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CHARACTERISTIC CLASSES OF BUNDLES OF K3 MANIFOLDS AND

THE NIELSEN REALIZATION PROBLEM

JEFFREY GIANSIRACUSA, ALEXANDER KUPERS, AND BENA TSHISHIKU

Abstract. Let K be the K3 manifold. In this note, we discuss two methods to prove that certain
generalized Miller–Morita–Mumford classes for smooth bundles with fiber K are non-zero. As
a consequence, we fill a gap in a paper of the first author, and prove that the homomorphism
Diff(K) → π0 Diff(K) does not split. One of the two methods of proof uses a result of Franke
on the stable cohomology of arithmetic groups that strengthens work of Borel, and may be of
independent interest.

1. Introduction

In this paper K denotes the K3 manifold, which is the underlying oriented manifold of a complex
K3 surface. This uniquely specifies its diffeomorphism type, and one may construct it as the
hypersurface in CP 3 cut out by the homogeneous equation z4

0 +z4
1 +z4

2 +z4
3 = 0. For each element

c ∈ H i(B SO(4);Q), there is a characteristic class κc of smooth oriented manifold bundles with
fiber K, called a generalized Miller–Morita–Mumford class: given such a bundle E → B we take
the vertical tangent bundle TvE and integrate the class c(TvE) ∈ H i(E;Q) over the fibers to get
κc(E) ∈ H i−4(B;Q).

Let Diff(K) denote the group of orientation-preserving C2-diffeomorphisms, in the C2-topology.
Its classifying space B Diff(K) carries a universal smooth manifold bundle with fiber K, and hence
there are classes κc ∈ H∗(B Diff(K);Q) which may or may not be zero. Letting L2 = 1

45 (7p2−p2
1)

denote the second Hirzebruch L-polynomial, we prove the following:

Theorem A. The generalized Miller–Morita–Mumford-class κL2
∈ H4(B Diff(K);Q) is nonzero.

The Hirzebruch L-polynomials are related to signatures of manifolds and as a corollary of Theorem
A, there exists a smooth bundle of K3 manifolds over a closed stably-framed 4-manifold whose
total space has nonzero signature. We shall give two proofs of Theorem A: the first is an explicit
calculation for the tautological bundle over a certain moduli space of K3 surfaces, while the second
combines the study of Einstein metrics with a general result about cohomology of arithmetic
groups following work of Franke.

Either proof can be combined with the Bott vanishing theorem to prove the following result.
We define the mapping class group Mod(K) to be the group π0 Diff(K) of path components of
Diff(K).

Theorem B. The surjection p : Diff(K) → Mod(K) does not split, i.e. there is no homomor-
phism s : Mod(K)→ Diff(K) so that p ◦ s = Id.

This is an instance of the Nielsen realization problem; see e.g. [MT18]. Theorem B first appeared
in [Gia09], but the proof was flawed (see [Gia19]). However, it can be repaired with small
modifications and many of the ideas in this paper derive from [Gia09].
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Table 1. The class κLi+1
(X2d) in terms of the class λ for i ≤ 8.

i 0 1 2 3 4 5 6 7 8

κLi+1
(X2d) 24 8λ2 8λ4

3
16λ6

45
8λ8

315
16λ10

14175
16λ12

467775
32λ14

42567525
8λ16

638512875

2. Quasi-polarized K3 surfaces

Suppose that π : E → B is an oriented manifold bundle with closed fibers of dimension d. This
has a vertical tangent bundle TvE with corresponding characteristic classes c(TvE) ∈ H i(E;Q)
for each c ∈ H i(B SO(d);Q). The generalized Miller–Morita–Mumford classes are obtained by
integration of these classes along the fibers:

κc(E) :=

∫

π
c(TvE) ∈ H i−d(B;Q).

Applying this construction to the universal bundle of K3 manifolds over B Diff(K) results in
classes κc ∈ H i−4(B Diff(K);Q) for each c ∈ H i(B SO(4);Q) = Q[e, p1].

These classes are natural in the bundle: for any continuous map f : B′ → B, κc(f
∗E) = f∗κc(E).

To prove κc 6= 0 ∈ H∗(B Diff(K);Q), it therefore suffices to find a single bundle E → B such
that κc(E) 6= 0.

We shall use the moduli space M2d of quasi-polarized K3 surfaces of degree 2d (the value of
d plays no role in our arguments). This is actually a stack with finite automorphism groups
of bounded order, but since we are interested in its rational cohomology we may ignore these
technical details. We shall not go into the details of its construction, but recall some facts from
[vdGK05, Pet16]. There is a universal family π : X2d →M2d of K3 surfaces. As this is a bundle
of complex surfaces, its vertical tangent bundle has Chern classes ti := ci(TvX2d) ∈ H2i(X2d;Q).
The class t1 is the pullback of a class λ ∈ H2(M2d;Q). The main result of [vdGK05] is that
λ17 6= 0 but λ18 = 0, in the Chow ring ofM2d. Petersen gives the corresponding result in rational
cohomology [Pet16], and attributes it to van der Geer and Katsura. We shall use this to prove
the following improvement of Theorem A:

Proposition 1. The generalized Miller–Morita–Mumford-class κLi+1
∈ H4i(B Diff(K);Q) is

non-zero for i ≤ 8.

Proof. It suffices to prove that κLi+1
(X2d) 6= 0. Since the K3 manifold is 4-dimensional, p1, p2

are the only non-zero Pontryagin classes of the vertical tangent bundle. These can be expressed
in terms of the Chern classes using [MS74, Corollary 15.5]:

p1(TvX2d) = t2
1 − t2 and p2(TvX2d) = t2

2.

We substitute these into the first nine Hirzebruch L-polynomials, as computed by McTague

[McT14]. Since integration along fibers is linear, it suffices to compute
∫

π ti
1tj

2. As t1 = π∗λ,

the push-pull formula gives λi
∫

π tj
2, and [vdGK05, Section 3] used Grothendieck–Riemann–Roch

to determine that
∫

π tj
2 = aj−1λ2j−2 for particular integers aj−1. Using this, we compute that

κLi+1
(X2d) is a non-zero multiple of λ2i for 1 ≤ i ≤ 8 and hence non-zero, cf. Table 1. �

Example 2. Let us do the computation for i = 3 as an example:

L4 =
−19p2

2 + 22p2
1p2 − 3p4

1

14175
ignoring terms involving pi with i ≥ 3

L4(TvX2d) =
−3t8

1 + 24t6
1t2 − 50t4

1t2
2 + 8t2

1t3
2 + 21t4

2

14175

κLi+1
(X2d) =

∫

π
L4(TvX2d) =

24λ6 · 24− 50λ4 · 88λ2 + 8λ2 · 184λ4 + 21 · 352λ6

14175
=

16λ6

45
.
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Remark 3. The classes κLi+1
remain non-zero when pulled back to H4i(B Diff(K rel ∗);Q), be-

cause H∗(B Diff(K),Q) → H∗(B Diff(K rel ∗),Q) is injective: its composition with the Becker–
Gottlieb transfer is given by multiplication with χ(K) = 24. We do not know whether κLi+1

remains non-zero when pulled back to H4i(B Diff(K rel D4);Q).

3. Miller–Morita–Mumford classes and the action on homology

One can also approach the group of diffeomorphisms of K through its action on H2(K;Z). In
particular, we shall explain a relationship between the generalized Miller–Morita–Mumford classes
and the arithmetic part of the mapping class group.

The middle-dimensional homology group H2(K;Z) ∼= Z22 has intersection form given by M =
H ⊕ H ⊕ H ⊕ −E8 ⊕ −E8, with H the hyperbolic form and −E8 the negative of the E8-form.
This is equivalent over R to the symmetric (22× 22)-matrix

B =

(

I3 0
0 −I19

)

,

where In is the (n× n) identity matrix. In particular, we can consider Aut(M) as a subgroup of
the Lie group O(3, 19).

The action of Mod(K) on H2(K;Z) preserves the intersection form and hence induces a homo-
morphism α : Mod(K)→ Aut(M), whose image ΓK is the index 2 subgroup of Aut(M) of those
elements such that the product of the determinant and the spinor norm equals 1, cf. [Gia09, §4.1].

The generalized Miller–Morita–Mumford classes associated to the Hirzebruch L-polynomials Li ∈
H4i(B SO;Q), whose pullback to H4i(B SO(4);Q) we shall denote in the same manner, can be
obtained from the arithmetic group ΓK . We will now justify this claim.

There are homomorphisms

ΓK −→ Aut(M) −→ O(3, 19)
≃←− O(3)×O(19).

Thus we get, up to homotopy, a map w : BΓK −→ B O(3) × B O(19) which classifies a bundle
η with fibers M ⊗ R, which decomposes as a direct sum η+ ⊕ η− of a 3- and a 19-dimensional
subbundle. We define a class

x4i := w∗(ph4i⊗1− 1⊗ ph4i) ∈ H4i(BΓK ;Q),

where ph4i denotes the degree 4i component of the Pontryagin character.

By definition x4i is pulled back from B O(3)×B O(19), but it is in fact pulled back from B O(3)
[Gia09, Proposition 2.2]. By Chern–Weil theory the Pontryagin classes of the flat bundle η vanish
[MS74, Corollary C.2]. This implies ph(η+) + ph(η−) = 0, and thus x4i = ph4i(η+)− ph4i(η−) =
2 ph4i(η+), which is evidently pulled back along

BΓK −→ B O(3)×B O(19)
π1−→ B O(3).

Lemma 4. The pullback of x4i ∈ H4i(BΓK ;Q) along the map B Diff(K) → BΓK is equal to
1/2i+1κLi+1

∈ H4i(B Diff(K);Q).

Proof. Atiyah proved that x4i ∈ H4i(BΓK ;Q) pulls back to κL̃i+1
∈ H4i(B Diff(K);Q) along

the map B Diff(K) → BΓK [Ati69, §4]. Here L̃i+1 is the Atiyah–Singer modification of the
Hirzebruch L-polynomials: while the latter has generating series

√
z/ tanh(

√
z), this modification

has generating series
√

z/ tanh(
√

z/2), so 2i+1L̃i+1 = Li+1. �

Let ΓEin < ΓK be the index 2 subgroup of those elements such that both the determinant and
the spinor norm are 1; it has index 4 in Aut(M) and is the maximal subgroup contained in
the identity component of O(3, 19). Restricting the previous maps to the identity component
SO0(3, 19) in O(3, 19), we get

BΓEin −→ B SO0(3, 19)
≃←− B SO(3)×B SO(19)

π1−→ B SO(3).
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To understand the induced map H∗(B SO(3);Q)→ H∗(BΓEin;Q), we introduce the space

Xu =
SO(22)

SO(3)× SO(19)
.

In Section 4 we shall discuss the Matsushima homomorphism

µ : H∗(Xu;C) −→ H∗(BΓEin;C).

The principal SO(3)-bundle SO(22)/ SO(19) → Xu is classified by a 39-connected map Xu →
B SO(3) that factors over the map Xu → B SO(3)×B SO(19). By [Gia09, Lemma 3.4] (a special
case of [Bor77, Proposition 7.2]), the Matsushima homomorphism fits in a commutative diagram

(1)

H∗(B SO(3)×B SO(19);C) H∗(Xu;C)

H∗(B SO(3);C) H∗(BΓEin;C).

µ

Changing coefficients to the complex numbers and pulling back x4i from BΓK to BΓEin, we get
x4i ∈ H4i(BΓEin;C). From this we will conclude:

Lemma 5. The class x4i ∈ H4i(BΓEin;C) is in the image of the Matsushima homomorphism.

Proof. The argument preceding Lemma 4 tells us that in the commutative diagram

H∗(B SO(3);C) H∗(BΓEin;C)

H∗(B O(3);C) H∗(BΓK ;C),

the element x4i ∈ H∗(BΓK ;C) is pulled back from B O(3), and hence x4i ∈ H∗(BΓEin;C) is
pulled back from B SO(3). The results then follows from the commutative diagram (1). �

4. Results of Franke and Grobner

In this section we explain a result about the Matsushima homomorphism, which implies:

Proposition 6. The homomorphism H∗(B SO(3);C)→ H∗(Xu;C)→ H∗(BΓEin;C) is injective
in degrees ∗ ≤ 20.

Let G be a connected semi-simple linear algebraic group over Q. The real points G(R) form a
semi-simple Lie group. Fix maximal compact subgroups K < G(R) and U < G(C) with K ⊂ U ,
let Y∞ := G(R)/K be the symmetric space of G, and Xu := U/K be the compact dual symmetric
space of G. Fixing an arithmetic lattice Γ < G(Q), by work of Matsushima and Borel [Mat62,
Bor74] there is a homomorphism H∗(Xu;C)→ H∗(Γ\Y∞;C) constructed using differential forms.
Since Γ acts on the contractible space Y∞ with finite stabilizers, H∗(Γ\Y∞;C) ∼= H∗(BΓ;C). We
shall call the composition

(2) µ : H∗(Xu;C) −→ H∗(Γ\Y∞;C) ∼= H∗(BΓ;C)

the Matsushima homomorphism. It may be helpful to point out that µ in general is not induced
by a map of spaces, since it does not preserve the rational cohomology as a subset of the complex
cohomology [Bor77, Oku01].

Example 7. The Matsushima homomorphism discussed in the previous section is a particular
instance of this. In this case G = SO(3, 19), yielding Xu as in the previous section. In this
particular instance µ does preserve the rational cohomology in the range ∗ ≤ 39, as a consequence
of the commutative diagram 1.

Borel [Bor74] proved that the Matsushima homomorphism is an isomorphism in a range of degrees,
and by work of Franke [Fra08] it is injective in a larger range.
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Theorem 8 (Franke). The homomorphism (2) is injective in degrees

(3) ∗ ≤ min
R

dim NR,

where R ranges over maximal parabolic subgroups of G over Q, and NR ⊂ R is the unipotent
radical.

This is not stated explicitly in [Fra08], but a similar statement is given in [Gro13], as we now
explain. We require the following additional setup (see [FS98], [LS04], [SV05] or [Har19, §6,8] for
more information). Define the adelic symmetric space Y A and the adelic locally symmetric space
XA by

Y A := Y∞ ×G(Af ) and XA := G(Q)\Y A,

where Af is the ring of finite adeles of Q. The (sheaf) cohomology H∗(XA;C) can be identified

with the colimit colim H∗(XA/Kf ;C), where Kf ⊂ G(Af ) ranges over open compact subgroups.

Each XA/Kf is a finite disjoint union
⊔

i Γi\Y∞ with Γi < G(Q) an arithmetic lattice.

Definition 9. The automorphic cohomology of G is given by

(4) H∗(G;C) := colim H∗(XA/Kf ;C).

In this framework, there is a map [Gro13, pg. 1062]

(5) Ψ: H∗(g, K;C) −→ H∗(G;C)

where H∗(g, K;C) is relative Lie algebra cohomology with trivial coefficients. The construction
of the Matsushima homomorphism (2) passes through the isomorphism H∗(Xu;C) ∼= H∗(g, K;C)
[Oku01, §4], [Bor74, §10]. In the proof of Proposition 10 we will explain that the Matsushima
homomorphism picks out the contribution of the trivial representation to the automorphic coho-
mology. In particular, it fits in a commutative diagram

(6)

H∗(g, K;C) H∗(G;C)

H∗(Xu;C) H∗(BΓ;C),

Ψ

∼=

µ

with right vertical induced by the map BΓ→ Γ\Y∞ →֒
⊔

i Γi\Y∞ = XA/Kf for suitable Kf .

We will see that Theorem 8 follows the following result regarding the homomorphism (5).

Proposition 10. The homomorphism (5) is injective in degrees ∗ ≤ minR dim NR.

The proposition follows from [Fra08, Gro13]. There is a small amount of work needed to translate
the results of these papers to our setting.

Proof. First we explain a weaker statement: (5) is injective in degrees ∗ < 1
2 minR dim NR.1

This is proved directly in [Gro13], building on [Fra98, FS98, Fra08]. We explain only what is
needed for our argument, and refer to [Gro13] for more details. The cohomology H∗(G;C) can
be identified with relative Lie algebra cohomology H∗(G;C) = H∗(g, K;A(G)), where A(G) is
a space of automorphic forms [Gro13, Introduction]. (Comparing with Grobner’s notation, we
remark that since G is semisimple in our case, the quotient mG in [Gro13] is just the Lie algebra
g; furthermore, since we are only interested in the trivial representation E = C, we will write
A(G) instead of AJ (G).)

By [Fra98] and [FS98], there is a decomposition

A(G) =
⊕

{P }

⊕

φP

A{P },φP
(G), and hence also H∗(G;C) =

⊕

{P }

⊕

φP

H∗(

g, K;A{P },φp
(G)

)

,

where {P} ranges over (associate classes) of Q-parabolic subgroups and φP ranges over (associate
classes) of cuspidal automorphic representations of the Levi subgroups of elements of {P}; see

1Although including this argument is not strictly necessary, this statement is already sufficient for Theorem B
and the argument illustrates the connection between the Matsushima homomorphism and automorphic forms.
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[Gro13, §2]. The summands of A(G) corresponding to P 6= G is denoted AEis(G), and the
corresponding subspace H∗

Eis(G;C) ⊂ H∗(G;C) is called the Eisenstein cohomology. The constant
functions span a trivial sub-representation 1G(A) ⊂ AEis(G). This defines a map H∗(g, K;C) →
H∗(G;C), which is precisely the map (5). Necessarily 1G(A) is contained in a unique summand

A{P },φP
(G). Then by [Gro13, Cor. 17], the induced map H∗(g, K;C) → H∗

(

g, K;A{P },φP
(G)

)

is injective in a range 0 ≤ ∗ < qres, where the constant qres = qres(P, φP ) is defined in [Gro13, §6].
As discussed in [Gro13, §7.4], since we are working with the trivial representation, qres is equal to
the constant qmax = 1

2 minR dim NR defined in [Gro13, §7.1] (note that in our case G is defined
over Q, which as only one place, so the sum in Grobner’s definition of qmax has only one term).

Next we explain how to deduce from [Fra08] that (5) is injective for ∗ ≤ minR dim NR.

We define H∗
c (G;C) to be the colimit of the compactly supported cohomology groups H∗

c (XA/Kf ;C).
Using Poincaré duality for each of the symmetric spaces Γi/Y∞, the map Ψ : H∗(Xu;C) ∼=
H∗(g, K;C)→ H∗(G;C) has a dual map

Ψ′ : H∗
c (G;C) −→ H∗(Xu;C)

on compactly supported cohomology. Then ker(Ψ) = Im(Ψ′)⊥, where the orthogonal complement
is with respect to the cup product ⌣ on H∗(Xu;C). Franke [Fra08] gives a precise description
of Im(Ψ′). To describe it, fix a minimal parabolic P0 < G, and consider a parabolic subgroup
R ⊃ P0. Write R = MAN for the Langlands decomposition, where M is semi-simple, A is
abelian, and N is unipotent. When we vary R, we write MR, NR for emphasis. The compact
dual symmetric space of M , denoted XM , embeds in Xu. Franke proves that Im(Ψ′) = ker(Φ),
where

Φ: H∗(Xu;C) −→
∏

H∗(XM ;C)

is the map induced by the inclusions XM →֒ Xu, ranging over R = MAN maximal parabolic
subgroups (maximal is equivalent to dim A = 1). See [Fra08, (7.2) pg. 59] and also [SV05, §2,3].
Thus we have

ker(Ψ) = ker(Φ)⊥.

To show that Ψ is injective in low degrees, we use the following observation: if V ⊥ ⊂ ker(Φ) for
some subspace V ⊂ H∗(Xu;C), then ker(Ψ) = ker(Φ)⊥ ⊂ V . This implies that Ψ is injective in
degrees ∗ < min06=v∈V deg(v).

Fix R, and consider the inclusion i : XM → Xu. For k ≥ 1, observe that a ∈ Hk(Xu;C) belongs
to ker(i∗) if and only if a ⌣ PD(i∗(z)) = 0 for every z ∈ Hk(XM ;C). Here PD(·) denotes
Poincaré duality. Then V ⊥ ⊂ ker(Φ), where V ⊂ H∗(Xu;C) is defined as the image of

⊕

R

⊕

k≥1

Hk(XMR
;C)

i∗−→ H∗(Xu;C)
PD−−→ H∗(Xu;C),

where
⊕

R ranges over maximal parabolic subgroups containing P0 as before. Observe that
classes in H∗(XM ;C) of low dimension map to classes in H∗(Xu;C) of low codimension. Thus
if v ∈ V , then deg(v) ≥ dim Xu − dim XM for each M . Therefore, Ψ is injective in degrees
∗ < minR

(

dim Xu − dim XMR

)

.

Finally, we show the minimum codimension of XM ⊂ Xu is equal to 1 + minR dim R. This
follows quickly from the Iwasawa decomposition for a semi-simple Lie group and Langlands
decompositions for a parabolic subgroup. By the Iwasawa decomposition, we can write G = KAN ,
where K is maximal compact. For our maximal parabolic R, we have R = MARNR, and
furthermore, since M is semisimple, it has an Iwasawa decomposition M = KM AM NM . Observe
that dim Xu = dim AN , dim XM = dim AM NM , and dim AN = dim AM NM + dim ARNR. Then

dim Xu − dim XM = dim ARNR = 1 + dim NR.

This completes the proof. �

Proof of Theorem 8. For any x ∈ H∗(g, K;C) in the given range, by the injectivity of Ψ and
the description (4) of H∗(G;C) as a colimit, there is an arithmetic lattice Γ′ < G(Q) so that
Ψ(x) is in the image of H∗(Γ′;C) → H∗(G;C), as in (6). By transfer, the same is true for any
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further finite-index subgroup of Γ′. Then since H∗(g, K;C) is degree-wise finite-dimensional, in
the desired range (5) provides an injective map H∗(g, K;C) → H∗(Γ′;C) for some arithmetic
lattice Γ′ ≤ G(Q). Any arithmetic lattice Γ ≤ G(Q) is commensurable to Γ′, and hence Γ and Γ′

have a common finite index subgroup Γ′′. Consider the commutative diagram

H∗(BΓ′;C)

H∗(g, K;C) H∗(BΓ′′;C).

H∗(BΓ;C)

By a transfer argument the top composition is injective in the desired range, and hence so is
H∗(g, K;C)→ H∗(BΓ;C), proving that (5) and hence (2) is injective in the desired range. �

In the remainder of this section we compute Franke’s constant minR dim NR for G = SO(p, q).
We also compute Franke’s constant for G = Sp2g and G = SLn, since these are examples of
common interest.

4.1. Special orthogonal groups. Fix 1 ≤ p ≤ q, set d = q − p, and consider the algebraic
group

SO(B) := {g ∈ SLp+q | gtBg = B},
where B is the (p + q)× (p + q)-matrix given by

B =

(

Ip 0
0 −Iq

)

.

The associated compact dual symmetric space is Xu = SO(p + q)/(SO(p)× SO(q)), whose coho-
mology H∗(Xu;C) can be computed using [McC01, Theorem 8.2].

Proposition 11. Fix a finite-index subgroup Γ ≤ SO(B;Z). Then the Matsushima homomor-
phism H∗(Xu;C)→ H∗(BΓ;C) is injective in degrees ∗ ≤ p + q − 2.

Proof. By the preceding discussion, it suffices to prove

min
R

dim NR = p + q − 2,

where R ranges over a maximal parabolic subgroups over Q, and NR is the unipotent radical.
Parabolic subgroups of SO(B;R) are stabilizers of isotropic flags in (Rp+q, B). A maximal para-
bolic subgroup is specified by a single non-trivial isotropic subspace. Let e1, . . . , ep, f1, . . . , fq be
the standard basis for Rp+q (whose Gram matrix is B). Denoting ui = ei + fi, let Rk < SO(B;R)
be the stabilizer of W = R{u1, . . . , uk} for 1 ≤ k ≤ p. Every maximal parabolic subgroup is
conjugate to some Rk.

Fix 1 ≤ k ≤ p. An element of Rk preserves the flag 0 ⊂W ⊂W ⊥ ⊂ Rp+q. The unipotent radical
Nk ⊂ Rk is the subgroup that acts trivially on each of the quotients W/0, W ⊥/W , Rp+q/W ⊥.
To determine dim Nk, denote vi = ei − fi for 1 ≤ i ≤ p, and work in the ordered basis

u1, . . . , uk, uk+1, . . . , up, fp+1, . . . , fq, vk+1, . . . , vp, v1, . . . , vk.

Then g ∈ Nk can be expressed as a block matrix

g =





Ik y z
0 Ip+q−2k x
0 0 Ik



 ,

where y = −xtQ and z + zt = xtQx and Q is the (p + q − 2k)× (p + q − 2k) matrix

Q =





0 0 Ip−k

0 Iq−p 0
Ip−k 0 0



 .
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The homomorphism Nk ∋ g 7→ x ∈ Rk(p+q−2k) has kernel the space of skew-symmetric matrices

zt = −z, so dim Nk = k(p + q − 2k) + k(k−1)
2 . For 1 ≤ k ≤ p, this number is smallest when k = 1,

which gives the constant claimed in the theorem. �

Proof of Proposition 6. Since M , the intersection form of the K3 manifold, is equivalent to B
over R with p = 3 and q = 19. Thus when we apply Theorem 8, the same estimates as in
Proposition 11 holds. Thus the map H∗(Xu;C) → H∗(BΓEin;C) → H∗(BΓ;C) is injective for
∗ ≤ 20 and hence so is H∗(Xu;C)→ H∗(BΓEin;C). �

4.2. Symplectic groups. We next specialize Theorem 8 to finite index subgroups of symplectic
groups. Take G = Sp2n to be the algebraic group defined by

Sp2n := {g ∈ SL2n | gtJng = Jn},
where Jn is the 2n× 2n matrix given by

Jn :=

(

0 In

−In 0

)

.

The associated compact dual symmetric space is Xu = Sp(n)/ U(n), whose cohomology in the
range below is the polynomial algebra on generators c1, c3, c5, . . . with |ci| = 2i.

Proposition 12. For any finite-index subgroup Γ ≤ Sp2n(Z) the Matsushima homomorphism
H∗(Xu;C)→ H∗(BΓ;C) is injective in degrees ∗ ≤ 2n− 1.

Proof of Proposition 12. The proof follows from Theorem 8 similar to Proposition 11. Let e1, . . . , en,
f1, . . . , fn be the standard symplectic basis for R2n. Let Rk be the maximal parabolic subgroup
of Sp2n defined as the stabilizer of W = R{e1, . . . , ek} for 1 ≤ k ≤ n. Working in the ba-
sis e1, . . . , ek, ek+1, . . . , en, fk+1, . . . , fn, f1, . . . , fk, an element of the unipotent radical Nk can be
expressed as a block matrix

g =





Ik y z
0 I2n−2k x
0 0 Ik



 ,

where y = xtJ ′ and z−zt = ytJ ′y and J ′ = Jn−k. It follows that dim Nk = 2k(n−k)+k + k(k−1)
2 .

For 1 ≤ k ≤ n, this number is smallest when k = 1. �

4.2.1. The tautological ring of Ag. LetAg denote the moduli space of principally polarized abelian
varieties. The tautological ring R∗

CH(Ag) ⊂ CH∗(Ag;Q) in the Chow ring is the subalgebra
generated by the λ-classes λi ∈ CH2i(Ag;Q), the Chern classes of the Hodge bundle (the 2g-
dimensional vector bundle given at an abelian variety X ∈ Ag by the tangent space to its identity

element). Van der Geer proved it has a Q-basis given by the monomials λa1

1 λa2

2 · · ·λ
ag−1

g−1 with

ai ∈ {0, 1} [vdG99, Theorem (1.5)] [vdG13, §4]. As for Chow groups, there is a tautological
ring R∗

H(Ag) ⊂ H∗(Ag;Q) in rational cohomology defined as the subalgebra generated by the
λ-classes. In the literature it is claimed van der Geer’s computation also holds in cohomology,
but no reference for this is known to the authors. We provide a proof below:

Theorem 13. The tautological ring R∗
H(Ag) ⊂ H∗(Ag;Q) has a Q-basis given by the monomials

λa1

1 λa2

2 · · ·λ
ag−1

g−1 with ai ∈ {0, 1}.

Proof. R∗
CH(Ag) surjects onto R∗

H(Ag), so it suffices to prove they have the same dimension.

The space Ag is the quotient of the contractible Siegel upper half space Hg by Sp2g(Z). This
action has finite stabilizers, so there is an isomorphism H∗(Ag;Q) ∼= H∗(Sp2g(Z);Q). Under the
isomorphism H∗(Ag;C) ∼= H∗(Sp2g(Z);C), R∗

H(Ag)⊗ C is exactly the image of the Matsushima
homomorphism [vdG13, §10]. In [SV05, Section 4], Speh and Venkataramana prove that the
kernel of the Matsushima homomorphism is the orthogonal complement of the ideal (ug) in

H∗(Xu;Q) ∼= Q[u1, · · · , ug]

((1 + u1 + u2 + · · ·+ ug)(1 − u1 + u2 − · · ·+ (−1)gug)− 1)
.
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This is [SV05, Lemma 8], combined with the description of H∗(Xu;Q) in [vdG99, §1]. The
latter also proves there is an isomorphism H∗(Xu;Q) ∼= R∗

CH(Ag+1) identifying ui with λi. In
particular, from the basis given above we see that the kernel of the Matsushima homomorphism is
spanned by the monomials uǫ1

1 uǫ2

2 · · · u
ǫg−1

g−1 ug with ǫi ∈ {0, 1}. Thus the image of the Matsushima

homomorphism has the same dimension as R∗
CH(Ag), and the result follows. �

Observe this result in particular describes the image of the Matsushima homomorphism in
H∗(BΓ;C) for finite-index subgroups Γ ⊂ Sp2g(Z).

4.3. Special linear groups. Finally, we specialize Theorem 8 to finite-index subgroups of special
linear groups. Now we have G = SLn and Xu = SU(n)/ SO(n), whose cohomology in the range
below is the exterior algebra on generators c̄3, c̄5, c̄7, . . . with |c̄i| = 2i− 1.

Proposition 14. For any finite-index subgroup Γ ≤ SLn(Z) the Matsushima homomorphism
H∗(Xu;C)→ H∗(BΓ;C) is injective in degrees ∗ ≤ n− 1.

The proof is similar to the proof of Propositions 11 and 12, but simpler; one identifies the maximal
parabolic subgroups over Q as the stabilizers of a non-trivial subspace W and observes that the
stabilizers of 1-dimensional subspaces have the smallest unipotent radical, of dimension n− 1.

4.3.1. A result announced by Lee. In [Lee78, Theorem 1], Lee announced a result which in par-
ticular implies that the range in Proposition 14 can be improved to ∗ ≤ 2n − 3. His result can
be deduced from page 61 of [Fra08], where Franke describes the kernel of the Matsushima homo-
morphism for finite index subgroups of SLn(OK), with OK the ring of integers in a number field
K:

Theorem 15. For any finite-index subgroup Γ ≤ SLn(Z), the image of the Matsushima homomor-
phism H∗(Xu;C)→ H∗(BΓ;C) is an exterior algebra on the classes c̄3, · · · , c̄n−1 with |c̄i| = 2i−1
when n is odd, and an exterior algebra on the classes c̄3, · · · , c̄n−3 when n is even.

Proof. The cohomology of compact dual Xu for SLn(Z) is given by the following exterior algebras:

H∗(Xu;Q) =

{

Λ(c̄3, · · · , c̄n) if n is odd

Λ(c̄3, · · · , c̄n−1, e) if n is even,

with |c̄i| = 2i − 1 and |e| = n. According to page 61 of [Fra08], when n is odd the kernel of
Matsushima homomorphism is the ideal generated by c̄n, and when n is even it is the ideal
generated by c̄n−1 and e. �

Remark 16. Theorem 15 resolves a question in [EVGS13, Remark 7.5]; the Borel class c̄3 is non-
zero in H5(B SLn(Z);Q) for n ≥ 5, and the Borel class c̄5 is non-zero in H9(B SLn(Z); Q) for
n ≥ 7. Similarly c̄3c̄5 is non-zero in H14(B SLn(Z);Q) for n ≥ 7. Curiously, the non-zero class
they find in H9(B SL6(Z);Q) is not stable.

5. Moduli of Einstein metrics

To apply our knowledge of the cohomology of arithmetic groups, we use the global Torelli theorem
to study the moduli space MEin of Einstein metrics on the K3 manifold. Following [Gia09, §4],
for us this shall mean the homotopy quotient

MEin := TEin � ΓEin

of a moduli space TEin of marked Einstein metrics by the subgroup ΓEin ≤ ΓK . The space TEin

admits a description as a hyperplane complement, but we only use a pair of consequences of this.

Fix a finite-index subgroup Γ′ ≤ ΓK , and assume Γ′ is contained in ΓEin. Equivalently, one
may assume it is contained in the identity component of O(3, 19). We introduce the notation
ModEin := α−1(ΓEin) and Mod′ := α−1(Γ′).
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Proposition 17. The homomorphism H∗(BΓ′;C) → H∗(B Mod′;C) is injective for any Γ′ ≤
ΓK .

Proof. We will first prove that the surjection Mod(K) → ΓK splits over ΓEin by Giansiracusa’s
work: there is a map

(7) e : MEin −→ B Diff(K) −→ B Mod(K) −→ BΓK .

The induced homomorphism π1(MEin) → ΓK is injective with image ΓEin by the global Torelli
theorem [Gia09, §4-5]. Thus, Mod(K)→ ΓK splits over ΓEin. This proves the case Γ′ = ΓEin; for
Γ′ ⊂ ΓEin one restricts the splitting to Γ′.

If Γ′ 6⊂ Γ′ ∩ ΓEin, then Γ′ ∩ ΓEin has index 2 in Γ′ and similarly Mod′ ∩ModEin has index 2 in
Mod′. Thus the injective homomorphism H∗(B(Γ′ ∩ ΓEin);C) → H∗(B(Mod′ ∩ModEin);C) is
one of representations of Z/2 ∼= Γ′/(Γ′ ∩ ΓEin) = Mod′ /(Mod′ ∩ModEin), and we can identify
H∗(BΓ′;C)→ H∗(B Mod′;C) with the induced map on Z/2-invariants. As taking Z/2-invariants
preserves injective maps, the proposition follows. �

To prove Theorem A we must prove that p∗x4 6= 0 ∈ H4(B Diff(K);Q). To do so, it suffices to
prove that is non-zero when pulled back to MEin:

Proposition 18. For the map e defined in (7), e∗x4 6= 0 ∈ H4(MEin;Q).

Proof. We will prove that e∗ : H4(BΓK ;Q)→ H4(MEin,Q) is injective. In [Gia09, §5], one finds
a description of the Serre spectral sequence for the fibration sequence

TEin −→MEin = TEin � ΓEin −→ BΓEin.

Its E2-page is given by

E2
p,q =

{

0 if q is odd,
∏

σ∈∆q/2/ΓEin
Hp(B Stab(σ);Q) if q is even.

The description of ∆q/2/ΓEin is not important here, as we shall only use the rows 0 ≤ q ≤ 3. Of
these, the following are non-zero: for q = 0 we get Hp(BΓK ;Q), and for q = 2 we get a product
of the cohomology groups of groups Γ commensurable with O(2, 19;Z) or O(3, 18;Z). For such
groups H1(Γ;Q) vanishes [Mar91, Corollary 7.6.17], and thus there can not be any non-zero
differential into the entry E2

4,0. �

6. Nielsen realization

We now deduce Theorem B from either Proposition 1 or 6. The argument in fact shows that
Diff(K)→ Mod(K) does not split over any finite index subgroup of Mod(K).

Proof of Theorem B. We will show that Diff(K) → Mod(K) does not split by contradiction, so
we assume there is a splitting s : Mod(K)→ Diff(K), which necessarily factors over the discrete
group Diff(K)δ as

Mod(K)
sδ

−→ Diff(K)δ pδ

−→ Diff(K).

Observe that x8 ∈ H8(BΓK ;Q) is non-zero; either one pulls back to B Diff(K) and uses Propo-
sition 1 and Lemma 4, or one pulls back to BΓEin and uses Proposition 6. By Proposition 17 its
pullback to H8(B Mod(K);Q), which we denote by c, is also non-zero. Its pullback under

B Mod(K)
sδ

−→ B Diff(K)δ pδ

−→ B Diff(K)
p−→ B Mod(K)

is c and hence non-zero. By Section 3 we get p∗c = κL3
and we claim that (pδ)∗κL3

∈
H8(B Diff(K)δ) vanishes. This would contradict c 6= 0 and finish the proof. To prove the
claim, we use that B Diff(K)δ classifies flat K-bundles, i.e. bundles with a foliation transverse to
the fibers and of codimension 4. The normal bundle to this foliation is isomorphic to the vertical
tangent bundle, and by the Bott vanishing theorem its Pontryagin ring vanishes in degrees > 8
[Bot70]. In particular the class L3 of degree 12 vanishes. �
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Remark 19. The idea of using Bott vanishing to obstruct Nielsen realization originates in Morita’s
work [Mor87, Thm. 8.1].
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