
Journal of Lie Theory
Volume ?? (??) ??–??
c© ?? Heldermann Verlag

Version of August 2, 2019

Borel’s stable range for the cohomology of arithmetic groups

Bena Tshishiku

Abstract. In this note, we remark on the range in Borel’s theorem on the
stable cohomology of the arithmetic groups Sp2n(Z) and SOn,n(Z). The main
result improves the range stated in Borel’s original papers, an improvement that
was known to Borel. The proof is a technical computation involving the Weyl group
action on roots and weights.
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1. Introduction

Let G be a semi-simple algebraic group defined over Q , and let Γ be a finite-index
subgroup of G(Z). For V an algebraic representation of G , Borel [Bor74, Bor81]
computed the cohomology H i(Γ;V ) in a stable range, i.e. for i ≤ N for some constant
N = N(G, V ) that depends only on G, V .

In some cases, the constant N(G, V ) that appears in [Bor74, §9] and [Bor81]
can be improved. This is remarked by Borel in [Bor81, §3.8]. In this note, we supply
the details of Borel’s remark when G is one of the algebraic groups

SOn,n = {g ∈ SL2n(C) : gt
(

0 I
I 0

)
g =

(
0 I
I 0

)
}

or

Sp2n = {g ∈ SL2n(C) : gt
(

0 I
−I 0

)
g =

(
0 I
−I 0

)
}.

Theorem 1.1 (Borel stability for SOn,n(Z)). Fix n ≥ 4. Let V be an irreducible
rational representation of SOn,n , and let Γ < SOn,n(Z) be a finite-index subgroup. If
k ≤ n− 2, then Hk(Γ;V ) vanishes when V is nontrivial, and agrees with the stable
cohomology of SOn,n(Z) when V is the trivial representation.

Theorem 1.2 (Borel stability for Sp2n(Z)). Fix n ≥ 3. Let V be an irreducible
rational representation of Sp2n , and let Γ < Sp2n(Z) be a finite-index subgroup. If
k ≤ n− 1, then Hk(Γ;V ) vanishes when V is nontrivial, and agrees with the stable
cohomology of Sp2n(Z) when V is the trivial representation.
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The cases SO2,2 and SO3,3 are exceptional because SOn,n is isogenous to
SL2× SL2 when n = 2 and SL4 when n = 3. For SL2(Z) × SL2(Z), the stable
cohomology is trivial and there is no vanishing theorem. We remark further on the
case of SO3,3(Z) in §2.

The bound in Theorem 1.1 is nearly sharp. For example, when n is odd,
[Tsh19] proves that there is Γ < SOn,n(Z) with Hn(Γ;Q) 6= 0, whereas if i ≤ n− 2
is odd, then H i(Γ;Q) = 0 by Theorem 1.1 and the determination of the stable
cohomology of SOn,n(Z) [Bor74, §11].

Theorems 1.1 and 1.2 are likely well-known to experts on the cohomology
of arithmetic groups, but it seems the proofs have not been written down. This
article has the modest goal of filling this gap in the literature, which is of interest in
applications. In particular, Theorem 1.2 is used in Hain’s important work [Hai97] on
the Torelli group (where is it stated without proof; c.f. Thm 3.2), and both Theorems
1.1 and 1.2 have been used by Kupers–Randal-Williams [KRW19] in their study of
diffeomorphisms groups of manifolds #n(Sd×Sd) when d ≥ 3. In this direction, we
also mention that Theorems 1.1 and 1.2 make the hypothesis on the degree of the
representation V in [ERW15, Prop. 3.9] unnecessary. Finally, we remark that this
note originally appeared in a draft of [Tsh19], where it was used toward producing
new characteristic classes of manifold bundles; however, an alternate approach not
using Borel’s theorem was found, so we have moved the computation into this
separate note.

About the proof. Theorems 1.1 and 1.2 are deduced from the contents of [Bor74]
together with a representation-theoretic computation.

We start by briefly summarizing Borel’s approach to computing H∗(Γ;V ) in
a range; see also [Bor74, Bor81]. Fix a semi-simple algebraic group G such that
G(R) is of noncompact type, and let X = G(R)/K be the associated symmetric
space. For a lattice Γ < G(R), computing H∗(Γ;V ) is equivalent to computing the
homology of the complex Ω∗(X;V )Γ of V -valued, Γ-invariant differential forms on
X . The subcomplex I∗G,V ⊂ Ω∗(X;V )Γ of G(R)-invariant forms consists of closed
forms, so there is a homomorphism

j : I∗G,V → H∗(Γ;R),

whose image is known as the stable cohomology. The ring I∗G,V is easily computed:
it is isomorphic to H∗(Xu;V ), where Xu is the compact symmetric space dual to
X , and it is also identified with Lie algebra cohomology H∗(g, K;V ). In particular,
if V is irreducible and nontrivial, then H∗(g, K;V ) is trivial [BW00, Ch. II, Cor.
3.2]. Borel showed that j∗ is bijective in a range i ≤ min{m(G(R)), c(G, V )} . See
[Bor74, Thm. 7.5] and [Bor81, Thm. 4.4].

To apply Borel’s theorem, one wants to understand the constants m(G(R))
and c(G, V ). According to [Bor81, §4], m(G(R)) ≥ rkRG(R) − 1 for every G that
is almost simple over R (this includes SOn,n and Sp2n , both of which have rank n).
The constant c(G, V ) can be computed with some representation theory.

The constant c(G, V ). Let g be the Lie algebra of G(C), and let B ⊂ G(C) be a
minimal parabolic (i.e. Borel) subgroup with Levi decomposition B = U o A . Let
a and u be the corresponding Lie algebras. Here a ⊂ g is a maximal abelian (i.e.
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Cartan) subalgebra. The weights of a acting on g are called the roots of g , and
the subset of weights of a acting on u are called positive. Let ρ be half the sum
of the positive roots. A positive root is called simple if it cannot be expressed as
a nontrivial sum of positive roots. The simple positive roots {αk} form a basis for
a∗ . An element φ ∈ a∗ is called dominant (resp. dominant regular), denoted φ ≥ 0
(resp. φ > 0), if φ =

∑
ck αk with ck ≥ 0 (resp. ck > 0) for each k .

Borel’s constant c(G, V ) is the largest q so that ρ + µ > 0 for every weight
µ of Λqu∗ ⊗ V , c.f. [Bor74, §2 and Thm. 4.4].

A better constant C(G, V ). According to [Bor81, Rmk. 3.8] (see also [GH68, Thm.
3.1] and [Zuc83, (3.20) and (4.57)]), there is a better constant C(G, V ) ≥ c(G, V )
so j∗ bijective in degrees i ≤ {m(G(R)), C(G, V )} . To define this constant, let W
be the Weyl group of G(C). For each q ≥ 0, let W q ⊂ W be the subset of elements
that send exactly q positive roots to negative roots. Denoting the highest weight of
V by λ , define

C(G, V ) = max{q : σ(ρ+ λ) > 0 for all σ ∈ W q}.

As Borel remarks, C(G, V ) can be interpreted as the largest q for which
ρ+µ > 0 for every weight µ of Hq(u;V ). Since the Lie algebra cohomology H∗(u;V )
is the homology of the complex Λ∗u∗ ⊗ V , it follows that the weights of the former
are a subset of the weights of the latter, so c(G, V ) ≤ C(G, V ).

In the remainder of this note, we compute the value of C(G, V ) when G is
Q-split of type Cn or Dn , i.e. G(Z) is commensurable with Sp2n(Z) or SOn,n(Z).

Acknowledgements. The author thanks R. Hain for helpful email corre-
spondence.

2. Computation for SOn,n

The main goal of this section is to prove the following proposition.

Proposition 2.1. Fix n ≥ 4, and let G = SOn,n . Then C(G, V ) ≥ n − 2 for
each irreducible finite dimensional rational representation V of G.

Our proof is divided into two steps: we first show C(G,C) = n− 2 for the C
the trivial representation (Proposition 2.2), and then we show C(G, V ) ≥ C(G,C)
for any other representation (Proposition 2.3).

To begin, we need the following information from [Bou68, pg. 256-258]. Below
ε1, . . . , εn are the standard coordinate functionals on a ⊂ g .

• The simple roots are α1 = ε1 − ε2 , . . . , αn−1 = εn−1 − εn , and αn = εn−1 + εn .

• The half-sum of positive roots is ρ =
∑n

i=1 ri αi , where ri = (2n−i−1)i
2

for

1 ≤ i ≤ n− 2 and rn−1 = rn = n(n−1)
4

.

• The Weyl group W = (Z/2Z)n−1 o Sn acts as the even signed permutation
group of {±ε1, . . . ,±εn} , i.e. the symmetric group Sn acts by permuting the
indices of ε1, . . . , εn , and (Z/2Z)n−1 acts by an even number of sign changes.
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Let τi ∈ W be the reflection fixing the orthogonal complement of αi (with
respect to the inner product where the εi are othonormal). The τi generate W , and
we write

S = {τ1, . . . , τn}.

The action of τi on the roots sends αi to −αi and permutes the remaining positive
roots. Thus τi ∈ W 1 , and it’s not hard to show that σ ∈ W q if and only if the word
length of σ with respect to S is q . See [Hum78, §10.3] for details.

In what follows we will work in the basis (ε1, . . . , εn) instead of (α1, . . . , αn).
We record how these two bases are related: if

∑
xiαi =

∑
yiεi , then

xk = y1 + · · ·+ yk k ≤ n− 2

xn−1 = 1
2
(y1 + · · ·+ yn−1 − yn)

xn = 1
2
(y1 + · · ·+ yn−1 + yn)

(1)

For i = 1, . . . , n− 1, the reflection τi interchanges εi and εi+1 (and acts trivially on
the remaining εj ), while τn interchanges εn−1 and εn and changes their signs. In
εi -coordinates,

ρ = (n− 1, n− 2, . . . , 2, 1, 0).

Proposition 2.2. Fix n ≥ 3, and let G = SOn,n . Then C(G,C) = n− 2.

Proof. First observe that the image of ρ under σ = τ1 · · · τn−1 is not dominant
regular. Indeed in εi -coordinates, σ(ρ) = (0, n − 1, n − 2, . . . , 2, 1), which is not
dominant regular since the coefficient on α1 is 0. This implies C(G,C) ≤ n− 2.

It remains to show C(G,C) ≥ n−2, i.e. if σ ∈ W can be expressed as a word
in S of length ` ≤ n−2, then σ(ρ) is dominant regular. Recall above that the τi act
on εi -coordinates as signed permutations, so the coordinates of σ(ρ) = (y1, . . . , yn)
are a signed permutation of the coordinates of ρ = (n−1, . . . , 1, 0). In order to show
σ(ρ) > 0, we need to show each of the sums y1 + · · · + yk is positive for k 6= n − 1
and also that y1 + · · ·+ yn−1 − yn is positive.

We first consider two special cases from which the general case follows.

Special case 1. Suppose that σ is a word in S \ {τn−1, τn} . In εi -coordinates
τ1, . . . , τn−2 act as permutations without sign changes that fix the last coordinate, so
σ(ρ) = (y1, . . . , yn−1, 0), where (y1, . . . , yn−1) is a permutation of (n − 1, . . . , 1). In
particular, y1, . . . , yn−1 are all positive, and it follows that σ(ρ) is regular dominant.

Special case 2. Suppose that σ is a word in S\{τ1} . Then σ(ρ) = (n−1, y2, . . . , yn),
where (y2, . . . , yn) is a signed permutation of (n− 2, . . . , 1, 0).

Since τn is the only element of S that changes any sign, in order for j (the
(n− j)-th coordinate of ρ) to appear with a negative sign in σ(ρ), the length of σ
must be at least j (this follows immediately from the τi action on the coordinates;
note, for example, that the sign of j in τnτn−2 · · · τn−j(ρ) is negative). Similarly, in
order for each of the coefficients j1, . . . , jm of ρ to appear with negative signs in σ(ρ),
the length of σ must be at least j1 + · · ·+ jm (again this follows from the τi action;
note that each τi only moves one coefficient to the right at a time). Let j1, . . . , jm
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be the coefficients of ρ that become negative in σ(ρ). Then j1 + · · · + jm ≤ n − 2
because σ has length ≤ n− 2. Hence for 1 ≤ i ≤ n ,

y1 + · · ·+ yi ≥ (n− 1)− (j1 + · · ·+ jm) ≥ (n− 1)− (n− 2) > 0.

It follows that the coefficient of αi in σ(ρ) is positive for each i , possibly with the
exception of i = n − 1 (c.f. (1)). By the same reasoning, the coefficient of αn−1 is
also positive: let j1, . . . , jm be the coefficients of ρ that are negative in σ(ρ), and
suppose yn = jm+1 . Moving jm+1 to the n-th coordinate requires a word of length
jm+1 (e.g. τn−1τn−2 · · · τn−j ), so as above j1 + · · ·+ jm+1 ≤ n− 2, and so, similar to
the above,

y1 + · · ·+ yn−1 − yn ≥ (n− 1)− (j1 + · · ·+ jm+1) > 0.

General case. Suppose σ is any word in τ1, . . . , τn of length ≤ n− 2. Then τi does
not appear in σ for some 1 ≤ i ≤ n− 1, and we can write σ = σ1σ2 , where σ1 is a
word in {τ1, . . . , τi−1} and σ2 is a word in {τi+1, . . . , τn} . For j ≤ i , the coefficient
of αj in σ(ρ) and σ1(ρ) agree, and for j ≥ i + 1, the coefficient of αj in σ(ρ) and
σ2(ρ) agree, so σ(ρ) is dominant regular by the previous two cases.

Proposition 2.3. Fix n ≥ 4, and let G = SOn,n . If V is an irreducible
representation, then C(G, V ) ≥ C(G,C).

Proof. Let λ be the highest weight of V . According to [FH91, §19.2], λ can be
expressed as an integral linear combination λ =

∑n
k=1 akφk , where ak ≥ 0 and

φk =


ε1 + · · ·+ εk k ≤ n− 2

(ε1 + · · ·+ εn−1 − εn)/2 k = n− 1

(ε1 + · · ·+ εn)/2 k = n.

(2)

If σ ∈ W , then σ(ρ+λ) = σ(ρ) +
∑

k ak σ(φk). We proceed by studying when σ(φk)
is dominant. To show C(G, V ) ≥ C(G,C) = n−2, it suffices to show that if σ ∈ W q

for q ≤ n − 2, then σ(φk) ≥ 0 for each 1 ≤ k ≤ n . Then for any highest weight
λ =

∑
akφk , we conclude that σ(ρ + λ) = σ(ρ) +

∑
ak σ(φk) is dominant regular

because σ(φk) ≥ 0 and σ(ρ) > 0 (Proposition 2.2).

We consider separately cases 1 ≤ k ≤ n− 2 and k = n− 1, n . In either case
the argument is similar to the corresponding step in the proof of Proposition 2.2.

Fix 1 ≤ k ≤ n−2 and write φ = φk . In εi -coordinates, φ = (1, . . . , 1, 0, . . . , 0).
Next we bound from below the minimum word length of σ needed for σ(φ) < 0, and
we will find that there is no σ of length ≤ n− 2.

First observe that the only way to act by elements of S to make a coefficient
of φ negative is to move that coefficient to the right (using a word like τn−2 · · · τi ),
and then apply τn . Therefore, fixing ` < k/2, any word σ such that σ(φ) has `+ 1
negative coordinates has length at least

(n− k) + · · ·+ (n− k + `) = n(`+ 1)−
[

(k + 1)k

2
− (k − `)(k − `− 1)

2

]
. (3)
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φ = (1, . . . , 1, 1, . . . , 1︸ ︷︷ ︸
`+1

, 0, . . . , 0︸ ︷︷ ︸
n−k

)

Figure 1: To make ` + 1 positive coefficients of φ negative requires a word whose
length is at least the quantity in (3).

(1, . . . , 1︸ ︷︷ ︸
`

, 1, . . . , 1︸ ︷︷ ︸
k−2`−1

, 0, . . . , 0︸ ︷︷ ︸
n−k

,−1, . . . ,−1︸ ︷︷ ︸
`+1

)

Figure 2: We can make this vector non-dominant by moving k − 2` − 1 positive
entries past `+ 1 negative entries. This requires a word whose length is at least the
quantity in (4).

See Figure 1. After creating ` + 1 negative coefficients, to make a non-
dominant vector, one needs to move sufficiently many positive entries to the right,
passed the negative entries. Since we start with k = `+(k−2`−1)+(`+1) positive
entries, we must move (k−2`−1) positive entries passed the (`+1) negative entries.
This requires a word of length at least

(k − 2`− 1)(`+ 1). (4)

See Figure 2. Now we conclude. Suppose for a contradiction that σ has length
≤ n − 2 and that σ(φ) < 0. Write σ(φ) = (y1, . . . , yn), and let i be the smallest
index so that the coefficient of αi in σ(φ) is negative. If i 6= n− 1, then this means
y1 + · · · + yi < 0. We will assume i 6= n − 1; the case i = n − 1 is similar (c.f.
the proof of Proposition 2.2). The terms in this sum y1 + · · ·+ yi are all +1, 0,−1.
By replacing σ with a shorter word, we can assume that the summands occur in
decreasing order 1 + · · · + 1 + 0 + · · · + 0 + −1 + · · · + −1 (this follows from the
description of the τi action and the fact that the coefficients of φ are decreasing).
By minimality of our choice of i , if there are ` positive terms in the sum, then there
are `+ 1 negative terms. Note then that 2`+ 1 ≤ k , so ` < k/2.

Combining (3) and (4), if the leading coefficients of σ(φ) are

(1, . . . , 1, 0, . . . , 0,−1, . . . ,−1, . . .),

then the length of σ is at least

n(`+1)−
[

(k + 1)k

2
− (k − `)(k − `− 1)

2

]
+(k−2`−1)(`+1) = n(`+1)−3`2 + 5`+ 2

2
.

Since we’re assuming σ has length ≤ n−2, we must have n(`+1)− 3`2+5`+2
2

≤ n−2.
This inequality implies that

n ≤ 3`+ 5

2
.

Since ` < k/2 ≤ (n − 2)/2, this implies that n < 4. This is contrary to our
hypothesis, so we conclude that there does not exist σ of length ≤ n − 2 so that
σ(φ) < 0.

The same analysis can be applied to φn−1 and φn . The details are unillumi-
nating and can easily be supplied by the interested reader, so we omit them here.
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Proposition 2.3 is false for n = 3. In this case, C(G,C) = 1, but there are V
with C(G, V ) = 0. For example, take V the irreducible representation with highest
weight mφ2 . Observe that, in εi -coordinates,

τ2(ρ+mφ2) =
(

2 +
m

2
,−m

2
, 1 +

m

2

)
,

so the coefficient of α2 in τ2(ρ + mφ2) is 1
2

(
(2 + m

2
)− m

2
− (1 + m

2
)
)

= 1 − m
2

,
which is non-positive if m ≥ 2. This implies that C(G, V ) = 0, and Borel’s
theorem does not allow one to conclude, for example, that H1(Γ;V ) = 0 for a
lattice Γ < SO3,3(Z). However, H1(Γ;V ) does vanish for any nontrivial V by a
theorem of Margulis [Mar91, Ch. VII, Cor. 6.17].

The failure of Proposition 2.3 in the case n = 3 is related to the fact that
SO3,3 is isogenous to SL4 . For SLn+1 one can compute that C(G,C) is the smallest
integer strictly less than n/2, but it’s not true the C(G, V ) ≥ C(G,C) for every
irreducible representation. Indeed if one takes V = Symm(Cn+1), then C(G, V ) = 0
for m sufficiently large. In this direction we remark that there are other known
vanishing results for H∗(Γ;V ) beyond Borel’s theorem. See [LS04, pg. 143].

Proposition 2.3 gives a lower bound on C(G, V ). We remark on the upper
bound. Observe that if σ = τ1 · · · τn , then σ(φ) ≤ 0 because the coefficient of α1 is
non-positive. Since the coefficient of α1 in σ(ρ) is also non-positive, it follows that
σ(ρ+ λ) ≤ 0 for every highest weight λ . This shows that C(G, V ) ≤ n− 1, and so

n− 2 ≤ C(G, V ) ≤ n− 1

for any irreducible V . For any particular V one can determine which inequality
is strict. For example C(G, V ) = n − 2 when the highest weight of V is one of
the basis vectors φ1, . . . , φn (to show C(G, V ) ≤ n − 2, consider σ = τ1 · · · τn−1 if
1 ≤ k ≤ n − 1 and σ = τ1 · · · τn−2τn for k = n). We leave further computations in
this direction to the reader.

3. Computation for Sp2n(R)

In this section we carry out the analysis of §2 for Sp2n . The goal is to prove the
following proposition.

Proposition 3.1. Fix n ≥ 3, and let G = Sp2n . Then C(G, V ) = n− 1 for each
irreducible finite dimensional rational representation V of G.

The outline of the argument is similar to the argument for Proposition 2.1. We
explain the main differences and refer the reader to §2 when the details are similar.
We start with the following information is from [Bou68, pg. 254-255].

• The simple roots are α1 = ε1 − ε2 , . . . , αn−1 = εn−1 − εn , and αn = 2εn .

• The half the sum of positive roots is ρ =
∑
ri αi , where ri = (2n−i+1)i

2
for

1 ≤ i ≤ n− 1 and rn = n(n+1)
4

.

• The Weyl group W = (Z/2Z)n o Sn . It acts as the signed permutation group
of {±ε1, . . . ,±εn} .
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Let τi ∈ W be the reflection fixing the orthogonal complement of αi . For
1 ≤ i ≤ n− 1, the reflection τi interchanges εi and εi+1 , while τn only changes the
sign on εn . The set S = {τ1, . . . , τn} generates W . As in the SOn,n case, S ⊂ W 1

and σ ∈ W q if and only if the S word-length of σ is q .

We record how the bases (ε1, . . . , εn) and (α1, . . . , αn) are related: if
∑
xiαi =∑

yiεi , then
xk = y1 + · · ·+ yk k ≤ n− 1

xn = 1
2
(y1 + · · ·+ yn−1 + yn)

(5)

In εi -coordinates,
ρ = (n, n− 1, . . . , 2, 1).

Proposition 3.2. If G = Sp2n , then C(G,C) = n− 1.

Proof. First observe that if σ = τ1 · · · τn , then σ(ρ) = (−1, n, . . . , 2) is not
dominant regular. This shows C(G,C) ≤ n− 1.

To show C(G,C) ≥ n− 1, let σ be a word in S of length ≤ n− 1. We will
show σ(ρ) is dominant regular.

Special case 1. First consider the case that σ is a word in S \ {τn} . Since
τ1, . . . , τn−1 act as permutations without changing sign, σ(ρ) = (y1, . . . , yn−1, 1),
where (y1, . . . , yn−1) are a permutation of (n, . . . , 2). Then y1 + · · ·+yi > 0 for each
1 ≤ i ≤ n , which implies that σ(ρ) is dominant regular.

Special case 2. Next consider the case that σ is a word in S \ {τ1} . Then σ(ρ) =
(n, y2, . . . , yn), where (y2, . . . , yn) is a signed permutation of (n− 1, . . . , 1).

Since τn is the only element of S that changes any sign, in order for j
(the (n − j + 1)-st coordinate of ρ) to appear with a negative sign in σ(ρ), the
length of σ must be at least j . Similarly, in order for each of the coefficients
j1, . . . , jm of ρ to appear with negative signs in σ(ρ), the length of σ must be
at least j1 + · · · + jm . Let j1, . . . , jm be the coefficients of ρ that become negative
in σ(ρ). Then j1 + · · · + jm ≤ n − 1 because σ has length ≤ n − 1. Hence for
1 ≤ i ≤ n ,

y1 + · · ·+ yi ≥ n− (j1 + · · ·+ jm) ≥ n− (n− 1) > 0.

This shows that σ(ρ) is dominant regular.

General case. If σ has length ≤ n− 1, then there is some index 1 ≤ i ≤ n so that
τi is not in σ . We covered the cases i = 1 and i = n above, so we can assume
1 < i < n . Then we can write σ = σ1σ2 , where σ1 is a word in {τ1, . . . , τi−1} and
σ2 is a word in {τi+1, . . . , τn} . Then the coefficients of αj in σ1(ρ) and σ(ρ) agree
for j ≤ i and the coefficients of αj in σ2(ρ) and σ(ρ) agree for j ≥ i + 1, so we
again reduce to the previous cases to conclude that σ(ρ) is dominant regular.

Proposition 3.3. Let V be an irreducible representation. Then C(G, V ) =
C(G,C).

Proof. Let λ be the highest weight of V . According to [FH91, §17.2], λ can
be expressed as an integral linear combination λ =

∑n
k=1 ak φk , where ak ≥ 0 and
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φk = ε1 + · · ·+ εk . If σ ∈ W , then σ(ρ+ λ) = σ(ρ) +
∑

k ak σ(φk). The proof of the
proposition will follow by studying σ(φk).

First we explain why C(G, V ) ≤ C(G,C) = n − 1. Observe that for σ =
τ1 · · · τn , the coefficient of α1 in σ(φk) is 0 for each 1 ≤ k ≤ n . In Proposition 3.2 we
showed that the coefficient of α1 in σ(ρ) is negative, so it follows that σ(ρ+λ) ≤ 0.
Hence C(G, V ) ≤ n− 1.

To show that C(G, V ) ≥ n−1, it suffices to show that if σ ∈ W q for q ≤ n−1,
then σ(φk) ≥ 0 for each 1 ≤ k ≤ n . To simplify the notation, fix k and write φ = φk .
In εi -coordinates φ = (1, . . . , 1, 0, . . . , 0). Next we bound from below the minimum
word length of σ needed for σ(φ) < 0, and we will find that there is no σ of length
≤ n− 1.

First observe that the only way to act by elements of S to make a coefficient
of φ negative is to move that coefficient to the right (using a word like τn−1 · · · τi )
and the apply τn . Therefore, fixing ` < k/2, any word σ such that σ(φ) has ` + 1
negative coordinates has length at least

(n−k+1)+· · ·+(n−k+1+`) = n(`+1)−
[
k(k − 1)

2
− (k − `− 1)(k − `− 2)

2

]
. (6)

After creating `+ 1 negative coefficients, to make a non-dominant vector, one needs
to move sufficiently many positive entries to the right, passed the negative entries.
Since we start with k = ` + (k − 2` + 1) + (` + 1) positive entries, we must move
(k−2`−1) positive entries passed the (`+ 1) negative entries. This requires a word
of length at least

(k − 2`− 1)(`+ 1). (7)

Now we conclude. Suppose for a contradiction that σ has length ≤ n − 1
and that σ(φ) < 0. Write σ(φ) = (y1, . . . , yn), and let i be the smallest index so
that the coefficient of αi in σ(φ) is negative. Then y1 + · · ·+ yi < 0. The terms in
the sum y1 + · · ·+ yi are all +1, 0,−1. By replacing σ with a shorter word, we can
assume that the summands occur in decreasing order. By minimality of our choice
of i , if there are ` positive terms in the sum, then there are ` + 1 negative terms.
Then 2`+ 1 ≤ k , so ` < k/2.

Combining (6) and (7), if the leading coefficients of σ(φ) are

(1, . . . , 1, 0, . . . , 0,−1, . . . ,−1, . . .),

then the length of σ is at least

n(`+1)−
[
k(k − 1)

2
− (k − `− 1)(k − `− 2)

2

]
+(k−2`−1)(`+1) = n(`+1)−3`2 + 3`

2
.

Since we’re assuming σ has length ≤ n− 1, we must have n(`+ 1)− 3`2+3`
2
≤

n− 1. This inequality implies that

n ≤ 3`+ 3

2
− 1

`
≤ 3`+ 3

2
.

Since ` < k/2, if k ≤ n−1, this implies that n < 3, which contradicts the hypothesis.
If k = n , then we can only conclude n < 6.
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Assume now that k = n and n ≤ 5. Since ` < k/2 = n/2 this implies that
either ` = 1 and 3 ≤ n ≤ 5 or ` = 2 and n = 5. The inequality n ≤ 3`+3

2
− 1

`

implies that n ≤ 2 when ` = 1 and it implies n ≤ 4 when ` = 2. In either case,
this is a contradiction. Therefore, we conclude that if σ has length ≤ n − 1, then
σ(φ) ≥ 0. This completes the proof.
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