentZ0 � Y is the quotient of amaximal periodic flat inX . Theorem1
gives a partial answer to a question of Avramidi–Nguyen-Phan [2, §9].

Characteristic class interpretation. For the application to manifold bundles, the
element

ŒZ� 2 H cl
pq�p.Y IQ/ Š H

p.B�IQ/

described above is not of any particular use as an abstract cohomology class. For this
reason, one wants a bundle-theoretic construction of ŒZ� as a characteristic class.

Fix a lattice ƒ � RpCq as in Theorem 1. For a CW complex B , a map
B ! B SO.ƒ/ defines a vector bundle RpCq ! W ! B with a fiberwise latticeƒ
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and a fiberwise bilinear form ˇ of signature .p; q/. We extend the structure group
to SO.p; q/ > SO.ƒ/ (this amounts to forgetting ƒ but remembering ˇ), and then
consider the different ways to reduce the structure group fromSO.p; q/ to its maximal
compact subgroup. Each choice of reduction corresponds to a choice of a rank-p
subbundle U � W on which ˇ is positive definite. From this setup, we build a
characteristic class c that measures the difficulty of choosing U � W in a way that is
“compatible with ƒ.” We make this precise in §4 using classical obstruction theory,
and we show that c 2 H�.B�IQ/ is dual to a geometric cycle ŒZ�.

Applications to manifold bundles. LetM 4k be a manifold, and letƒM denote the
latticeH2k.M IZ/=torsion with its intersection form. Given anM -bundle � WE!B ,
one can build a vector bundle W ! B by replacing each fiberMb WD ��1.b/ with
its homology H2k.MbIR/. On the level of classifying spaces, this corresponds to
the map

˛WB Diff.M/! B O.ƒM /

induced by the action ˛WDiff.M/ ! O.ƒM / of the group of oriention-preserving
diffeomorphisms Diff.M/ on ƒM by automorphisms with determinant ˙1. For
� < SO.ƒM /, we define

Diff�.M/ D ˛�1.�/:

If� < SO.ƒM / is finite index, then Diff�.M/ < Diff.M/ is also finite index. In this
case, note that anyM bundle E ! B has structure group reducing to B Diff�.M/

after passing to a finite cover of B .
To apply Theorem 1 to manifold bundles, we are interested in the homomorphism

˛�WH�.B�IQ/! H�
�
B Diff�.M/IQ

�
: (1.1)

Application toW 4k
g D #g.S2k�S2k/. WhenM D W 4k

g , information about ˛� can
be obtained using work of Berglund–Madsen [4]. This is explained in the appendix,
written byManuel Krannich, which studies ˛� for the more general class of manifolds
W 2n
g D #g.Sn�Sn/with n � 3. It is shown that ˛� is injective in a range of degrees

growing with n; see Theorem 29. Corollary 2 follows immediately from Theorems 1
and 29. As a further consequence of Theorem 29, the appendix produces unstable
classes in the rational cohomology of B Diff.W 2n

g / for n � 4; see Corollary 30.
We remark that the homomorphism

H�.B O.ƒM /IQ/! H�.B Diff.M/IQ/

can be completely understood in the stable range using index theory. Morita [32]
showed this forM a surface; see also [13]. The techniques used to study ˛� outside
the stable range rely on surgery theory, Morlet’s lemma of disjunction, and rational
homotopy theory; see the appendix.
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Application to K3 surfaces. Let M 4 be a manifold diffeomorphic to a K3 surface.
In this case SO.ƒM / is a lattice in SO.3; 19/, and by Theorem 1, we can find finite-
index � < SO.ƒM / and a nonzero cycle z 2 H3.B�IQ/. Using the global Torelli
theorem, we conclude that z is in the image of

H3.B�0Diff�.M/IQ/! H3.B�IQ/:

We are not able to determine if z is in the image of

˛�WH�.B Diff�.M/IQ/! H�.B�IQ/;

but we relate this problem to another problem of interest. Specifically, we give an
example z ¤ 0 2 H3.B�IQ/ so that if z is in the image ˛�, then there exists a
K3-surface bundle over a 3-manifold that does not admit a fiberwise Einstein metric.
This should be contrasted with a theorem of Donaldson [12, Cor. 6.3] that says that
every K3 bundle over S1 admits a fiberwise Einstein metric; when the base has
dimension at least 2, the corresponding statement seems to be unknown.

Odd-dimensional manifolds. With the methods of this paper, we can also produce
characteristic classes for M bundles when dimM is odd. A sample application to
M D #3.Sd � SdC1/ is discussed in §5.

Section outline. In §2 we recall the general method of constructing homology of
arithmetic groups using geometric cycles. In §3 we apply that method to SO.ƒ/ and
prove Theorem 1. In §4 we explain how to view geometric cycles as characteristic
classes. Finally, §5 and the appendix contain the applications to manifold bundles.
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2. Homology of arithmetic groups: geometric cycles

This section provides the setup for proving Theorem 1. We summarize the general
strategy to produce geometric cycles in the homology of arithmetic groups/locally
symmetric manifolds. We follow [30] and [38] and refer the reader to these sources
for further details. In §3 we will apply the material of this section to the specific case
of interest � < SO.ƒ/.

2.1. Geometric cycles: the general strategy. Fix an algebraic Q-groupG such that
G.R/ is a semisimple Lie group without compact factors. We are interested in
finding some nontrivial homology of a finite-index subgroup � < G.Z/. The exact
subgroup � will be (unfortunately) out of our control, and at several points we will
replace � with a further finite-index subgroup (without changing the notation) to
ensure that some geometric fact is true.

We begin by describing the locally symmetric model for B� . Choose a maximal
compact subgroup K < G.R/, and define X D G.R/=K. The manifold X
is contractible and admits a G.R/-invariant Riemannian metric of nonpositive
curvature. Since � < G.R/ is discrete, it acts properly discontinuously on X
and each point-stabilizer in � is finite. We can replace � by a torsion-free, finite-
index subgroup [33, Thm. 4.8.2], so then � acts freely on X . Then Y D �nX is a
model forB� . The manifold Y may be noncompact, but it has finite volume (because
arithmetic subgroups are lattices [33, Thm. 1.3.9]).

The manifold Y has an abundance of totally geodesic immersed submanifolds.
Let G1 < G be a subgroup and take h 2 G.R/ so that K1 WD G1.R/ \ .hKh�1/ is
a maximal compact subgroup of G1.R/. The image of the orbit map

G1.R/ 3 g 7! ghK 2 X

is totally geodesic submanifold

G1.R/=K1 Š X1 � X:

If G1 is a Q-subgroup, then �1 D G1 \ � has finite index in G1.Z/, and the natural
map j1WY1 D �1nX1 ! Y is a proper, totally geodesic immersion [38, §6].

With this setup, we are ready to discuss the general strategy for producing
“geometric cycles” in the homology of Y . Let o D eK be the basepoint of X .
First choose G1; G2 < G so that
(�) X1 and X2 have complementary dimension d1 C d2 D dimX , the intersection

X1 \X2 D fog is transverse, and Y1 is compact.
Then choose � < G.Z/ so that
(�) the quotients Y; Y1; Y2 are oriented manifolds, the maps j1; j2 are embeddings,

and the intersection Y1\Y2 is transverse and every intersection has positive sign.
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Given (�) and (�), the submanifolds Yi � Y determine classes ŒY1� 2 Hd1.Y IQ/
and ŒY2� 2 H cl

d2
.Y IQ/ in homology and homology with closed supports, and the

algebraic intersection ŒY1� � ŒY2� is nonzero, so ŒY1� ¤ 0 inHd1.Y IQ/ Š Hd1.�IQ/,
and ŒY2� ¤ 0 inH cl

d2
.Y IQ/ Š Hd1.Y IQ/ Š Hd1.�IQ/. This is explained in more

detail in [38].
The general strategy does not always work. Indeed, it is not always possible to

achieve (�). One problem is that a totally geodesic subspace X1 � X need not admit
a subspace of complementary dimension. (It is shown in [30, Theorem 1.1] that
such a complement exists if X1 D X� is the fixed set of an involutive isometry.)
Another problem is that if Y is non-compact, then there is no reason Y1 or Y2 need
be compact in general. Nevertheless, in some special cases, one can find G1; G2 so
that (�) is satisfied. We will see this when G is an indefinite orthogonal group in the
next section.

Now we address the difficulty with (�). There is a general theorem that ensures
the first two clauses of (�). (Ensuring that Y is oriented is easy, but ensuring Y1
and Y2 are oriented is already nontrivial.)

Theorem 3 ([38, TheoremD]). LetG be a connected semisimple algebraicQ-group,
letG1 < G be a connected reductiveQ-subgroup, and let� < G.Q/ be an arithmetic
subgroup. Then after replacing � by a finite-index subgroup, the map j1WY1 ! Y

is a proper, injective, closed embedding, and each component of the image is an
orientable, totally geodesic submanifold of Y .

Given Theorem 3, the remaining difficulty is showing that, after replacing � with
a subgroup of large index, Y1\Y2 is a finite set of points and the intersection number
at each point isC1. We explain how to approach this problem in the next subsection.

2.2. Intersections and double cosets. Assume that G1; G2 < G satisfy (�) and
that � < G.Z/ is torsion-free and the associated manifolds Y1 and Y2 are oriented,
embedded submanifolds of Y . As explained in [30] (to be reviewed below), the
components of Y1 \ Y2 can be identified with a certain subset � of the double
coset space �2n�=�1. Choosing coset representatives I.�/ � � for �, the sign of
the intersection corresponding to  2 I.�/ is determined by the double coset of 
in GC2 .R/nG.R/=G

C
1 .R/, where G

C

i .R/ < Gi .R/ is the subgroup that preserves
orientation on Xi and on X (these conditions are not automatic if Gi .R/ and G.R/
are not connected). In particular, if  can be written  D g2g1 with gi 2 GCi .R/,
then the corresponding intersection is positive [30, Cor. to Lem. 2.5]. One wants to
show that if � < G.Z/ is a subgroup of large index, then every  2 I.�/ belongs
to one of the double cosets in GC2 .R/nG.R/=G

C
1 .R/ that correspond to a positive

intersection number.

Components of Y1 \ Y2. First we describe the set �0.Y1 \ Y2/ in terms of the
double coset space �2n�=�1. Denote the projection …WX ! Y . There is a



8 B. Tshishiku CMH

bijection between…�1.Y1 \ Y2/ and

T WD f.; x1; x2/ W x1 D x2g � � �X1 �X2

(an intersection downstairs is covered by an intersection upstairs, and we can translate
by � so that the intersection happens on X2). The set T has an action of �2 � �1
given by

.˛2; ˛1/:.; x1; x2/ D .˛2˛
�1
1 ; ˛1x1; ˛2x2/:

Claim. Y1 \ Y2 Š T=.�2 � �1/.
To prove the claim, one shows that if .; x1; x2/ and . 0; x01; x02/ are in T , then

….x1/ D ….x
0
1/ if and only if there exists ˛i 2 �i so that

. 0; x01; x
0
2/ D .˛2; ˛1/:.; x1; x2/:

The “if” direction is obvious. For the “only if” direction, one uses the fact that Yi is
embedded in Y , which implies that if  2 � and Xi \Xi ¤ ¿, then  2 �i . More
details can be found in [30, §2].

A similar argument shows that if .; x1; x2/ and . 0; x01; x02/ are in T , then….x1/
and ….x01/ are in the same component of Y1 \ Y2 if and only if  and  0 lie in the
same double coset �2n�=�1; see [30, Lemma 2.3 and Proposition 2.3]. In other
words, �0.Y1 \ Y2/ is in bijection with

� WD f�2�1 W X1 \X2 ¤ ¿g � �2n�=�1:

Note that � Š �0.Y1 \ Y2/ is finite because Y1 \ Y2 � Y1 is a submanifold and Y1
is compact.

Sign of the intersection. Next we explain, for each y 2 �0.Y1 \ Y2/, whether the
intersection is positive, negative, or degenerate. Fix a set of coset representatives
I.�/ � � for elements of �, and assume that 1 D Id represents �2�1.

Note that for  2 I.�/ we can write  D a2ka
�1
1 , where ai 2 GCi .R/ and

k 2 K. This is because X1 \ X2 ¤ ¿ implies that there exists xi 2 Xi so that
x1 D x2. Since GCi .R/ acts transitively on Xi , we can choose ai 2 GCi .R/ so
that ai .o/ D xi , where o D eK is the basepoint of X D G.R/=K (and is also the
intersection of X1 and X2). Then a�12 a1.o/ D o, which means a�12 a1 D k for
some k 2 K.

Since ai preserves orientation onXi andX , the sign of the intersection X1\X2
is determined by the action of k on ToX :

Lemma 4. Let e1; : : : ; ep 2 ToX1 and epC1; : : : ; en 2 ToX2 be positively oriented
bases. Define �./ by

k.e1/^ � � � ^ k.ep/^ epC1 ^ � � � ^ en D �./ e1 ^ � � � ^ en: (2.1)
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(a) The intersection corresponding to  2 I.�/ is positive, negative, or degenerate
according to whether �./ is positive, negative, or zero.

(b) If ;  0 2 I.�/ lie in the same coset GC2 .R/nG.R/=G
C
1 .R/, then �./ D �. 0/.

Proof. Webeginwith (a). The basis .a1e1; : : : ; a1ep/ is positively oriented inTx1X1,
and the basis .a2epC1; : : : ; a2en/ is positively oriented in Tx2X2. Wewant to know if�

.a1e1/; : : : ; .a1ep/; a2epC1; : : : ; a2en
�

is positively oriented in Tx2X . Since a2 preserves orientation onX and  D a2ka�11 ,
the orientation of this n-tuple is the same as the orientation of

.ke1; : : : ; kep; epC1; : : : ; en/:

See also [30, Prop. 2.3].
For (b), assume ;  0 2 I.�/ and  0 D h2h1 for some hi 2 GC2 .R/. There are

two cases: the intersection X1 \ X2 is either degenerate or not. If X1 \ X2 is
degenerate (i.e. has dimension at least 1), then the same is true for h2h1 D  0, so

�./ D 0 D �. 0/:

If X1\X2 and hence also  0X1\X2 are non-degenerate, then there exists a unique
x1; x

0
1 2 X1 and x2; x02 2 X2 so that

x1 D x2 and  0x01 D x
0
2:

Since  0 D h2h1, it follows that x1 D h1x01 and x2 D h�12 x02. Then if  D a2ka�11
where ai .0/ D xi , then we have

 0 D h2a2ka
�1
1 h1;

and
h�11 a1.0/ D h

�1
1 .x1/ D x

0
1 and h2a2.0/ D h2.x2/ D x

0
2;

which implies that both �./ and �. 0/ is computed from the action of k as in (2.1),
so

�./ D �. 0/:

See also [30, Lem. 2.5].

We note that (b) implies that the sign of the intersection doesn’t depend on the
choice of representative  2 I.�/ as long as �i � GCi .R/, which can be arranged
by passing to a finite-index subgroup (c.f. Theorem 3). In this case we have the
following formula

ŒY1� � ŒY2� D
X
2I.�/

�./:
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Note in addition that (b) implies that if  2 GC2 .R/G
C
1 .R/, then �./ D C1. We

can see this latter fact directly as follows: if  D g2g1 2 GC2 .R/G
C
1 .R/, then

X1 \X2 D .g2g1X1/ \X2 D .g2X1/ \X2

D g2.X1 \ g
�1
2 X2/ D g2.X1 \X2/; (2.2)

and since g2 preserves orientation on X and X2, this implies that the sign of the
intersection X1 \ X2 is equal to the sign of the intersection X1 \ X2, which is
positive by assumption.

Writing  2 I.�/ in GC

2
.R/GC

1
.R/. As mentioned above, one way to show an

intersection X1 \ X2 is positive is to show that  2 GC2 .R/G
C
1 .R/. The next

two propositions are partial progress to writing  in this form (which is not always
possible in general, but our goal will be to show it can be ensured by passing to
a finite-index subgroup a given �). The following proposition follows from the
argument of [30, Theorem 3.1]; see also [14, Lem. 2.6].
Proposition 5. LetG be an connected, reductive algebraic Q-group withK < G.R/
a maximal compact subgroup. Fix an arithmetic subgroup � < G.Z/, and let
G1; G2 < G be connected, reductive Q-subgroups. There exists a finite-index sub-
group � 0<� so that if  2� 0 and G2.R/\KG1.R/¤¿, then  2G2.C/G1.C/.

From the above, we see that if X1 \ X2 ¤ ¿, then G2.R/ \KG1.R/¤¿.
By Proposition 5, after replacing � by a finite-index subgroup, we can ensure
that if  2I.�/, then  2 G2.C/G1.C/. We strengthen this with the following
proposition.
Proposition 6. Fix G;G1; G2 and � as above. Assume that G1 \ G2 D fIdg. For
 2 � , if  2 G2.C/G1.C/, then  2 G2.Q/G1.Q/.
Remark 7. Note that if X1 \ X2 D ¿ and  D g2g1 2 G2.Q/G1.Q/, then
also X1 \ X2 D ¿ by the computation in (2.2). Thus, as a consequence of
Proposition 6 and the above discussion, if X1 and X2 are disjoint, then there exists
finite index � < G.Z/ so that the quotient submanifolds Y1; Y2 are disjoint in Y .
This observation will be used in §3.3 to produce linearly independent cycles.

Proof of Proposition 6. We are given  D h2h1 with hi 2 Gi .C/. To show that hi 2
Gi .Q/ we show that hi�.hi / D e for every � 2 Gal.C=Q/. Given � 2 Gal.C=Q/,
since �./ D  , we conclude that

h1�.h1/
�1
D h�12 �.h2/:

This equality implies
h1�.h1/

�1
2 G1.C/ \G2.C/;

which is trivial assumption. Hence h1 D �.h1/ and similarly h2 D �.h2/.

In summary, we have shown that  2 I.�/ can be expressed as  D g2g1 with
gi 2 Gi .Q/.
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Eliminating intersections. Assume � satisfies the hypothesis of Proposition 5 and
hence the conclusion of Proposition 6. Write IC.�/ for the subset of  2 I.�/ for
which the intersection X1 \ X2 is positive. We finish this section with two easy
lemmas that we will use to prove Theorem 1 in §3.
Lemma 8. Take � as in the preceding paragraph. Let � 0 < � be a finite-index
subgroup. If � 0 \ �2�1 D ¿ for every  2 I.�/nIC.�/, then for every  0 2 � 0
for which  0X1 \X2 ¤ ¿, the sign of the intersection is positive.

Proof. Denoting � 0i D �
0 \ �i , there is a map

�0 D � 02n�
0=� 01 ! �2n�=�1 D �

induced by the inclusion � 0 ,! � . Fixing  0 as in the statement, by assumption
�2

0�1 D �2�1, where  2 IC.�/. By Lemma 4, the sign of the intersection
 0X1 \X2 is the sign of X1 \X2, which is positive since  2 IC.�/.

Lemma 9. Suppose that � 0 C � is a normal subgroup. Fix  2 � and �1; �2 < � .
Then � 0 \ �2�1 ¤ ¿ if and only if � 0 \ �2�1 ¤ ¿.

Proof. The proof is straightforward. If  0 D 21 with  0 2 � 0 and i 2 �i , then

�11 D .
0/�12 D 2.

�1
2 . 0/�12/:

Equivalently, �12 �11 D .
�1
2 . 0/�12/ , which implies that � 0\�2�1 ¤ ¿. The

other direction is similar.

3. Geometric cycles for � < SO.p; q/

In this section we prove Theorem 1. Fix 1 � p � q and ƒ � RpCq as in the
statement of the theorem. LetB be the matrix for the bilinear form onƒwith respect
to some basis, and consider the algebraic Q-group

G D SO.B/ D fg 2 SLpCq.C/ W gtBg D Bg: (3.1)

Setting � D G.Z/ Š SO.ƒ/, we split the proof of the theorem into proving two
statements:
(a) Up to replacing � by a finite-index subgroup,Hp.�IQ/ is nonzero.
(b) Givenn�1, we can replace� by afinite-index subgroup so that dimHp.�IQ/�n.
In §3.1, we define algebraic groupsG1; G2 so thatG1.R/ Š SO.1; 1/p andG2.R/ Š
SO.p; q � 1/, and we verify that the conditions of (�) from §2 can be satisfied for
a good choice of G1; G2 < G. In §3.2, we show that we can choose � < G.Z/ so
that (�) is also satisfied. Together these prove (a). In §3.3 we prove (b) by showing
how to produce many linearly independent flat cycles.
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3.1. Choosing G1;G2 < G . Let V D ƒ˝Z R.
We choose G1 as a maximal R-split torus contained in the centralizer of a

hyper-regular element � 2 G.Z/, in the sense of Prasad–Raghunathan [35]. The
group G1 is defined and anisotropic over Q (i.e. G1 does not contain any nontrivial
Q-split torus, which implies that G1.R/=G1.Z/ is compact). One can take � to
preserve a decomposition V D U ˚U? defined over Q withU? negative definite of
dimension q�p and such that the action of � on U is irreducible and has 2p distinct
real eigenvalues occurring in .�; 1=�/ pairs (irreducible implies in particular that the
eigenvectors of � are not defined over Q). See below for a concrete example.

For G2, we fix � 2 ƒ with � � � < 0 and define G2 Š SO.B 0/, where B 0 is the
restriction of B to �?. This group includes into G.B/ in an obvious way, acting
trivially on h�i.

Our groups have real points G.R/ Š SO.p; q/, G1.R/ Š SO.1; 1/p Š .R�/p ,
and G2.R/ Š SO.p; q � 1/. The associated symmetric spaces X , X1, X2 have
dimensions pq, p, p.q � 1/, respectively.
Example. We give an explicit example of the group G1 for SO.2; 2/ by an ad
hoc construction. Consider the number field F D Q.˛/, where ˛ is a root of
t4� 12t3C 23t2� 12t C 1. The elements ˛ and 1

7
.16˛3� 180˛2C 233˛� 12/ are

units in OF and act on OF Š Z4 by the matrices

�1 D

0BB@
�1 0 0 �7

2 0 0 13

�3 1 0 �22

2 0 1 13

1CCA and �2 D

0BB@
�7 �16 �12 �9

14 28 20 15

�9 �17 �12 �10

2 4 3 3

1CCA :
These matrices preserve the bilinear form with matrix

B D

0BB@
6 2 2 19

2 0 1 12

2 1 0 1

19 12 1 0

1CCA ;
which has signature (2,2) and is unimodular (detB D 1). Let G1 < SO.B/ be
the centralizer of �1. Since �1 has 4-distinct real eigenvalues (none with norm 1),
G1.R/ Š SO.1; 1/2 is a maximal torus in SO.B/.R/. Furthermore, G1 is Q-aniso-
tropic because the eigenvectors of �1 are not defined over Q. Note that G1.Z/ <
G1.R/ is cocompact since it contains h�1; �2i Š Z2. This construction can also
be used to give examples in SO.2; q/ for q > 2 by taking the direct sum with a
negative definite form and extending by the identity. In this case, the R-points of the
centralizer of �1 is SO.1; 1/p � SO.q � p/.

Generic pairs G1;G2. We return to the general setup G1; G2 < G D SO.B/.
We want to choose G1; G2 so that X1 \ X2 D fog is a single point. This leads us
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to define a notion of generic pairs G1; G2, which will be useful at various points.
We say that G1; G2 are generic if G1 \ G2 D fIdg. We interpret this condition as
an equality of algebraic groups from the “functor of points” point-of-view, so that
G1.F /\G2.F / D fIdg for each field extension F=Q. In particular, we will use this
for F D Q;R;Qp .

For example, G1.R/ \ G2.R/ D fIdg implies that the intersection X1 \ X2 is
transverse, i.e. either a point or the empty set (it’s empty if there is no maximal
compact subgroup of G.R/ that intersects both G1.R/ and G2.R/ in respective
maximal compact subgroups). To see this implication, suppose that dimX1\X2 � 1.
Without loss of generality we assume o 2 X1 \ X2. Then dim.ToX1 \ ToX2/ � 1
implies that dim.g1 \ g2/ � 1, where gi is the Lie algebra of Gi .R/. Finally, this
implies that dim.G1.R/ \G2.R// � 1.

The following proposition gives a sufficient condition for G1; G2 to be generic.
To state it, consider the action of G.Q/ on VQ WD ƒ ˝Z Q. The group G1.Q/
preserves a subspace U of signature .p; p/ and acts trivially on U?. The group
G2.Q/ preserves �? � VQ and acts trivially on h�i.
Proposition 10. Take G1; G2 < G and take U; h�i � VQ as in the preceding
paragraph. If � … U?, then G1; G2 are generic.

Proof. First we set some notation. Let � 2 G.Z/ be the hyper-regular element used
to define G1. Let VQ D U ˚ U? the decomposition preserved by � , where U? is
negative-definite of dimension q � p and � acts irreducibly on U . Let � 2 ƒ be the
vector used to define G2. Observe that G2 can be described in terms of a centralizer:
let � 2 GLpCq.Q/ be the automorphism of VQ that fixes � and acts as �1 on its
orthogonal complement. Then G2 is the subgroup of the centralizer of � in G.Q/
that acts trivially on h�i.

For an extension F=Q, we denote C� .F /; C�.F / the centralizers of � and � in
the (vector) space of .p C q/ � .p C q/ matrices over F .
Claim. If a2C� .Q/\C�.Q/, then a acts as onU by multiplication by a scalar x2Q.

Proof of the claim. Since �.�/ D � and a commutes with �, � is an eigenvector of a,
i.e. a.�/ D x� for some x 2 Q. Write � D u C v 2 U ˚ U?. We know u ¤ 0

because we’re assuming � … U?. Also a preserves U? because �
ˇ̌
U? D Id and a

commutes with � . Then a also preserves U D .U?/?. Then

xuC xv D x.uC v/ D a.uC v/ D a.u/C a.v/

implies that u and v are both eigenvectors for a with eigenvalue x. In addition

a.� i .u// D � i .a.u// D x� i .u/

so � i .u/ is also an eigenvector for a with eigenvalue x for each i 2 Z. Since u 2 U
and � acts irreducibly on U , this implies that a acts on U by multiplication by x.
This proves the claim.
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Using the claim, it follows that ifF=Q is an extension then any a2C� .F /\C�.F /
acts on U ˝ F by a scalar x 2 F . This is because the conditions a� D �a and
a� D �a give a system of linear equations defined over Q, so the set of solutions is
described independently of the field.

Nowwefinish the proof of the proposition by showing thatG1.F /\G2.F / D fIdg
for any field extension F=Q. Since

G1.F / \G2.F / � C� .F / \ C�.F /;

any a 2 G1.F / \ G2.F / acts on U ˝ F by multiplication by a scalar x 2 F . But
since a acts by an isometry, x2 D 1 so x D ˙1. To show a D Id we want to
show x D 1 (we already know that a acts as Id on U? since a 2 G1.F /). Since
a 2 G2.F /, a.�/ D �. Writing � D uC v as before, then

uC v D � D a.�/ D a.u/C a.v/ D xuC v:

Since u ¤ 0, this implies x D 1. This completes the proof.

Note that the hypothesis � … U? is automatically satisfied when p D q since
then U? D 0. In addition, given G1 and G2, we can replace � with �0 so that the
rational lines are h�0i and h�i are arbitrarily close and G1; G02 are generic.

3.2. Eliminating intersections. In this section we start with G1; G2 generic with
X1 \ X2 D fog and with � < G.Z/ that preserves orientation on X and so that
�i D Gi \ � preserves orientation on Xi and X . We’ve already explained why this
is possible. Here we show that we can find finite-index � 0 < � so that if  0 2 � 0 and
 0X1 \ X2 ¤ ¿, then  0 2 GC2 .R/G

C
1 .R/. This will prove that � 0 satisfies (�) and

finish part (a) of our proof of Theorem 1.

Orientations and spinor norm. Recall thatGCi .R/ < Gi .R/ denotes the subgroup
that preserves orientation onXi and onX . We explain how to determine these groups
in our situation. For this, the spinor norm plays an important role.

Let F=Q be a field extension (we will only use F D Q;R;Qp). Then G.F / is a
group of orthogonal transformations of the quadratic space VF D ƒ˝Z F , and the
spinor norm �F WG.F /! F �=.F �/2 is a homomorphism, defined as follows. Any
g 2 G.F / can be expressed as a product of reflections g D Rx1 � � �Rxk , where Rx
denotes the reflection about the orthogonal complement of x 2 VF . Then one defines

�F .g/ D

kY
iD1

xi � xi mod .F �/2;

which is well-defined independent of the choice of reflections. For more information,
see [34, §55] and also [30, §4].

In particular,G.R/ Š SO.p; q/ has two components, detected by the spinor norm
� WG.R/! R�=.R�/2.
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Lemma 11. Let G D SO.B/ with G.R/ Š SO.p; q/. If p C q is even, then G.R/
preserves the orientation on X D G.R/=K. If p C q is odd, then the orientation
preserving subgroup of G.R/ is the kernel of the spinor norm homomorphism.

From the lemma, it follows thatG2.R/ŠSO.p; q�1/ preserves orientation onX1
if p C q is odd and preserves orientation on X if p C q is even. Hence g 2 GC2 .R/
if and only if �.g/ D 1. Lemma 11 is easy to check; its proof is similar to the proof
of the following lemma, whose proof we give.
Lemma 12. The group G1.R/ preserves orientation on X1. If p C q is even,
then G1.R/ preserves orientation on X1. If pC q is odd, then g 2 G1.R/ preserves
orientation on X if and only if �.g/ D 1.

Proof. Whether or not g 2 G1.R/ preserves orientation on X1 or X depends only
on the component of g 2 G1.R/ Š .R�/p . Thus it suffices to consider the action of
elements of G1.R/\K Š f˙1gp . This allows one to reduce to the tangent space at
the basepoint o 2 X , where the action of K is the adjoint action.

The Lie algebra of G.R/ decomposes g D k˚ p, where k is the Lie algebra of K
and p Š ToX . We identify G.R/ with the group of isometries of RpCq with respect
to the form whose matrix in the basis .e1; : : : ; ep; f1; : : : ; fq/ is�

Idp 0

0 � Idq

�
:

We choose K Š S.O.p/ � O.q// to be the obvious block diagonal subgroup. We
can identify p with p � q matricesMp;q . The adjoint action of�

k1
k2

�
2 K D S.O.p/ � O.q// on p

is given by A 7! k1Ak
�1
2 .

Up to conjugation in G.R/, we can choose G1 so that

G1.R/ D
pY
iD1

SO
�
Rfei ; fig

�
:

Then G1.R/ \ K Š f˙1gp is generated by maps ık , where ık acts by � Id
on Rfek; fkg and by Id on Rfek; fkg

?. The subspace ToX1 � ToX is identified
with the diagonal matrices inMp;q Š ToX (i.e. matrices with aij D 0 for i ¤ j ).

Now one computes: the adjoint action of ık onMp;q is given by

.aij / 7! .bij /; where bij D

(
�aij i D k or j D k but not both;
aij else.

Thus the determinant of ık acting onMp;q Š ToX is .�1/pCq�2, and the action on
ToX1 Š (diagonal matrices) is by the identity. This lemma follows directly from this
computation.
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As a consequence of Lemmas 11 and 12 we immediately obtain:
Corollary 13. Fix  2 � with X1 \ X2 ¤ ¿. If  D g2g1 2 G2.R/G1.R/ with
�.g2/ D �.g1/ D 1, then the intersection X1 \X2 is positive.

Eliminating intersections. The final step in the proof of part (a) of Theorem 1 is
the following proposition.
Proposition 14. Fix � as above. There exists a finite-index normal subgroup � 0 C �

so that � 0 \ �2�1 D ¿ for every  2 I.�/nIC.�/.
By Proposition 14, after replacing � by � 0, every intersection X1 \ X2 has a

positive sign by Lemma 8.

Proof of Proposition 14. For a primep, considerGi .Zp/, and defineG0i .Zp/�Gi .Zp/
the subgroup on which the p-adic spinor norm is trivial. By [30, §4, Cor. 1] after
replacing � by a finite-index subgroup, we can assume that � is trivial on � (and
hence also on �1; �2 < �). In particular,

�2�1 � G
0
2.Zp/G

0
1.Zp/

for each p.
Recall (c.f. Lemma 6) that for each  2 I.�/, we can write  D g2g1 with

gi 2 Gi .Q/. This expression is unique becauseG1; G2 are generic. Since �./ D 1,
we have

�.g2/ D �.g1/ 2 R�=.R�/2:

Consider the subset f1; : : : ; mg � I.�/ of those j for which j D g2;jg1;j with
�.g2;j / ¤ 1. Note that f1; : : : ; mg contains the complement of IC.�/. To prove
the proposition, we will find � 0 C � so that � 0 \ �2j�1 D ¿ for each j .

For each j , there exists a prime pj so that �pj .g2;j / ¤ 1, where

�pj WG.Qpj /! Q�pj =.Q
�
pj
/2

is the p-adic spinor norm (i.e. if x 2 Q is not a square, then there exists a prime p
so that x is not a square in Qp). For each j , there exists nj so that

�.p
nj
j /j \G

0
2.Zpj /G

0
1.Zpj / D ¿ :

To see this, note that the groups G0i .Zpj / are compact in G.Qp/ and hence so
too is their product. Thus since �pj .g2;j / ¤ 1, the element j is not contained in
G02.Zpj /G

0
1.Zpj / (again using thatG1; G2 is generic so the expression j Dg2;jg1;j

is unique), and so there is a p-adic neighborhood �.pnjj / of j that is disjoint from
G02.Zpj /G

0
1.Zpj /. A similar argument appears in [2, §8].

Consider � 0 D
T
�.p

nj
j /. For each j , by construction

� 0j \G
0
2.Zpj /G

0
1.Zpj / D ¿ :

This implies that � 0j \�2�1 D ¿ since �2�1 � G02.Zpj /G01.Zpj /. By Lemma 9
we conclude that � 0 \ �2j�1 D ¿. This completes the proof.
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3.3. Arrangements of flats and proof of Theorem 1(b). So far, we’ve shown that
we can findG1 and� < G.Z/ so that the associated cycle ŒY1� 2 Hp.Y / is nontrivial.
Here we show that given n � 1, we can find G11 ; : : : ; Gn1 and � < G.Z/ so that the
associated cycles ŒY 11 �; : : : ; ŒY n1 � 2 Hp.Y / are linearly independent. We will assume
2 � p � q. The case p D 1 (i.e. X is hyperbolic space) is easy.

The argument will mostly take place in the symmetric space X . For this reason
we change our notation slightly, denoting maximal flats (previously X1) by F �X
and “hyperplanes” (previously X2) by H � X . (Calling H an hyperplane is mis-
leading since its codimension is p. However,H is the group preserving a hyperplane
P � V , so in that sense the name is perhaps reasonable.)

Our approach is as follows.
(1) For each n � 1, we find collections fFign1 and fHign1 of flats and hyperplanes
in X so that the intersection matrix .Fi � Hj / is invertible. The groups GFi ; GHi
(the analogues of G1; G2 before) will be defined over R, but not necessarily defined
over Q.

(2) We explain why we can perturb fFig (resp. fHig) so that they descend to compact
(resp. properly embedded) submanifolds xFi ; xHi of Y D �nX for some � . The proof
of part (a) of Theorem 1 will then allow us to replace � by a finite-index subgroup
so that the intersection matrix . xFi � xHj / is invertible. From this we conclude that the
cycles Œ xF1�; : : : ; Œ xFn� are linearly independent.

Before we carry out this plan, we describe X in terms of a Grassmannian, and
explain when a hyperplane and a flat intersect transversely.

For much of this section, the integral structure ƒ � V will not play a role, so we
will identify V Š Rp;q with standard basis of orthogonal vectors

Rp;q D he1; : : : ; ep; f1; : : : ; fqi

with ei � ei D 1 and fj � fj D �1.

Flats, hyperplanes, and the Grassmannian of positive p-planes. Define Grp.V /
to be the space of p-dimensional subspaces of V on which the form is positive
definite, topologized as a subspace of the Grassmannian. The Lie group SO.V / acts
transitively on Grp.V / with stabilizer a maximal compact, so the symmetric space
X D SO.V /=K is isomorphic to Grp.V /.

Given a decomposition V D P ˚ L, where L is a negative line, we define a
“hyperplane”

H D fW 2 Grp.V / W W � P g:

Given a decomposition V D U1 ˚ � � � ˚ Up ˚ N , where Ui Š R1;1 and N is
negative-definite, we define a flat

F D fW 2 Grp.V / W W D ˚piD1W \ Uig
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As a sanity check, one can see that F Š Rp as follows. If W 2 F , then W \ Ui
is a positive line for each i . The space of positive lines in R1;1 is homeomorphic
to R. As one varies the choice ofW \Ui for each i , one gets a subspace of Grp.V /
homeomorphic to Rp .

The following lemma characterizes when H and F intersect and when that
intersection is transverse. Its proof is easy.
Lemma 15. Let V D P ˚ L and V D U1 ˚ � � � ˚ Up ˚N be two decompositions
as above, and letH and F be the associated hyperplane and flat.
(i) If P \ Ui does not contain a positive line for some i , thenH \ F D ¿.
(ii) IfP\Ui is equal to a positive line for each i , thenH andF intersect transversely

in a single point.
(iii) If P \ Ui contains a positive line for every i , and P \ Uj D Uj for some j ,

then dimH \ F � 1.
In the setup of Proposition 10, the condition � … U? and the assumption that �

acts irreducibly on U implies that when one considers the � -invariant decomposition
U ˝ R D U1 ˚ � � � ˚ Up , then the projection of � to each Ui is nonzero; thus
P \ Ui is a proper subspace of Ui for each i . Consequently, the condition � … U?
in Proposition 10 corresponds to cases (i) and (ii) in Lemma 15.

Agoodarrangement. For eachn�1, we construct a sequence of hyperplanes fH`gn`D1
and flats fFkgnkD1 defined overR so that the intersectionmatrix .H` �Fk/ is invertible.

To begin, let F0 be the flat corresponding to

Rp;q D he1; f1i ˚ � � � ˚ hep; fpi ˚ hfpC1; : : : ; fqi DW U1 ˚ � � � ˚ Up ˚N:

Next we define a hyperplaneH0. First let �WRp;q ! Rp;q be an automorphism that
acts by the identity on he1; f1i?, and whose restriction to he1; f1i expands he1Cf1i
and contracts he1 � f1i. For each m � 0, define am; bm by

�m.e1/ D am e1 C bm f1:

Then
�m.f1/ D bme1 C amf1:

We will also use the shorthand em1 WD �m.e1/ and f m1 WD �m.f1/. By definition,
a2m � b

2
m D 1 for each m (hence am > bm), and am; bm ! 1 and am

bm
! 1

as m ! 1. Fix m � 0 (to be chosen later, depending on n). Let H0 be the
hyperplane defined by the decomposition Rp;q D P ˚ L, where

L D hf m1 C f2 C � � � C fpi;

and

P D L? D hem1 ; e2; : : : ; ep; f
m
1 � f2; f2 � f3; : : : ; fp�1 � fp; fpC1; : : : ; fqi:
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Define flatsFk for k � 1 by rotatingF0 as follows. Fix�1� � < 0 (to be chosen
later, depending on n). Let r WRp;q ! Rp;q be the rotation that is the identity on
he1; e2; f1; f2i

? and restricts to each of he1; e2i and hf1; f2i as a counter-clockwise
rotation of angle � . Note r 2 SO.p/ � SO.q/ (note also that to define r we have
used p; q � 2). For each k � 1, define Fk D rk.F0/.

Lemma 16 (Intersection pattern). The intersectionH0\F0 is nonempty. For k � 1,
if

� .am C bm/ � tan.k�/ � �.am � bm/; (3.2)

thenH0 \ Fk D ¿.

Beforewe prove Lemma16, we show that it allows us to find a desired arrangement
ofH`; Fk .

Observe that for each n � 1, we can choose m � 0 and ��
4
� � < 0 so

that (3.2) is true for k D 1; : : : ; n. Thus for k D 0; : : : ; n, we have H0 \ Fk ¤ ¿ if
and only if k D 0. Now defineH` D r`.H0/. If k � `, then

H` \ Fk ¤ ¿ , r`.H0/\ r
k.F0/ ¤ ¿ , H0 \ r

k�`.F0/ ¤ ¿ , k D `:

Consequently, the intersection matrix .H` � Fk/ is lower triangular with 1’s on the
diagonal. This matrix is invertible, as desired.

Proof of Lemma 16. The first statement is easy: the intersection ofH0 and F0 is the
p-plane W D hem1 ; : : : ; epi.

Nowwe prove the second statement. The flatFk corresponds to the decomposition

Rp;q D U k1 ˚ U
k
2 ˚ U3 ˚ � � � ˚ Up ˚N;

where U ki D rk.Ui / � Rp;q for i D 1; 2. Note for i D 1; 2 that U ki is spanned
by rk.ei /, rk.fi /, and

rk.e1/ D cos.k�/e1 C sin.k�/e2 and rk.e2/ D � sin.k�/e1 C cos.k�/e2;

and the same formulas hold when e1; e2 are replaced by f1; f2.
We will compute P \ U k1 and see under what conditions the intersection is a

positive line. If v 2 P \ U k1 , then we can write

v D A1.ame1 C bmf1/C A2e2 C B1.bme1 C amf1 � f2/

C A3e3 C � � � C Apep C B2.f2 � f3/C � � � C Bp�1.fp�1 � fp/

C BpC1fpC1 C � � � C Bqfq (3.3)

and also

v D X
�
cos.k�/e1 C sin.k�/e2

�
C Y

�
cos.k�/f1 C sin.k�/f2

�
: (3.4)
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Since the coefficients on e3; : : : ; ep and f3; : : : ; fq are zero in (3.4),Ai D 0 for i � 3
and Bj D 0 for j � 2. Then setting equations (3.3) and (3.4) equal (and changing
notation on the coefficients slightly),

.Aam C Bbm/e1 C .Abm C Bam/f1 C Ce2 � Bf2

D X cos.k�/e1 C Y cos.k�/f1 CX sin.k�/e2 C Y sin.k�/f2:

We can simplify the corresponding system of equations to

X cos.k�/bm C Y sin.k�/b2m D Y cos.k�/am C Y sin.k�/a2m;

so that
X D

�
am

bm
C

1

bm
tan.k�/

�
Y:

We want to know if X2 � Y 2 is positive or negative. Since

X2 � Y 2 D

��
am

bm
C

tan.k�/
bm

�2
� 1

�
Y 2;

this is nonpositive if and only if

�1 �
am

bm
C

tan.k�/
bm

� 1:

This inequality is equivalent to (3.2). If it holds, then H0 \ Fk D ¿ by Lemma 15.
This completes the proof.

Cocompact flats and rational hyperplanes. Nowweexplain howanyflat/hyperplane
in X can be perturbed to one that descends to a properly immersed submanifold of
Y D �nX . This will allow us to perturb the arrangement constructed above to an
arrangement that descends to Y .

Rational hyperplanes We say a hyperplane H � X is rational or defined over Q
if the line L in the corresponding decomposition V D P ˚ L is defined over Q
(equivalently, L is spanned by an integral vector � 2 ƒ). In this case, the subgroup
of GH that preserves the decomposition P ˚ L is defined over Q. Furthermore,
since the G.Q/ orbit of a negative rational line is dense in the space of all negative
lines in V , any hyperplane H � X can be approximated by a rational hyperplane
(one way to say this: for any neighborhood� of @H in the visual boundary @X , there
exists a rational hyperplaneH 0 so that @H 0 � �).

Rational flats Wesay a flatF � X is rational if its stabilizer is defined overQ. In this
case, it descends to a properly embedded submanifold of Y D X=� by [38, Thm.D],
c.f. Theorem 3. The condition that F is rational is not enough for the quotient in Y
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to be compact. However, as discussed in §3.1, by [35] there exists � 2 G.Z/ whose
centralizer C� .R/ is a Cartan subgroup and C� .R/=.� \ C� .R// is compact. The
element � will preserve some decomposition

Rp;q D U�;1 ˚ � � � ˚ U�;p ˚N� :

The G.Q/ orbit of .U�;1; : : : ; U�;p/ in the space of all p-tuples .U1; : : : ; Up/ of
orthogonal subspacesUi Š R1;1 ,! Rp;q is dense (becauseG.R/ acts transitively on
such tuples and G.Q/ � G.R/ is dense). Thus any flat F � X can be approximated
by a rational flat F 0 that is compact in the quotient X=� .

In summary, to prove part (b) of Theorem 1, given n � 1, we start with the
arrangement fFkgn1 and fH`gn1 of flats and hyperplanes inX with the lower-triangular
intersection pattern. Let xFk and xH` be the images of these submanifolds inY D X=� .
First we perturb to get a new arrangement of rational flats and hyperplanes with the
same intersection pattern so that each xFk is compact and each xH` is properly immersed
in Y . By replacing � by a finite-index subgroup, we can ensure that xFk and xH` are
oriented, embedded submanifolds (Theorem 3). Next we apply Proposition 6 to each
pair .Fk;H`/ (and the corresponding subgroups GFk ; GH` < G) to conclude that
after replacing � by yet another finite-index subgroup, we can ensure that every
 2 I.�/ belongs to GFk .Q/GH`.Q/. Then by Remark 7, xH` and xFk intersect if
and only if H` and Fk intersect, i.e. the intersection matrix . xH` � xFk/ is also lower-
triangular. Finally, we can pass to a further finite-index subgroup so that the diagonal
entries in the intersection matrix are all positive by the argument of §3.2. Therefore,
. xH` � xFk/ is invertible, which implies that the homology classes Œ xF1�; : : : ; Œ xFn� are
linearly independent inHp.Y IQ/. This proves part (b) of Theorem 1.

4. Vector bundles with arithmetic structure group

By Corollary 2, the classes produced in Theorem 1 give rise to characteristic classes
of manifold bundlesWg ! E ! B with fiberWg D #g.S2k �S2k/. In this section
we explain what these characteristic classes measure. This gives a new perspective
on the Millson–Raghunathan construction. This will play a role in §5.

Before we begin, we recall the classification of lattices ƒ � RpCq with integral,
unimodular, indefinite bilinear form; see e.g. [31, Ch. II, §4]. This classification is
not strictly needed for what follows, but it is helpful to have these examples in mind.
If the form is odd, then there exists a basis for ƒ, with respect to which the form has
matrix Bp;q , where

Bp;q D

�
Ip
�Iq

�
: (4.1)
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If the form on ƒ is even, then q D p C 8` for some ` � 0 and ƒ is isomorphic to
H˚p ˚ .�E8/

˚`, where

H D

�
Z2;

�
1

1

��
(4.2)

and E8 is the unique positive-definite, even, unimodular lattice of rank 8.

4.1. Vector bundles with structure group SO.ƒ/ < SO.p; q/. Fix 1 � p � q
and set n D pCq. Fix a latticeƒ Š Zn with an integral, unimodular bilinear form of
signature .p; q/. Fix a primitive vector � 2 ƒ such that � �� < 0. Set V D ƒ˝Z R.
The goal of this section is to construct a characteristic class c� 2 Hp.B�IQ/ for
certain � < SO.ƒ/ and show that c� is dual to a geometric cycle ŒY2� as in §3.

LetW ! B be a oriented, real vector bundle with rank n. LetWb denote the fiber
over b 2 B . Assume that the structure group reduces from GLC.V / to SO.V /. This
is equivalent to the existence of a fiberwise bilinear form ˇ D fˇbgb2B of signature
.p; q/. We can always reduce the structure group fromSO.V / to its maximal compact
subgroup

K Š S.O.p/ �O.q//

(because they are homotopy equivalent and so are their classifying spaces). Such
a reduction defines a decomposition W Š U ˚ U?, where U D

S
b2B Ub is a

rank-p subbundle and ˇbWUb � Ub ! R is positive definite for each b. Conversely,
any positive rank-p subbundle U � W defines a reduction of the structure group to
S.O.p/ � O.q//. The structure group of W ! B reduces to SO.ƒ/ if and only if
there exists a fiberwise lattice

ƒ D
[
b2B

ƒb � W;

where ƒb (with its from ˇb/ is isometric to ƒ for each b 2 B .

Definition. Fix ƒ;V and � 2 ƒ and a bundleW ! B with structure group SO.ƒ/
as above. We say that a positive rank-p subbundle U � W is orthogonal to �
at b 2 B if there exists an isometry �Wƒ! ƒb so that Ub � �.�/?. If U � W is
not orthogonal to � at any b 2 B , then we say U is nowhere orthogonal to �.

The characteristic class we define will be an obstruction to finding U � W that is
nowhere orthogonal to �. We translate the problem of finding U to a problem about
finding a section of an associated bundle.

Set � D �1.B/. Let �W� ! SO.ƒ/ be the monodromy of W ! B . The
symmetric space X D KnSO.V / is homeomorphic to the Grassmannian

Grp.V / D fV 0 � V W V 0 is positive definite and dimV 0 D pg

because SO.V / acts transitively on Grp.V / and the stabilizer of a point is isomorphic
to a maximal compact subgroup K � SO.V /.
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The group � acts on X Š Grp.V / via the monodromy �. For a space Z with a
�-action, we denote the Borel construction

Z � � WD
zB �Z

�
;

where � acts on the universal cover zB by deck transformations and � acts on Z by
the given �-action, and the quotient is by the diagonal action. For any such Z, there
is a fibration Z � � ! � � � D B with fiber Z.

Observe that for W ! B with monodromy �W� ! SO.ƒ/, a section of the
associated bundle X �� ! B is equivalent to a positive rank-p subbundle U � W .

Let H� D fV 0 2 Grp.V / W V 0 � �?g � X . This is the sub-symmetric space
corresponding to the subgroup SO.�?/ < SO.V /. The codimension of H� in X
is p.

By [38, Thm.D], there exists a torsion-free, finite-index subgroup �� < SO.ƒ/
so that the ��-orbit of H is embedded and admits a ��-invariant orientation. (The
group �� is not uniquely defined by these properties, e.g. for every prime `, there
existsm > 0 so that the congruence subgroup ker

�
SO.ƒ/! SO.ƒ=`mƒ/

�
satisfies

these properties. The construction below works for any choice of ��.)
Fix a finite index subgroup � < ��, and letH�;� be the �-orbit ofH� in X . By

replacing B by a finite cover, we can ensure that �.�/ < � . Set X0 D X nH�;�
and consider the bundle X0 � � ! B . If W ! B has a positive rank-p subbundle
U � W that is nowhere orthogonal to �, thenX0�� ! B has a continuous section.
Nowwe can use obstruction theory to extract a characteristic class from this situation.
For this, we need to know the first nontrivial homotopy group of X0.
Lemma 17. Fix k � 0. If k � p � 2, then �k.X0/ D 0. Furthermore,

�p�1.X0/ Š
M

�0.H�;� /

Z:

Proof. First assume k � p � 2. We show any map Sk ! X0 is homotopically
trivial. Since X Š Rpq is contractible, we obtain a diagram

Sk X0

DkC1 X

//i
� _

�� ��
//

j
(4.3)

Without loss of generality we may assume that i and j are smooth and j is transverse
toH�;� . Since k C 1 � p � 1 and the codimension ofH�;� is p, ifD is transverse
toH�;� , thenD \H�;� D ¿, which shows i is homotopically trivial in X0.

By the Hurewicz theorem,

�p�1.X0/ Š Hp�1.X0/:
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Define a homomorphism

�W�p�1.X0/ Š Hp�1.X0/!
M

�0.H�;� /

Z

as follows. Choose an orientation on each component ofH�;� . Given i WSp�1 ! X0,
extend toDp ! X transverse toH�;� , and compute the algebraic intersection ofDp

with each component ofH�;� .
The map � is obviously surjective: for each component ofH�;� , one can choose

a .p � 1/-sphere in its link, and the image of these generate
L
�0.H�;� /

Z. For
injectivity, it is well known that if D;H are oriented submanifolds of an oriented
manifoldX that intersect transversely in a finite collection of points and their algebraic
intersection number is 0, then D can be replaced by a homologous submanifold D0
with @D D @D0 so that D0 \ H D ¿. This shows that if ŒSp�1 ! X0� is in the
kernel of �, then ŒSp�1 ! X0� D 0 inHp�1.X0/.

Applying obstruction theory (see e.g. [11, Ch. 7]), we can try to build a section
of X0 � � ! B . Assume that B is a CW complex. We start by choosing a section
over the 0-skeleton of B and work our way up inductively defining a section on the
k-skeleton for k � p � 1 using the fact that �k�1.X0/ D 0 for k � p � 1. Once we
reach the p-skeleton we meet the first measurable obstruction, which takes the form
of a cocycle

C�;�.W / 2 H
p
�
BI�p�1.X0/

�
:

If C�;�.W / ¤ 0, then X0 � � ! B has no continuous section, and so W ! B

does not have a positive rank-p subbundle U that is nowhere orthogonal to �. This
is useful, but we are interested in a less-refined, Z-valued obstruction.

Since H�;� has a �-invariant orientation, there is a preferred generator of each
coordinate of

L
�0.H�;� /

Z. We use this to define an augmentation mapM
�0.H�;� /

Z! Z:

The augmentation map induces a map

Hp
�
BI�p�1.X0/

�
! Hp.BIZ/;

which sends C�;�.W / to a class c�;�.W / 2 Hp.BIZ/.

Proposition 18. Fix ƒ;V , � 2 ƒ, and �� < SO.ƒ/ as above. Let B be a CW
complex and let W ! B be a vector bundle with structure group �<��. If
c�;�.W / ¤ 0 inHp.BIZ/, thenW ! B has no positive, rank-p subbundle U �W
that is nowhere orthogonal to �. Equivalently, for every positive, rank-p sub-
bundle U � W , there exists b 2 B so that U is orthogonal to � at b.
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Remark. IfC�;� D 0, then there exists of a section ofX0�� ! B , but this does not
ensure that there existsU � W that is nowhere orthogonal to � sinceX0 D X nH�;�
is not the complement of the full orbit ofH� under SO.ƒ/. Note also that if � 0 � � ,
then H�;�0 � H�;� , so it is possible that C�;� ¤ 0 but C�;�0 D 0 (and similarly
for c�;� and c�;�0).

IfB is a closed, oriented p-manifold, then we can evaluate c�;�.W / 2 Hp.BIZ/
on the fundamental class to get an integer hc�;�.W /; ŒB�i 2 Z, which is computed
as follows. We have a diagram

X X � � X=�

B

// //
p

��
TT
u (4.4)

Here u is a section corresponding to a positive, rank-p subbundle U � W , and
the map p is the composition

X � � D
zB �X

�
! X=�.�/! X=�

(the first map collapses collapses zB to a point). Let xH�;� be the image ofH� inX=� .
By our choice of �� and the assumption � < ��, the inclusion xH�;� ,! X=� is
a proper embedding, c.f. [38, Thm.D]. Now tracing through the definitions, one
finds that hc�;�.W /; ŒB�

˛
is equal to the algebraic intersection number of p ı u.B/

with xH�;� in X=� .
Applying the above construction to the universal bundle over B� , we see that

c�;� 2 H
p.B�/ Š Hp.X=�/

is dual to the cycle xH�;� , which is a locally symmetric space for a nonuniform lattice
in SO.�?/ Š SO.p; q � 1/. In §3, we showed that there exists � < �� so that
Œ xH�;� � 2 H

cl
pq�p.X=�/ is nonzero. Then c�;� is also nontrivial.

4.2. Vector bundles with structure group SLn.Z/. The construction of the previ-
ous section can be repeated in other situations. Here we remark on a version for vector
bundles with structure group SLn.Z/. We will use this in §5 to give an application
similar to Corollary 2 to odd-dimensional manifolds.

Fix the standard lattice Zn < Rn. Let ı D .P;L/ denote be a pair of subspaces
of Rn defined over Q such that Rn D P ˚ L and dimL D 1. For every such ı, we
will associate a finite index subgroup �ı < SLn.Z/ and for every � < �ı we will
define a characteristic class cı;� 2 Hn�1.B�IZ/ for real vector bundles W ! B

with structure group in � .
Suppose W ! B is a real oriented vector bundle of rank n. The structure group

reduces from GLCn .R/ to SLn.Z/ if and only if W admits a fiberwise lattice ƒ.
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A reduction of the structure group from GLCn .R/ to its maximal compact SO.n/
corresponds to a fiberwise inner product ˇ on W .

Definition. Fix ı D .P;L/ and W ! B and ƒ � W as above. For a fiberwise
inner product ˇ, we say that a .P;L/ is ˇ-orthogonal at b 2 B if there exists an
isomorphism �W .Rn;Zn/ ! .Wb; ƒb/ so that �.P / and �.L/ are orthogonal with
respect to ˇb . If .P;L/ is not ˇ-orthogonal at any b 2 B , we say .P;L/ is nowhere
ˇ-orthogonal.

We can translate the problem of finding an inner product ˇ so that .P;L/ is
nowhere ˇ-orthogonal to a problem of finding a section of an associated bundle. Let
X D SO.n/nSLn.R/. This symmetric space can be identified with the space of unit
volume inner products on Rn. There is a bijective correspondence between fiberwise
inner products ˇ on W ! B and sections of X � � ! B , where � D �1.B/ acts
on X via the monodromy �W� ! SLn.Z/.

Consider the submanifold

Hı D finner products such that Rn D P ˚ L is orthogonalg � X;

which is a sub-symmetric space for SLn�1.R/ � R. By [38, Thm.D], we can find
a torsion-free subgroup �ı < SLn.Z/ so that the �ı -orbit of Hı in X is embedded
and has a �ı -invariant orientation. Fix a finite-index subgroup � < �ı . Denote the
� orbit of Hı in X by Hı;� , and set X0 D X nHı;� . We replace B with a finite
cover so that the monodromy �W� ! SLn.Z/ factors through � .

If W ! B admits an inner product ˇ so that .P;L/ is nowhere ˇ-orthogonal,
then X0 � � ! B admits a continuous section. Similar to Lemma 17, we compute

�k.X0/ D 0

for k � n � 3 and
�n�2.X0/ Š

M
�0.Hı;� /

Z:

Then there is an obstruction class Cı;�.W / 2 Hn�1.BI�n�2.X0//, which maps to
a class cı;�.W / 2 Hn�1.BIZ/ under the map induced by the augmentationM

�0.Hı;� /
Z! Z:

We summarize the above discussion with the following proposition.

Proposition 19. Fix ı D .P;L/ and�ı < SLn.Z/ as above. LetB be a CW complex
and let W ! B be a vector bundle with structure group � < �ı . If cı;�.W / ¤ 0

in Hn�1.BIZ/, then W ! B does not admit an inner product ˇ so that .P;L/ is
nowhere ˇ-orthogonal. Equivalently, for every inner product ˇ on W there exists
b 2 B so that .P;L/ is ˇ-orthogonal at b.
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The class

cı;� 2 H
n�1.B�/ Š Hn�1.X=�/ Š H cl

.n2�n/=2
.X=�/

is dual to the cycle
Œ xHı;� � 2 H

cl
.n2�n/=2

.X=�/

represented by the image ofHı inX=� . Comparewith the discussion following (4.4).
By a theorem of Avramidi–Nguyen-Phan [2] for a subgroup � < �ı of sufficiently
large index, the homology class Œ xHı;� � 2 H cl

.n2�n/=2
.X=�IQ/ is nontrivial.

5. Applications to manifold bundles

In this section and the appendix, we give applications of Theorem 1.

5.1. 4-manifolds, K3 surfaces bundles, and the global Torelli theorem. Let M
be a closed oriented 4-manifold. As in the introduction, we use ƒM to denote
H2.M IZ/=torsion with its intersection form. Assume that ƒM is indefinite, and
let .p; q/ be the signature. Up to switching the orientation, we may assume p � q.
By Theorem 1, when p is odd, there exists a finite-index subgroup � < SO.ƒM / so
thatHp.�IQ/ ¤ 0.
Question 20. Does the image of Hp.B Diff�.M/IQ/! Hp.B�IQ/ intersect the
subspace spanned by flat cycles nontrivially?

One could ask a similar question for homeomorphisms or homotopy automor-
phisms. There does not seem to be a good reason for the answer to Question 20 to
be “Yes”, other than the evidence provided by Corollary 26 and Theorem 29 below.
Example. Fix 1 � p � q and let

M DMp;q WD
�
#p CP2

�
#
�
#qCP2

�
:

Then the form onƒM has matrix Bp;q (defined in (4.1)) and ˛WDiff.M/! O.ƒM /
is surjective if p C q � 8 or p � 2. This follows from [44, Thm. 2]; which shows
that ˛ is surjective when p C q � 8 or M D N #.S2 � S2/ is simply connected
andQN is indefinite. Since

CP2 #CP2#CP2 Š .S2 � S2/#CP2

(see e.g. [39, pp. 124, 151]), the hypotheses of Wall’s theorem are true for Mp;q

when p � 2. This gives many concrete examples to study Question 20.
One does not necessarily need to restrict to flat cycles. In particular, for M1;q ,

the group O.ƒM / is a nonuniform lattice in O.1; q/. One easy source of homology
of finite-index subgroups � � O.ƒM / are classes

ŒT � 2 Hq�1.H
q=�IQ/ Š Hq�1.�IQ/
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represented by a cusp cross-section T � Hq=� . When Hq=� has at least 2 cusps,
these classes are always nontrivial. Note that T is finitely covered by a flat torus,
but in contrast to flat cycles T ,! Hq=� is not an isometric embedding. Even so, it
would be interesting to understand the analogue of Question 20 for these homology
classes. Note that this question is most reasonable for q < 10 since the image of ˛ is
infinite index in O.ƒM / when q � 10 [15].

In the remainder of this section we studyQuestion 20 in the caseM is a K3 surface
(i.e. a smooth 4-manifold diffeomorphic to a K3 surface). Here the form on ƒM
has matrixH˚3˚ .�E8/˚2 (the notation is explained in (4.2)). Then SO.ƒM / is a
lattice in SO.3; 19/. We will be interested in the maps

H�
�
B Diff�.M/IQ

� ˛1
�! H�

�
B�0Diff�.M/IQ

� ˛2
�! H�.B�IQ/; (5.1)

for � < SO.ƒM /. By Theorem 1, we can find � and z ¤ 0 2 H3.B�IQ/. We will
study whether or not z is in the image of ˛2 and ˛1 ı ˛2.
Theorem 21. LetM be a smooth oriented 4-manifold diffeomorphic to a K3 surface.
There exists a finite-index subgroup � 0M < SO.ƒM / so that for each finite-index
subgroup � < � 0M and for each i � 0, the map

˛2WHi
�
B�0Diff�.M/IQ

�
! Hi

�
B�IQ

�
is surjective.

Consequently, each flat cycle z ¤ 0 2 H3.B�IQ/ is in the image of ˛2.
Theorem 21 is a corollary of the global Torelli theorem ([26] and [5, §12.K]) and can
be deduced from the discussion in [19].

Proof of Theorem 21. Let �M be the image of Diff.M/! O.ƒM /. It is known [28]
that �M is finite index in O.ƒM /. To prove the theorem, it suffices to show that the
surjection Diff.M/! �M splits over a finite-index subgroup � 0M .

Let Ein.M/ denote the space of unit-volume Einstein metrics onM , topologized
as a subspace of all Riemannian metrics on M . One defines the homotopy moduli
space

MEin.M/ WD
Ein.M/ �E Diff.M/

Diff.M/
;

where E Diff.M/ is the total space of the universal principal Diff.M/ bundle over
B Diff.M/. There is a composition of maps

�WMEin.M/! B Diff.M/! B�M : (5.2)

As explained in [19, §4-5], the group�1.MEin.M// is isomorphic to a finite-index
subgroup � 0M < �M , and � induces the inclusion on �1.

The last assertion in the proof will be further explained below (as part of the proof
of Proposition 22).
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Remark. Since˛2 is surjective, any homology of a lattice� < SO.3; 19/ in the stable
range is also in the image of ˛2. Switching to cohomology, the stable cohomology
can be described as the cohomology that is pulled back along the map

f WB� ! B SO.3; 19/ � BS.O.3/ �O.19//! B SO.3/:

Compare with [19, §3]. Recall

H�.B SO.3/IQ/ Š QŒp1�;

where p1 2 H 4 is the first Pontryagin class. According to the ranges in [8], f
induces an Hi .�IQ/-isomorphism for i < 1. Unfortunately, this does not provide
nontrivial elements ofH�.B�M IQ/. (This is incorrectly quoted in [19, Prop. 3.6].)

Theorem 21 reduces Question 20 to studying the image of ˛1. The author does
not know of a single nontrivial class in the image of this map (or a single class that
is not in the image of this map). In studying ˛1, we will focus on a particular type of
flat cycle z.

Set V D ƒM ˝R Š H2.M IR/, and letX D SO.V /=K be the symmetric space
for G D SO.V /. As discussed in §4, there is a homeomorphism X Š Gr3.V /. A
vector ı 2 ƒ is called a root vector if ı � ı D �2. As in §4, consider

Hı D fV
0
2 Gr3.V / W V 0 � ı?g � X:

Fix a root vector ı, and choose a rational flatF �X that intersectsHı transversely.
(This can be done using the arguments of §3.3.) By the construction of Theorem 1,
there exists � < � 0M so that F and Hı descend to homology cycles in Y D �nX

that pair nontrivially. In particular, we have a nonzero class z0 2 H3.B�IQ/.
Now we discuss whether or not z0 2 Im.˛2 ı ˛1/. One approach to this question

is to consider the map (5.2) from the proof of Theorem 21. For each finite-index
subgroup � < � 0M , define

M�
Ein.M/ D

T 0Ein.M/ �E�

�
;

where T 0
Ein.M/ is one of the two path components of T 0

Ein.M/ (these components are
preserved by � 0M ). If z0 is in the image of

��WH3
�
M�

Ein.M/
�
! H3.B�M /;

then z0 2 Im.˛2 ı ˛1/. Unfortunately, the following proposition shows that this
approach does not work. Nevertheless, we have an interesting Corollary 23.
Proposition 22. Let M be a K3 surface. Fix � < � 0M and z0 2 H3.B�IQ/ as
above. The class z0 is not in the image of ��WH3.M�

Ein.M/IQ/! H3.B�IQ/.
Corollary 23. If z0 2 H3.B�IQ/ is in the image of H3.B Diff�.M/IQ/ !
H3.B�IQ/, then there exists aK3 bundle over a 3-manifold that does not admit any
fiberwise Einstein metric.
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Of course it may be the case that z0 is not in the image ofH3.B Diff�.M/IQ/!
H3.B�IQ/, in which case the corollary is vacuously true. In this situation, there is
a different interesting corollary.
Corollary 24. LetM be aK3 surface. If there exists any flat cycle z 2 H3.B�IQ/
is not in the image of H3.B Diff�.M/IQ/ ! H3.B�IQ/, then the surjection
Diff.M/! �0Diff.M/ is not split.

Proof of Corollary 24. If a splitting exists, then

H�
�
B Diff�.M/IQ

�
! H�

�
B�0Diff�.M/IQ

�
would be surjective for every � < �M . Combining this with by Theorem 21, then

H�
�
B Diff�.M/IQ

�
! H�.B�IQ/

is also surjective for every � < �M . This contradictions the assumption that some
flat cycle is not in the image ofH3.B Diff�.M/IQ/! H3.B�IQ/.

Proof of Corollary 23. Suppose there is a class w 2 H3.B Diff�.M/IQ/ whose
image inH3.B�IQ/ is z0. Up to scaling, we can representw by a map of a manifold

hWB3 ! B Diff�.M/:

The pullback of the universal bundle by h is a K3 bundleM ! E ! B . We claim
it has no fiberwise Einstein metric.

The homotopy moduli space MEin.M/ is a classifying space for K3 bundles with
a fiberwise Einstein metric, soE ! B admits a fiberwise Einstein metric if and only
if h lifts to a map

zhWB !M�
Ein.M/:

No such lift can exist by Proposition 22. Thus E ! B has no fiberwise Einstein
metric.

As remarked in Theorem 21, Giansiracusa [19, §4-5] proves that

�1.MEin.M// Š � 0M :

We begin by explaining the proof of this fact, since it will be used to prove
Proposition 22. For this, we give a fuller description of the topology of MEin.M/,
which is illuminated by the global Torelli theorem. For details see [26], [5, §12.K],
and [19, §4-5]. In [19, §4.2], Giansiracusa shows that

MEin.M/ Š
TEin.M/ �E�M

�M
; (5.3)

where TEin.M/ is the Teichmüller space. By definition TEin.M/ is the quotient

Ein.M/=Diff1.M/;
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where
Diff1.M/ D ker

�
Diff.M/! �M

�
:

Here the action of �M on TEin.M/ is induced from the action of Diff.M/ on Ein.M/

(by pulling back metrics). The global Torelli theorem determines �0.TEin.M// and
the topology of each component:
� The space TEin.M/ has two homeomorphic components

TEin.M/ Š T 0
Ein.M/ t T 0

Ein.M/;

and they are permuted by the action of �M .

� Let � 0M < �M be the index-2 subgroup that preserves the components of TEin.M/.
There is a � 0M -equivariant homeomorphism between T 0

Ein.M/ and a dense subspace
of X D SO.V /=K:

T 0
Ein.M/ Š X n

[
ı2�

Hı ; (5.4)

where � � ƒ is the set of roots.
Using this description of TEin.M/, it follows that �1.MEin.M// Š � 0M by the

long exact sequence in homotopy associated to (5.3) together with the fact that the
subspacesHı � X have codimension-3, so TEin.M/ is simply connected.

Proof of Proposition 22. We have fixed a particular torsion-free subgroup � < � 0M
and a flat cycle z0 2 H3.B�IQ/, and we wish to show z0 is not in the image of
H3.M

�
Ein.M/IQ/ ! H3.B�IQ/. Recall that z0 has the special property that it

pairs nontrivially with the image of a root hyperplaneHı in Y D �nX .
Suppose for a contradiction that there exists

w 2 H3
�
M�

Ein.M/IQ
�

whose image inH3.B�IQ/ is z0. Since � is torsion free,

M�
Ein.M/ Š

T 0Ein.M/ �X

�
:

There is a diagram that commutes up to homotopy:

M�
Ein.M/ B Diff�.M/ B�

�nT 0
Ein.M/ �nX B�

// //

� � //
f2 //�

����
f1

The map f1 is a homotopy equivalence because � acts freely on TEin.M/ so f1 is a
fibration with contractible fiber Š X . The map f2 is the inclusion induced by (5.4).
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The diagram commutes up to homotopy because the two compositions induce the
same map on �1 and B� is Eilenberg–Maclane space.

Let xHı be the image of Hı in �nX , and let xF be a totally geodesic submanifold
representing the flat cycle z0. By our choice ofHı and F , the algebraic intersection
xF � xHı is nonzero. On the other hand, the existence of w implies, by the diagram
above, that there is a cycle

Z ! �nT 0
Ein.M/ � �nX

that is homologous to xF . Since the Z ! �nX factors through �nT 0
Ein.M/, the

image of Z is disjoint from xHı , which implies that

xF � xHı D Z � xHı D 0:

This is a contradiction, so the class w does not exist.

Remark 25. In the Teichmüller space T 0
Ein.M/ � X , as one approaches one of the

subsets Hı � X , topologically there is an embedded sphere f WS2 ,! M with
f�ŒS

2� D ı that is being collapsed to a point [1]. The flat cycle xF � �nX in
the proof of Proposition 22 only lifts to �nT 0

Ein.M/ after finitely many points are
removed. From this, one obtains a K3-surface bundle over a 3-torus with finitely
many punctures (note xF is finitely covered by T3). One cannot extend the bundle
over the punctures without introducing singularities. The natural object that exists
over the torus with the punctures filled is a “singular” K3 bundle, i.e. it is a fiber
bundle away from finitely many points in the base, and at each point in this finite
collection, the fiber is the space obtained from a K3 surface by collapsing some
embedded 2-sphere (with self-intersection �2) a point.

5.2. 2-dimensional cycles and theMather–Thurston theorem. To end this section,
we mention another example/application of our ideas.

Corollary 26. Let M be smooth manifold. Suppose that �0Diff.M/ is commen-
surable with SL3.Z/. Then for each n � 1 there exists a finite-index subgroup
� < SL3.Z/ so that

dimH2
�
B Diff�.M/IQ

�
� n:

In fact, as we will see in the proof, Corollary 26 remains true if B Diff�.M/

is replaced by the classifying space B Diff�.M/ı of Diff�.M/ with the discrete
topology. This is a stronger conclusion than in Corollary 2.

For manifolds satisfying the hypothesis of Corollary 26 one could consider

M D #3
�
Sk � SkC1

�
for k � 4;

c.f. [40, Thm. 13.3].
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Corollary 26 follows by applying the following two theorems. The first theorem,
due to Avramidi–Nguyen-Phan [2], is analogous to Theorem 1. For a prime p and
` � 1, denote the congruence subgroup

ker
�
SLd .Z/! SLd .Z=p`Z/

�
by �d .p`/.
Theorem 27 (Avramidi–Nguyen-Phan). Given a prime p and an integer n � 1,
there exists `0 > 0 so that if ` > `0, then dimHd�1.�d .p`/IQ/ � n.

Like in Theorem 1, their homology comes from maximal flats in the associated
symmetric space. We will focus on the case d D 3, which is special because we can
use the following theorem.
Theorem 28 (Mather, Thurston [41]). Let M be a smooth closed manifold. The
group Diff0.M/ of diffeomorphisms isotopic to the identity is a simple group.

Proof of Corollary 26. Denote Mod.M/ WD �0Diff.M/. The exact sequence

1! Diff0.M/! Diff.M/! Mod.M/! 1

gives a 5-term exact sequence in group homology

H2
�
Diff.M/

� �
�! H2

�
Mod.M/

�
! H1

�
Diff0.M/

�
Mod.M/

! H1
�
Diff.M/

�
! H1

�
Mod.M/

�
! 0:

By the Mather–Thurston theorem,

H1
�
Diff0.M/

�
D Diff0.M/ab D 0

so � is surjective. Since the obvious composition

B Diff.M/ı ! B Diff.M/! BMod.M/

is induced by the quotient Diff.M/! Mod.M/, the map

H2
�
B Diff.M/

�
! H2

�
BMod.M/

�
is also surjective. The same argument applies to Diff�.M/.

One could go further and try to extend the computations of [3] to the manifolds
M D #g.Sk � SkC1/ to show that the classes in Theorem 27 are in the image of

H�
�
B Diff�.M/IQ

�
! H�.B�IQ/

as in Theorem 29. For another example, one could look at the diffeomorphism groups
of handlebodies, i.e. boundary-connected-sums ofDkC1 � Sk for k � 4, c.f. [10].
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A. Lifting cycles from arithmetic groups to diffeomorphism groups
by Manuel Krannich

We denote by Diff.Wg/ the topological group of orientation-preserving diffeomor-
phisms of the iterated connected sum

Wg D ]
g.Sn � Sn/

in the smooth topology. Fixing an embedded disc D2n � Wg , we also consider the
manifold

Wg;1 D Wgn int.D2n/

and its group of diffeomorphisms Diff@.Wg;1/ fixing a neighborhood of the boundary
pointwise, which is related to Diff.Wg/ by a map

Diff@.Wg;1/! Diff.Wg/

given by extending diffeomorphisms of Wg;1 � Wg via the identity.

A.1. The action onhomology. The action of the group of diffeomorphismsDiff.Wg/
on the middle homology Hn.Wg/ Š Z2g preserves the unimodular hyperbolic
.�1/n-symmetric intersection form

�WHn.Wg/˝Hn.Wg/! Z

and thus gives rise to a map

�0Diff.Wg/ �!

(
Sp2g.Z/ n odd;
Og;g.Z/ n even;

whose image we denote by Gg � GL2g.Z/. If n is even or n D 1; 3; 7, this map is
surjective and Gg coincides with Sp2g.Z/ or Og;g.Z/ depending on the parity of n,
whereas the image Gg � Sp2g.Z/ for n ¤ 1; 3; 7 odd is the finite index subgroup
Spq2g.Z/ � Sp2g.Z/ of matrices preserving the standard theta-characteristic (see
e.g. [4, Ex. 5.5]). As the space of orientation-preserving embeddings Emb.D2n; Wg/

is connected, the map

�0Diff@.Wg;1/! �0Diff.Wg/

is surjective, so the images of these two groups in GL2g.Z/ agree. Given a subgroup
� � Gg , we denote by

Diff�.Wg/ � Diff.Wg/ and Diff�@ .Wg;1/ � Diff@.Wg;1/

the preimages of � with respect to the canonical maps to Gg .
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The primary goal of this appendix is to prove the following.

Theorem 29. Let 2n � 6 and � � Gg a finite index subgroup. The natural map

H�.B�IQ/ �! H�
�
BDiff�@ .Wg;1/IQ

�
is injective in degrees

� �

�
2 for 2n D 6;
n for 2n > 6 and g < 4 � c;
nCmin.n � 4; g � 1C c/ otherwise;

where c D 0 if is n even and c D 1 if is n odd.

Remark. Since the action of Diff�@ .Wg;1/ on Hn.Wg/ factors through Diff�.Wg/,
the same conclusion holds for BDiff�.Wg/ instead of BDiff�@ .Wg;1/.

A.2. Stable and unstable cohomology. The block-inclusion

GL2g.Z/ � GL2gC2.Z/

is covered by a map
Diff@.Wg;1/! Diff@.WgC1;1/

given by extending diffeomorphisms via the identity, so GL2g.Z/ � GL2gC2.Z/
restricts to an inclusion Gg � GgC1 and we obtain a map

BDiff@.W1;1/! BG1

by taking (homotopy) colimits of BDiff@.Wg;1/!BGg in g. By the work of Borel,
Galatius–Randal-Williams, and Madsen–Weiss [7, 8, 16, 27], the cohomology rings
of BG1 and BDiff@.W1;1/ is a polynomial algebra concentrated in even degrees.
Moreover, there are natural choices of polynomial generators for these rings with
respect to which the induced map

H�
�
BG1IQ

�
! H�

�
BDiff@.W1;1/IQ

�
corresponds to an inclusion of generators; this can for instance be seen by an index-
theoretic argument (see e.g. [13, Sect. 2.4]). Given a subgroup � � Gg of finite
index, we have a commutative square

H�.BG1IQ/ H�.B�IQ/

H�.BDiff@.W1;1/IQ/ H�.BDiff�@ .Wg;1/IQ/;
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whose upper horizontal arrow is an isomorphism in a range of degrees growing
with g by a result of Borel [7, 8]. In light of work of Harer and Galatius–Randal-
Williams [18, 21], the same holds for the lower horizontal morphism if � D Gg
and 2n ¤ 4.1 Moreover, the proof of Theorem 29 will make apparent that the
vertical arrows in the diagram are (compatibly) split injective in a range increasing
with n and any finite index subgroup � � Gg if 2n � 6. As a result, the cokernel of
the upper horizontal map — the so-called unstable cohomology of B� — injects in
this range of degrees into the cokernel of the lower horizontal map and thus provides
a source for unstable cohomology of BDiff�@ .Wg;1/.

When varying � � Gg over finite index subgroups, the rational cohomology
of B� in degree g is arbitrarily large for n even and g odd; this is the main result of
the body of this work (see Theorem 1). For the full group � D Gg on the other hand,
little is known about the unstable cohomology, aside from some scattered classes:
for instance, computations of Hain [20] and Hulek–Tomassi [22] show that for n
odd, there is a nontrivial unstable class in H 6.BG3IQ/ and one in H 12.BG4IQ/.
By the above discussion, these classes remain nontrivial (and unstable) when pulled
back to BDiff@.Wg;1/ as long as n is sufficiently large, so we obtain the following
corollary.
Corollary 30. For n odd, the cokernel of the natural morphism

H i
�
BDiff@.W1;1/IQ

�
�! H i

�
BDiff@.Wg;1/IQ

�
is nontrivial for .i; g/ D .6; 3/ as long as n > 5, and for .i; g/ D .12; 4/ if n > 8.
Remark. To the knowledge of the author, these are the first known unstable rational
cohomology classes of BDiff@.Wg;1/, aside from the case 2n D 2 of surfaces.

A.3. The work of Berglund–Madsen. The proof of Theorem 29 crucially relies on
work of Berglund andMadsen [4], who used a combination of classical surgery theory
and rational homotopy theory to construct rational models for the classifying spaces
BhAutid@ .Wg;1/ and BeDiff@;ı.Wg;1/ of the spaces of homotopy automorphisms and
block diffeomorphisms homotopic to the identity. Using these models, they proved
that the rational cohomology rings of the classifying spaces of the full automorphism
spaces hAut@.Wg;1/ and eDiff@.Wg;1/ are independent of g in a range of degrees and
studied the rational cohomology in this stable range. As explained above, Theorem 29
yields some information on H�.BDiff@.Wg;1/IQ/ in the unstable range. Its proof
involves relating H�.BDiff@.Wg;1/IQ/ to H�.BeDiff@.Wg;1/IQ/ by combining [4]
with Morlet’s lemma of disjunction as in [36], extending some arguments in [4]
for spaces of automorphisms homotopic to the identity to the full automorphism
spaces, in particular to show that the cohomology ring H�.BhAut@.Wg;1/IQ/

1Recent work of Kupers–Randal-Williams [24] shows that, this holds for any finite index subgroup
� � Gg as long as 2n � 6 and � is not completely contained in the subgroup SOg;g.Z/ � Og;g.Z/
if n is even.
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injects into H�.BeDiff@.Wg;1/IQ/ also in the unstable range (it is even a retract),
and carrying out a spectral sequence argument involving low-degree computations
of BhAut@.Wg;1/ and some facts from the theory of arithmetic groups.

A.4. The proof of Theorem 29. We divide the proof of Theorem 29 into three steps
corresponding to three maps in a factorisation

BDiff�@ .Wg;1/
1
�! BeDiff�@ .Wg;1/

2
�! BhAutŠ;�

@
.Wg;1/

3
�! B�; (A.1)

which we explain in the following. Up to canonical equivalences, the topological
group of block diffeomorphisms fixing a neighborhood of the boundary eDiff@.Wg;1/
fits between Diff@.Wg;1/ and the topological monoid of homotopy automorphisms
fixing the boundary, so there are natural maps

Diff@.Wg;1/!eDiff@.Wg;1/! hAut@.Wg;1/

(see e.g. [4, Sect. 4]), which explain the maps 1 and 2 for � D Gg , denoting by

hAutŠ@ .Wg;1/ � hAut@.Wg;1/

the union of components in the image of the map

eDiff@.Wg;1/! hAut@.Wg;1/:

By definition of the block-diffeomorphism group, the map

Diff@.Wg;1/!eDiff@.Wg;1/

is surjective on path components (in fact, it is an isomorphism byCerf’s “concordance
implies isotopy”), so in particular the image of eDiff@.Wg;1/ in GL2g.Z/ coincides
with the image Gg of Diff@.Wg;1/, which explains the map 3 for � D Gg . For
a general subgroup � � Gg , this composition is defined analogously by restricting
the components of the automorphism spaces involved to the preimage of � of the
canonical maps to Gg .

In what follows, we examine the quality of the maps 1 – 3 in rational cohom-
ology.

1 Extending (block) diffeomorphisms of an embedded disc D2n � Wg;1 to all
of Wg;1 by the identity induces a commutative square

BDiff@.D2n/ BDiff@.Wg;1/

BeDiff@.D2n/ BeDiff@.Wg;1/
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whose induced map on vertical homotopy fibres

eDiff@.D2n/=Diff@.D2n/ �!eDiff@.Wg;1/=Diff@.Wg;1/

is .2n�4/-connected by an application of Morlet’s lemma of disjunction. For g�0,
this can be combined with Berglund–Madsen’s work [4] to conclude that

eDiff@.D2n/=Diff@.D2n/

is .2n � 5/-connected, as observed by Randal-Williams [36, Sect. 4]. This in turn
implies that

eDiff@.Wg;1/=Diff@.Wg;1/
has no rational cohomology in degrees � < 2n� 4 for all g � 0, which we combine
with the homotopy pullback

BDiff�@ .Wg;1/ BDiff@.Wg;1/

BeDiff�@ .Wg;1/ BeDiff@.Wg;1/

for a fixed subgroup � � Gg to conclude the following.
Proposition 31. For 2n � 6 and a subgroup � � Gg , the induced map

H�
�
BeDiff�@ .Wg;1/;Q

�
�! H�

�
BDiff�@ .Wg;1/IQ

�
is an isomorphism for � < 2n � 4 and a monomorphism for � D 2n � 4.

2 Our discussion of the second map in the composition (A.1) is not specific to the
manifold Wg;1, so we phrase it more general.
Proposition 32. For a compact, simply-connected, stably parallelisable manifoldM
of dimension d � 5 with sphere boundary @M Š Sd�1, the natural map

BeDiff@.M/ �! BhAutŠ@ .M/

is split injective on rational cohomology rings.

Proof. Following [4, Sect. 4.4], we pick a base point � 2 @M in the boundary and de-
note by hAut�@.�

s
M / the topological monoid of homotopy automorphisms f WM!M

which are the identity on the boundary together with a bundle automorphism
zf W � sM ! � sM of the stable tangent bundle which restricts to the identity over the
fixed basepoint and whose underlying self-map ofM agrees with f . We denote by

hAut�@;ı.�
s
M / � hAut�@.�

s
M /
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the kernel of the map
hAut�@.�

s
M /! �0 hAut@.M/

given by taking homotopy classes and forgetting the bundle map and by

hAut�;Š
@
.� sM / � hAut�@.�

s
M /

the preimage of the subgroup
�0 hAutŠ@ .M/ � �0 hAut@.M/

given by the image of eDiff@.M/ in hAut@.M/. Up weak equivalence, there is a
canonical map of topological monoids

eDiff@.M/! hAut�@.�
s
M /

given by taking derivatives [4, p. 116]. This map induces a map of fibre sequences:

BeDiff@;ı.M/ BeDiff@.M/ B�0 hAutŠ@ .M/

BhAut�@;ı.�
s
M / BhAut�;Š

@
.� sM / B�0 hAutŠ@ .M/;

where eDiff@;ı.M/ �eDiff@.M/ denotes kernel of the map

eDiff@.M/ �! �0 hAutŠ@ .M/:

Berglund and Madsen showed that the two fibres in this diagram are nilpotent
spaces [4, Prop. 4.8, Cor. 4.14] and that the map between them is a rational equiv-
alence [4, Cor. 4.21]. By an application of the Serre spectral sequence, this implies
that the middle vertical map is a rational cohomology isomorphism, so to finish the
proof, it suffices to show that the map

BhAut�;Š
@
.� sM /! BhAutŠ@ .M/

admits a section. Fixing a trivialisation of � sM , every homotopy automorphism ofM
is covered by a unique bundle automorphism that agrees with the identity on each
fibre with respect to the chosen trivialisation, which induces a section of the map

hAut�@.�
s
M /! hAut@.M/:

Restricting components and taking classifying spaces, this induces a section as
required.

In the caseM DWg;1, the argument for Proposition 32 shows more generally that

BeDiff�@ .M/! BhAutŠ;�
@

.M/

is split injective on rational cohomology for any subgroup � � Gg .
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3 Combining the previous two propositions, we conclude that the map

H�
�
BhAutŠ;�

@
.Wg;1/IQ

�
! H�

�
BDiff�@ .Wg;1/IQ

�
is injective in degrees � � 2n � 4, which finishes the proof of Theorem 29 when
combined with the following proposition.

Proposition 33. For 2n � 6 and a finite index subgroup � � Gg , the induced map

H�.B�IQ/ �! H�
�
BhAutŠ;�

@
.Wg;1/IQ

�
is an isomorphism for � < n and amonomorphism for � D n. Moreover, if g � 4�c,
then this map is an isomorphism for

� < nCmin.n � 1; g � 1C c/

and a monomorphism for

� D nCmin.n � 1; g � 1C c/;

where c D 0 if n is even and c D 1 if n is odd.

Proof. We consider the rational Serre spectral sequence

E
p;q
2 D Hp

�
B�0 hAutŠ;�@

.Wg;1/IH
q
�
BhAutid@ .Wg;1/IQ

��
H) HpCq

�
BhAutŠ;�

@
.Wg;1/IQ

�
: (A.2)

of the fibration sequence

BhAutid@ .Wg;1/ �! BhAutŠ;�
@

.Wg;1/ �! B�0 hAutŠ;�@
.Wg;1/:

By [4, Prop. 5.6], the rational homotopy Lie algebra ��C1.BhAutid@ .Wg;1// ˝ Q is
isomorphic, as a module over QŒ�0 hAut@.Wg;1/�, to a graded sub Lie algebra of
the Lie algebra DerC L.H/ of positive degree derivations of the free graded Lie
algebra L.H/ on the graded vector space

H WD Hn.Wg;1IQ/ Š Q2g

concentrated in degree .n � 1/. In particular, the action of �0 hAutŠ;�@
.Wg;1/ on

��C1
�
BhAutid@ .Wg;1/

�
˝Q

factors through the homology action

�0 hAutŠ;�@
.Wg;1/ �! � � GL2g.Z/:
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Moreover, as a result of [4, Prop. 7.9], there is an isomorphismofQŒ�0 hAutŠ;�@
.Wg;1/�-

modules

H q
�
BhAutid@ .Wg;1/IQ

�
Š H

q
CE
�
��C1

�
BhAutid@ .Wg;1/

�
˝Q

�
;

where the right hand side is the Chevalley–Eilenberg cohomology of the graded
homotopy Lie algebra. Consequently, the action on these groups factors through � as
well. Since the homology action �0 hAutŠ;�@

.Wg;1/! � is surjective by definition
and has finite kernel as a result of [4, Prop. 5.3], it induces an identification of the
E2-page of (A.2) of the form

E
p;q
2 D Hp

�
B�0 hAutŠ;�@

.Wg;1/IH
q
�
BhAutid@ .Wg;1/IQ

��
Š Hp

�
B�IH q

�
BhAutid@ .Wg;1/IQ

��
: (A.3)

AsH is concentrated in degree .n � 1/, the Lie algebra

DerC L.H/ Š ��C1
�
BhAutid@ .Wg;1/

�
˝Q

is concentrated in degrees k.n� 1/ for k � 1. In particular the space BhAutid@ .Wg;1/
is rationally .n � 1/-connected, so the E2-page (A.3) vanishes for q � n � 1 except
for the bottom row p D 0, which implies the first claim. To prove the second part of
the statement, note that in degrees � < 2n � 2, the Lie algebra DerC L.H/ is only
nontrivial in degree n � 1, so the reduced rational cohomology

zH q
�
BhAutid@ .Wg;1/IQ

�
Š zH

q
CE
�
��C1

�
BhAutid@ .Wg;1/

�
˝Q

�
is for � < 2n � 1 only nontrivial in degree n where it is isomorphic to the dual�

�n
�
BhAutid@ .Wg;1/

�
˝Q

�_
:

To prove the claim, it thus suffices to show that

Hp
�
B�I

�
�n
�
BhAutid@ .Wg;1/

�
˝Q

�_�
vanishes for p < g � 1C c and g � 4 � c, since this would imply that the E2-page
of (A.2) is for p C q < nCmin.n � 1; g � 1C c/ concentrated in the bottom row.
By the discussion above, we have�
�n
�
BhAutid@ .Wg;1/

�
˝Q

�_
� DerC L.H/_n�1

Š Hom
�
H;L2.H/

�_
Š H ˝ L2.H/_ � H ˝

�
H˝2

�_
Š H˝3

as a QŒ��-module, where L2.H/ � L.H/ is the subspace spanned by brackets of
length two. Here we used thatL.H/ is a free Lie algebra for the first isomorphism and
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the standard (symplectic or orthogonal) form for the last isomorphism. Since short
exact sequences of finite dimensional QŒ��-modules split (this uses g � 2 and that
Q-algebraic groups Sp2g.Q/ and SO2g.Q/ are simple, see for instance [4, Thm.A.1,
Prop. B.4]), we conclude that�

�n
�
BhAutid@ .Wg;1/

�
˝Q

�_
is a direct summand of H˝3, so it suffices to show that Hp.B�IH˝3/ vanishes for
p < g � 1C c and g � 4 � c.

By enhancements due to Tshishiku [42, Thm. 1.1, Thm. 1.2] of Borel’s vanishing
ranges for the cohomology of arithmetic groups [7, 8], the cohomology of � with
coefficients in an irreducible finite-dimensional algebraic representation vanishes in
this range, so we have

Hp
�
B�IH˝3

�
Š Hp.B�IQ/˝

�
H˝3

��
;

where .�/� denotes taking invariants. The proof will conclude by arguing that these
invariants vanish. This can be simplified in two ways: firstly, if n is even, after
possibly restricting to the subgroup � \ SOg;g.Z/ � � , we may assume that � is
contained in the connected algebraic subgroup

SOg;g.Q/ � Og;g.Q/

and secondly, it suffices to show that the invariants vanish after tensoring with R.
Since Sp2g.Q/ and SOg;g.Q/ are connected, semi-simple and have no compact
factors, the subgroup � � Sp2g.R/ or � � SOg;g.R/ (depending on whether n
is even or odd) is a lattice [9, Thm. 7.8] and moreover Zariski dense by Borel’s
density theorem [6]. This implies that the �-invariants ofH˝3˝R agree with those
of Sp2g.R/ or SOg;g.R/, which in turn vanish by classical invariant theory.

Remark. (i) Note that the first part of the proof of Proposition 33 did not require
� � Gg to be of finite index. Since Propositions 31 and 32 are valid in this generality
as well, Theorem 29 holds for arbitrary subgroups � � Gg in the range � � n

for 2n � 6 and � � 2 for 2n D 2.

(ii) Similar arguments to those of Proposition 33 were used in [23] to improve
the ranges for rational homological stability of BhAut@.Wg;1/, BeDiff@.Wg;1/, and a
truncation of BDiff@.Wg;1/.
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