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Abstract

A question of Griffiths-Schmid asks when the monodromy group of an algebraic family

of complex varieties is arithmetic. We resolve this in the affirmative for a class of

algebraic surfaces known as Atiyah-Kodaira manifolds, which have base and fibers equal

to complete algebraic curves. Our methods are topological in nature and involve an

analysis of the “geometric” monodromy, valued in the mapping class group of the fiber.

1. Introduction

This paper is focused on certain holomorphic Riemann surface bundles over surfaces commonly

known as Atiyah–Kodaira bundles, and whether or not the monodromy group of such a bundle is

arithmetic.

Consider a fiber bundle E → B with fiber a closed oriented surface Σg of genus g > 2. Two

important invariants of this bundle are the monodromy representation µE : π1(B)→ Mod(Σg),

and the monodromy group

ΓE = Im
[
π1(B)

µE−−→ Mod(Σg)→ Sp2g(Z)
]
.

See Section 3 for definitions.

The group ΓE < Sp2g is called arithmetic if it has finite index in the Z-points of its Zariski

closure; otherwise ΓE is called thin. It is a poorly understood problem when a family of algebraic

varieties has arithmetic monodromy group and which arithmetic groups arise as monodromy

groups. For more information, see [Ven14, §1].

Given a surface X of genus g0 > 2 and m > 2, Atiyah and Kodaira independently constructed

holomorphic Riemann surface bundles

Enn(X,m)→ B,

where B is a closed surface, and the fiber is a certain cyclic branched cover Z → X (the number

m describes the local model z 7→ zm of the cover over the branched points). Denote g = genus(Z)
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and write Γnn(X,m) = ΓEnn(X,m) for the monodromy group in Sp2g(Z). The superscript “nn”

stands for “non-normal,” which will be explained shortly.

Theorem A. Fix m > 2, and let X be a closed surface of genus g0 > 5. Then the monodromy

group Γnn(X,m) of the Atiyah–Kodaira bundle Enn(X,m)→ B is arithmetic.

In the course of studying Γnn(X,m), we will determine the Zariski closure Gnn of Γnn(X,m).

There is an obvious candidate. By the nature of the construction, the fiber Z carries an action

of Q ∼= Z/mZ, and Γnn(X,m) acts on H1(Z) by Q[Q]-module maps, and so preserves the

decomposition H1(Z;Q) =
⊕

k|mNk into isotopic factors for the simple Q[Q]-modules. Then

Γnn(X,m) <
∏
k|m

AutQ(Nk, 〈·, ·〉Q) < Sp2g(Q), (1)

where 〈·, ·〉Q : Nk ×Nk → Q(ζk) is the Reidemeister pairing induced from the intersection pairing

(·, ·) on H1(Z); see Section 3.

We denote Gk := AutQ(Nk, 〈·, ·〉Q). Another artifact of the construction of Enn(X,m)→ B

is that the projection of Γnn to G1 is trivial. Then the obvious candidate (or at least an obvious

“upper bound”) for the Zariksi closure of Γnn(X,m) is the group
∏
k|m, k 6=1 Gk. We show this is

the Zariski closure if and only if m is prime.

Theorem B. Fix notation as in Theorem A. Let Gnn be the Zariski closure of Γnn(X,m).

(i) If m is prime, then Gnn = Gm;

(ii) If m is composite, then Gnn is a proper subgroup of
∏
k|m, k 6=1 Gk.

In the composite case, the precise description of Gnn is more complicated but can be determined.

See Section 9.

Remark 1.1 (Arithmetic quotients of mapping class groups). Theorem A is in the spirit of

and builds off work of Looijenga [Loo97], Grunewald–Larsen–Lubotzky–Malestein [GLLM15],

Venkataramana [Ven14], and McMullen [McM13] that we now describe. Given a finite, regular

(possibly branched) cover Σg → Σ′ with deck group G, lifting homeomorphisms of Σ′ to Σg defines

a virtual homomorphism

ρ : Mod(Σ′, k) 99K Mod(Σg)
G → Sp2g(Z)G

to the centralizer of G < Sp2g(Z), where k is the number of branched points, and Mod(Σ′, k) is

the mapping class group relative to k marked points (see Section 3). The term “virtual” refers to

the fact that ρ is only defined on a finite-index subgroup of Mod(Σ′, k). If the cover Σg → Σ′ is

unbranched, then under mild assumptions [Loo97] and [GLLM15] show that ρ is almost onto, i.e.

the image is a finite index subgroup. Venkataramana [Ven14] proves a similar theorem for certain

branched covers of the disk. Using the same techniques of the proof of Theorem A (or Theorem

C below) in combination with an analysis of how powers of Dehn twists lift (Section 4), one can

prove an analogue of Venkataramana’s theorem for branched covers of higher-genus surfaces – see

Addendum 1.7.
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Remark 1.2 (Multiple fiberings of surface bundles). One of the remarkable features of the

Atiyah–Kodaira bundles is that they admit two distinct surface bundle structures. For example,

if g0 = 2 and m = 2, then the bundle Enn(X,m)→ B has base of genus 129 and fiber of genus 6,

and the total space also fibers Enn(X,m)→ B̂, where B̂ has genus 3 and the fiber has genus 321.

It is natural to ask if there are any other fiberings; see e.g. [Sal15, Question 3.4]. Combining our

computation with work of L. Chen [Che18], we are able to answer this question.

Corollary 1.3. The total space Enn(X,m) of the Atiyah–Kodaira bundle fibers in exactly two

ways.

The proof closely parallels the argument of [Che18], and so for brevity’s sake we content

ourselves with a brief sketch. We need only supply a version of [Che18, Lemma 3.4] applicable to

any Enn(X,m). This follows easily from Theorem A and the description of the Zariski closure

Gnn of Γnn(X,m); see Section 9.

Remark 1.4 (Surface group representations and rigidity). The group of real points Gnn(R) of the

Zariski closure of Γnn(X,m) is a Hermitian Lie group [Ara17, Lem. 5.5]. Thus the Atiyah–Kodaira

bundles provide a naturally-occurring family of surface group representations into Hermitian

Lie groups with arithmetic image. As such they are potentially of interest in higher Teichmüller

theory. In this regard, we remark that Ben Simon–Burger–Hartnick–Iozzi–Wienhard [BSBH+17]

introduced a notion of weakly maximal surface group representations into Hermitian Lie groups

based on properties of their Toledo invariants in bounded cohomology. The Atiyah–Kodaira

surface group representations have nonzero Toledo invariants (a method for computing these

Toledo invariants is described in [Tsh18, §5.3]), but these representations are not weakly maximal

because they are not injective.

Remark 1.5 (Kodaira fibrations and the Griffiths-Schmid problem). The Atiyah–Kodaira bundles

fit into a larger class of examples known as Kodaira fibrations. A Kodaira fibration is a holomorphic

map f : E → B where E is a complex algebraic surface and B is a closed Riemann surface,

such that f is the projection map for a differentiable, but not a holomorphic fiber bundle. There

are many variants and extensions of the branched-cover construction method; see, e.g. [Cat17],

but there is essentially only one other known method for constructing Kodaira fibrations. This

proceeds by the “Satake compactification” Msat
g of the moduli space Mg (the compactification

induced from the Satake compactification Ag ⊂ Ag of the moduli space of principally-polarized

Abelian varieties). For g > 3, the boundary of Msat
g has (complex) codimension at least 2. It

follows that a generic iterated hyperplane section ofMsat
g in fact lies inMg, producing a complete

algebraic curve C embedded in Mg, and hence (after passing to a suitable finite-sheeted cover

C ′ → C), a Kodaira fibration E → C ′. See [Cat17, Section 1.2.1] for details.

It is easy to see that these Kodaira fibrations have arithmetic monodromy groups, e.g. by an

appeal to a suitable version of the Lefschetz hyperplane theorem as applied to C 6 Ag. This

prompts the following question.
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Question 1.6. Does every Kodaira fibration have arithmetic monodromy group?

Question 1.6 is a version of the famous problem of Griffiths-Schmid [GS75, page 123], who

pose the question of arithmeticity of monodromy groups for any smoothly-varying family of

algebraic varieties. The work of Deligne-Mostow [DM86] furnishes certain examples of families of

algebraic curves over higher-dimensional, quasi-projective bases B, for which the monodromy

group is shown to be non-arithmetic. Question 1.6 is motivated by the authors’ curiosity as to

whether the restriction to the class of Kodaira fibrations (where the bases are required to be

projective curves) imposes enough rigidity to enforce arithmeticity.

About the proof of Theorem A. To prove Theorem A we need to (i) identify the Zariski

closure Gnn and (ii) prove Γnn(X,m) has finite index in Gnn(Z). We identify Gnn in two steps,

which one can view as an “upper” and “lower” bound:

(a) Upper bound. Identify a Q-subgroup G′ < Sp2g(Q) so that Γnn(X,m) < G′. This implies

that Gnn 6 G′.

(b) Lower bound. Show that Γnn(X,m) contains “enough” (see Proposition 6.1) unipotent

elements to generate a finite-index subgroup of G′(Z). This implies that G′ 6 Gnn.

Together (a) and (b) imply that Gnn = G′. The hardest part is (b), which is the part where we

show that Γnn(X,m) is arithmetic.

As mentioned in (1), there is an obvious upper bound, but according to Theorem B, this

upper bound is frequently not sharp. This is related to the fact that the cover Z → X is not

normal, which causes major technical difficulties in understanding Γnn(X,m) directly by the

above scheme. To bypass these difficulties, we consider a further cover W → Z for which W → X

is normal. Specifically, we obtain a diagram

E(X,m) Enn(X,m)

B′ B

W Z

//

�� ��
//

�� ��

where each vertical sequence is a fibration, and the horizontal maps are covering maps. The

bundle E(X,m)→ B′ has a monodromy group Γ(X,m), and there is a commutative diagram

π1(B′) Γ(X,m)

π1(B) Γnn(X,m)

// //
� _

�� ��
// //

It is easy to see that the image of Γ(X,m) in Γnn(X,m) is of finite index. Our approach will be

to first determine the Zariski closure of Γ(X,m) and show Γ(X,m) is arithmetic (via the strategy

outlined above) and then relate this back to Γnn(X,m).
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The upper bound. Let G be the Zariski closure of Γ(X,m). Whereas the fiber Z of Enn(X,m)→
B has an action of Q ∼= Z/mZ, the fiber W of E(X,m) → B′ has an action of the Heisenberg

group H ∼= H (Z/mZ) (see (7)). As before, there is an obvious upper bound on G that comes

from considering the decomposition H1(W ;Q) =
⊕
Mk,χ of H1(W ;Q) as a Q[H] module, where

the sum is indexed by the simple Q[H] modules (see Section 8). Then as before,

Γ(X,m) <
∏

AutH(Mk,χ, 〈·, ·〉H) < Sp(H1(W )). (2)

We denote Gk,χ := AutH(Mk,χ, 〈·, ·〉H). When k = 1, the projection of Γ(X,m) to Gk,χ is trivial,

so

G 6
∏

k|m, k 6=1

∏
χ

Gk,χ. (3)

The lower bound. In this case we are able to produce enough unipotent elements in Γ(X,m) to

show that (3) is an equality:

Theorem C. Fix m > 2 and let X be be a surface of genus g0 > 5. The monodromy group

Γ(X,m) of the normalized Atiyah–Kodaira bundle E(X,m)→ B′ is arithmetic. It has Zariski

closure G ∼=
∏
k|m, k 6=1

∏
χ Gk,χ.

We briefly remark on how Theorem C is proved. The fibers of E(X,m)→ B′ admit an action

of H, and so we can consider the bundle E(X,m)/H → B′, which is a bundle with fiber X. The

monodromy of this bundle is well-understood: it is easily describable in terms of “point-pushing”

diffeomorphisms P (γ) on X. Theorem C is proved by (i) understanding when P (γ) lifts to W and

how it acts on H1(W ), and (ii) finding many elements P (γ) whose action on H1(W ) is unipotent.

This latter part is the main technical aspect of the paper.

The technique used to prove Theorem C can be used to prove the following statement.

Addendum 1.7. Let W → X be the branched cover mentioned above (see also Section 2.1),

where X is the quotient of W by an action of the Heisenberg group H = H (Z/mZ). Let g′

denote the genus of W . If the genus of X is at least 5, then the virtual homomorphism

ρ : Mod(X, 1) 99K Mod(W )H → Sp2g′(Z)H

described in Remark 1.1 is almost onto.

Here we discuss the extent to which Addendum 1.7 can be used to prove Theorem C. The

restriction of ρ to the point-pushing subgroup π1(X) � Mod(X, 1) has image Γ(X,m) (see Section

4). Consequently, Γ(X,m) is a normal subgroup of Im(ρ). By Addendum 1.7, Im(ρ) is a product

of irreducible lattices of higher rank, and it follows from the Margulis normal subgroup theorem

that the projection of Γ(X,m) to each irreducible factor of Im(ρ) is either finite or has finite-index.

From this, one can conclude that Γ(X,m) is arithmetic using an argument similar to Proposition

6.1(ii) below. A simpler form of this argument appears in [Ell14, Example 5]. This approach

to Theorem A is not significantly easier than the one we take because proving Addendum 1.7
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involves a similar analysis as in Sections 4 and 5, which is the heart of the paper. The downside

of proving Theorem A using Addendum 1.7 is that it does not give precise information about G

(which is needed to prove Theorem B and Corollary 1.3). Note, however, that as a consequence of

a general theorem of Arapura [Ara17], one at least knows that G(R) is a Hermitian Lie group.

As mentioned in Remark 1.2, Atiyah–Kodaira manifolds fiber in two distinct ways. Our

approach to Theorem A does not immediately answer the arithmeticity question for the “other”

fibering.

Question 1.8. Let E(X,m) → B̂ be the second fibering of the Atiyah–Kodaira manifold (in

this fibering the fiber genus is larger than the base genus). Is the associated monodromy group

arithmetic?

Section outline. The body of the paper is divided into four parts as follows:

– Sections 2 and 3: covering spaces and their homology. We recall the Atiyah–Kodaira construc-

tion and give a new variation that we call the normalized Atiyah–Kodaira construction; we

give topological models for the surfaces X,Z,W that appear as fibers in these constructions

and compute explicit generators for the homology H1(·) of these surfaces as modules over

various deck groups; we recall the Reidemeister pairing on the homology of a regular cover

and give a mapping-class-group description of how the monodromy changes under fiberwise

covers.

– Sections 4 and 5: the topology of the Atiyah–Kodaira monodromy. To lay the groundwork

for studying Γ(X,m), we examine when Dehn twists and point-pushing diffeomorphisms of

a surface Σ′ lift to a branched cover Σ→ Σ′ and how lifts act on H1(Σ).

– Sections 6 and 7: algebraic groups. In Section 6 we recall some results about generating an

arithmetic group by unipotent elements that we will use to give the aforementioned “lower

bound” on the Zariski closure of Γ(X,m). Using this analysis and the results of Section 5,

in Section 7 we find many unipotent elements in Γ(X,m) and prove Theorem C.

– Sections 8 and 9: the monodromy of the “classical” (non-normalized) Atiyah–Kodaira bundles.

In Section 8 we discuss the representation theory over Q for the Heisenberg group H (Z/mZ).

In Section 9 we use these results to compare the algebraic groups appearing in (1) and (2),

and combine this with Theorem C to prove Theorems A and B.

Acknowledgements. The authors thank B. Farb, from whom they learned about this problem.

The authors also thank J. Malestein for suggesting how to get information about the “non-

normalized” monodromy group from the “normalized” monodromy group. They are grateful to

several anonymous referees for suggestions that have improved the content and the organization

of the paper.
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2. Atiyah–Kodaira manifolds

In this section we introduce the Atiyah–Kodaira manifolds and develop their first properties.

In Section 2.1, we give a global, algebro-geometric construction. In Section 2.2, we shift to a

topological point of view and discuss their construction in the setting of surface bundles.

2.1 The Atiyah–Kodaira construction, globally

The bundles under study in this paper are a refinement of a construction first investigated by

Kodaira [Kod67]. Shortly thereafter, Atiyah independently developed the same construction [Ati69],

and so this class of examples is known as the “Atiyah–Kodaira construction”. Our treatment in

this paragraph follows the presentation in [Mor01, Section 4.3].

Fix a positive integer m > 1. Let X be a compact Riemann surface of genus g0 > 2. Let

p : Y → X be a cyclic unbranched covering with deck group 〈σ〉 ∼= Z/mZ. For 0 6 i 6 m − 1,

define the locus

Γi := {(y, σiy) | y ∈ Y } ⊂ Y × Y.

Let p′ : B → Y be the unbranched regular covering corresponding to the homomorphism

π1(Y )� H1(Y ;Z/mZ).

Define Γ̃ ⊂ B × Y as the preimage of
⋃m−1
i=0 Γi under p′ × id : B × Y → Y × Y . Since p : Y → X

is a regular unbranched covering, Γ̃ intersects each fiber {b} × Y in exactly m distinct points.

An analysis involving the Künneth formulas for B × Y and Y × Y (see [Mor01, Section 4.3] for

details) shows that [
Γ̃
]

= 0 in H2(B × Y ;Z/mZ). (4)

Viewing Γ̃ as a divisor on B × Y , (4) implies that there is a line bundle L ∈ Pic(B × Y ) such

that mL = [Γ̃]. Let π : E(L)→ B × Y denote the projection from the total space of L. There is

a map f of line bundles

E(L) E([Γ̃])

B × Y

//
f

  ~~

FF

s

Here s is the section with divisor Γ̃, and the restriction of f to each fiber has model z 7→ zm. The

Atiyah–Kodaira construction is the algebraic surface

Enn(X,m) := (f−1 ◦ s)(B × Y );

the superscript nn stands for “non-normal” and will be explained in the following paragraph. By

construction, this is an m-fold cyclic branched covering of B × Y branched along Γ̃. As remarked

above, Γ̃ intersects each fiber {y0} × Y in exactly m distinct points. Restricted to some such

fiber, the branched covering Enn(X,m)→ B × Y restricts to an m-fold cyclic branched covering

q : Z → Y branched at m points. Denote the covering group by 〈ζ〉 ∼= Z/mZ. The projection
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π : Enn(X,m)→ B endows Enn(X,m) with the structure of a Riemann surface bundle over B

with fibers diffeomorphic to Z.

2.2 Repairing normality

In the remainder of the section, we will undertake a study of the Atiyah–Kodaira construction

within the setting of the theory of surface bundles. Our goal is to give a “fiberwise” description

of the construction outlined above. This will highlight the role played by branched coverings of

Riemann surfaces. We will see that the covering used in the original construction is not normal,

and we will pass to a further cover in order to repair this. The main result of the subsection is

Lemma 2.2.

By construction, q : Z → Y is an m-fold cyclic branched covering, and p : Y → X is an

m-fold cyclic unbranched covering. Let Z◦ denote the subsurface of Z on which q restricts to an

unbranched covering, and define Y ◦ = q(Z◦). By construction Z◦ is Z with m points removed, and

Y ◦ is similarly Y with m points removed. Moreover, the m removed points in Y ◦ correspond to

the m points of intersection of Y with the divisor Γ̃, and by construction this is the set {(y, σiy)}
for some fixed y ∈ Y and 1 6 i 6 m. It follows that p : Y → X restricts to an unbranched

covering p : Y ◦ → X◦. By the above discussion, X◦ is X with the single point x = p(y) = p(σiy)

removed.

The coverings q : Z◦ → Y ◦ and p : Y ◦ → X◦ are regular by construction. However, we will see

below that the composite p ◦ q : Z◦ → X◦ is not regular. This presents serious difficulties for the

study of the monodromy of the bundle Enn(X,m)→ B. To repair this, we will pass to a further

(unbranched) cover r : W → Z, such that the composite p ◦ q ◦ r : W → X becomes a regular

(albeit non-abelian) cover.

To describe W , it is helpful to make a more explicit study of X,Y, Z. Let X be a surface

of genus g0, represented as a 2g0-gon ∆ with edges {e1, f1, . . . , eg0 , fg0} identified so that the

word around ∂∆ (traversed counterclockwise) reads e1f1e
−1
1 f−1

1 . . . eg0fg0e
−1
g0 f

−1
g0 . Let Ei be the

oriented curve on X represented on ∆ as a segment connecting the edge labeled ei to the edge

e−1
i , and define Fi analogously (see Figure 1). The curves {Ei, Fi} furnish a set of geometric

representatives for a basis of H1(X;Z). Via the intersection pairing (·, ·), this also leads to a basis

for H1(X;Z). Explicitly, a class v ∈ H1(X;Z) determines the element (v, ·) ∈ H1(X;Z).

The covering Y → X. The cover Y → X is regular with deck group 〈σ〉 ∼= Z/mZ. Such covers

are classified by order-m elements of H1(X,Z/mZ). Relative to the basis for H1(X;Z) given

above, we take the cover Y → X to correspond to the element (F1, ·) (mod m). There is an

explicit model for Y as a union of m copies of a 2g0-gon. For 1 6 i 6 m, let ∆i be a copy of the

labeled 2g0-gon above. Identify e1 on ∆i with e−1
1 on ∆i+1 (interpreting subscripts mod m), and

identify all other edges η on ∆i with their counterpart η−1 on ∆i. See Figure 1.

H1(Y ;Z) has the structure of a Z[Z/mZ]-module which can be described explicitly as follows.
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∆

∆1 ∆2 ∆3

E1

F1

e1

f1e−1
1

f−1
1

p

X

Y

Figure 1. The covering p : Y → X, illustrated for m = 3 and g0 = 2. Here and throughout, we

suppress edge identifications whenever confusion is unlikely.

Lemma 2.1. Identify Z/mZ ∼= 〈σ〉. Then there is an isomorphism

H1(Y ;Z) ∼= Z[σ]2g0−2 ⊕ Z2

of Z[σ]-modules. Explicitly, there are generators {Ei, Fi | 1 6 i 6 g0} ⊂ H1(Y ;Z) such that

Z[σ]〈E1, F1〉 ∼= Z2

and

Z[σ]〈Ei, Fj | 2 6 i, j 6 g0〉 ∼= Z[σ]2g0−2.

Proof. Let p : Y → X denote the projection. For 2 6 i 6 m, the preimage p−1(Ei) consists of m

components, and the same is true for p−1(Fj) for 1 6 j 6 m. By abuse of notation, we define the

curves Ei and Fj as the component of the appropriate preimage that is contained in the polygon

∆1. The preimage p−1(E1) has a single component, which we denote simply by E1, continuing to

abuse notation. The proof now follows by inspection.

The covering Z→ Y. The covering q : Z → Y is a Z/mZ branched covering with branch locus

L = {σi(y)} for some y ∈ Y . As above, set Y ◦ := Y \ L. The covering q is classified by some

element θ ∈ H1(Y ◦;Z/mZ). The inclusion Y ◦ ↪→ Y induces the short exact sequence

1→ K → H1(Y ◦;Z)→ H1(Y ;Z)→ 1.

9



Nick Salter and Bena Tshishiku

The kernel K can be described explicitly as follows. Assume y ∈ Y is chosen so as to lie in the

interior of ∆1. Let C be a small loop encircling y. Then

K ∼= Z〈σiC | 1 6 i 6 m〉/{C + σC + · · ·+ σm−1C = 0}. (5)

Assume y ∈ Y has been chosen so as to be disjoint from the curves σiEj and σiFj on Y . Then

the collection of σiEj , σ
iFj determines a splitting

H1(Y ◦;Z) ∼= H1(Y ;Z)⊕K. (6)

Relative to this splitting, the class θ ∈ H1(Y ◦;Z/mZ) that classifies the branched cover q : Z → Y

is defined so that θ(σiC) = 1 and θ ≡ 0 on H1(Y ;Z). As θ is valued in Z/mZ, this determines a

well-defined class on K.

The cover q : Z → Y can be described explicitly by using branch cuts. For 1 6 j 6 m− 1, let

γj be the oriented arc beginning at σjy ∈ ∆j that crosses e1 onto ∆j+1 and ends at σj+1y ∈ ∆j+1.

Take m copies of Y \
⋃
{γj}, labeled Y1, . . . , Ym. To construct Z, glue the right side of γj on sheet

Yi to the left side of γj on sheet Yi+j (as usual, interpret all subscripts mod m). The covering

group of q : Z → Y is isomorphic to Z/mZ; let ζ be a generator. It is straightforward to check

that this construction really does determine the cover determined by θ. See Figure 2. Note that

in this figure, the points deleted in passing to Z◦ (and Y ◦) are depicted by the small circles

at the center of each polygon. Hence Figure 2 is also a depiction of the unbranched covering

q : Z◦ → Y ◦.

Repairing regularity: the covering W→ Z. Having fixed this model for Z, one sees explicitly

the non-regularity of the covering p ◦ q : Z◦ → X◦. Consider the curve F1 ⊂ X◦. Then p−1(F1) ⊂
Y ◦ has m components, one on each polygon ∆i. The component contained in ∆i is denoted F1,i.

One sees that q−1(F1,1) has m components, while q−1(F1,2) has one component. This prevents

the σ-action on Y from lifting to Z, and so Z → X is not a normal cover. Despite this, one can

repair the regularity by passing to a further cyclic cover.

Lemma 2.2. Let r : W → Z be the cyclic unbranched covering classified by the element

α ∈ H1(Z;Z/mZ) defined as

α = ((p ◦ q)−1(E1), ·).

Let the covering group for r : W → Z be denoted 〈τ〉 ∼= Z/mZ. Then

p ◦ q ◦ r : W ◦ → X◦

is a regular covering with m3 sheets. Moreover, the covering group H admits an explicit presenta-

tion via

H ∼= 〈σ, τ, ζ | [σ, τ ] = ζ, ζ central, σm = τm = ζm = 1〉 = H (Z/mZ). (7)

Here H (Z/mZ) denotes the Heisenberg group over Z/mZ.

Proof. We will first define an auxiliary covering π : U◦ → X◦ which is regular with covering

group H by construction; then we will exhibit an isomorphism U◦ ∼= W ◦ of covers of X◦.

10
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γ1 γ2

γ1 γ2

Y

Y3

Y2

Y1

q

A

A B

B

Figure 2. The covering q : Z → Y , illustrated for m = 3 and g0 = 2. The dashed lines indicate

the location of the branch cuts. The arcs labeled A and B indicate how the branch cuts are glued.
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We describe U◦ → X◦ in terms of a homomorphism h : π1(X◦)→ H. The fundamental group

π1(X◦) is a free group of rank 2g0 and admits a presentation of the form

π1(X◦) = 〈e1, f1, . . . , eg0 , fg0 , c | [e1, f1] . . . [eg0 , fg0 ] = c〉. (8)

Geometrically, the elements ei (resp. fi) correspond to loops crossing the edge Ei (resp. Fi) of ∆,

and the element c corresponds to a loop that encircles the deleted point in X◦ counterclockwise.

Define

h : π1(X◦)→ H

via h(e1) = σ, h(f1) = τ , h(c) = ζ with all other generators mapped to the identity 1 ∈ H. It is

immediate from the presentations (7) and (8) that h is well-defined.

The coverings π : U◦ → X◦ and p ◦ q ◦ r : W ◦ → X◦ correspond to subgroups π1(U◦), π1(W ◦)

of π1(X◦). To show that U◦ ∼= W ◦ are isomorphic as covers of X◦, it suffices to show that

π1(U◦) = π1(W ◦) as subgroups of π1(X◦). To this end, define

h′ : π1(X◦)→ H

by h′(e1) = σ, with all other generators sent to 1 ∈ H. It is clear that ker(h′) = π1(Y ◦). It is

elementary to verify that π1(Y ◦) admits a presentation with generators

{em1 , f1} ∪ {ei1eje−i1 , ei1fje
−i
1 | 0 6 i 6 i− 1, 2 6 j 6 g0} ∪ {ei1ce−i1 | 0 6 i 6 m− 1},

and a single relation that expresses
∏m
i=1 e

m−i
1 cei−m1 as a product of commutators of the remaining

generators.

It follows that the map

h′′ : π1(Y ◦)→ H

for which

h′′(f1) = τ, h′′(ei1ce
−i
1 ) = ζ

(and all other generators sent to 1 ∈ H) is well-defined. A comparison with the explicit description

of the regular covering q ◦ r : W ◦ → Y ◦ shows that ker(h′′) = π1(W ◦). On the other hand, there

is a description of H as a semi-direct product

H ∼= 〈τ, ζ〉o 〈σ〉.

From this, one sees that ker(h′′) = ker(h) = π1(U◦). The result follows.

2.3 The normalized Atiyah–Kodaira construction

Above we gave a global construction of the manifold Enn(X,m). In this paragraph we describe a

finite cover of this space that we call the normalized Atiyah–Kodaira construction.

Proposition 2.3 (Normalized Atiyah–Kodaira construction). Let Enn(X,m) be an Atiyah–

Kodaira manifold that fibers over B with fiber Z. There is an unbranched cover R : E(X,m)→
Enn(X,m) with the following properties:

12
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– R is a regular covering with deck group Z/mZ.

– E(X,m) is the total space of a W -bundle over a surface B′.

– The surface B′ is a finite unbranched cover of B.

– Let Enn(X,m)′ denote the pullback of the bundle Enn(X,m) along the cover B′ → B. Then

the map R factors E(X,m)
R′−→ Enn(X,m)′ → Enn(X,m), where R′ is a bundle map that

covers id : B′ → B′. Fiberwise, the restriction R′ |W : W → Z is the unbranched covering

r : W → Z described above.

Proof. As remarked above, unbranched Z/mZ-coverings of a topological space S are classified

by H1(S;Z/mZ). The claims of the proposition will follow from the construction of an element

α̃ ∈ H1(Enn(X,m)′;Z/mZ) such that the pullback of α̃ to H1(Z;Z/mZ) is the element α of

Lemma 2.2.

We first observe that the branching locus Γ̃ of Enn(X,m) is a disjoint union of m sections

B → B × Y , so Enn(X,m)→ B admits a section. Consequently, the 5-term exact sequence for

Enn(X,m)→ B degenerates, yielding a splitting

H1(Enn(X,m);Z/mZ) ∼= H1(B;Z/mZ)⊕H1(Z;Z/mZ)π1(B).

As H1(Z;Z/mZ) is finite, there is some finite-index subgroup π1(B′) 6 π1(B) such that α ∈
H1(Z;Z/mZ) is π1(B′)-invariant. Define Enn(X,m)′ to be the pullback of Enn(X,m) along the

cover B′ → B. Then the 5-term sequence for Enn(X,m)′ → B′ shows that there exists a class α̃

with the required properties.

2.4 The homology of W

In preparation for the latter stages of the argument, we will need to understand H1(W ;Z) and

H1(W ;Q), especially as representations of the covering group H = H (Z/mZ). The central results

appear as Lemmas 2.9, 2.10, and 2.11. Rational coefficients will be assumed unless otherwise

specified. At a glance, the arguments of the section might appear needlessly complicated - indeed,

if we were only interested in the character of H1(W ) as an H-representation, then we could obtain

this indirectly using the Chevalley–Weil theorem. However, for our purposes we will require an

explicit set of generators for H1(W ) as a Q[H]-module, for which a character-theoretic argument

does not suffice.

Our description of H1(W ) will be derived in two steps. Let s : V → X denote the unbranched

(Z/mZ)2-covering associated to the homomorphism

h : π1(X)→ H/〈ζ〉 ∼= (Z/mZ)2 (9)

given by h(e1) = σ and h(f1) = τ .

Lemma 2.4. Identify Q[(Z/mZ)2] ∼= Q[σ, τ ]. There is an isomorphism

H1(V ) ∼= Q[σ, τ ]2g0−2 ⊕Q2

13
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of Q[σ, τ ]-modules. Explicitly, there are generators {Ei, Fi | 1 6 i 6 g0} ⊂ H1(V ) such that

Q[σ, τ ]〈E1, F1〉 ∼= Q2

and

Q[σ, τ ]〈Ei, Fj | 2 6 i, j 6 g0〉 ∼= Q[σ, τ ]2g0−2.

Proof. Essentially the same as in Lemma 2.1. There is an explicit model for V built out of m2

copies of the polygon ∆, indexed as ∆i,j . The symbols Ek, Fk correspond to the homology classes

of the component of s−1(Ek) (resp. s−1(Fk)) contained in ∆1,1. The preimages s−1(E1) and

s−1(F1) each have m components, and the remaining s−1(Ek), s−1(Fk) for k > 2 each contain m2

components. It is readily verified that (i) the components of s−1(E1) (resp. s−1(F1)) are mutually

homologous, and that (ii) the collection of components of s−1(Ek), s
−1(Fk) for k > 2 span a

Q-subspace of rank m2(2g0 − 2) transverse to the span of E1, F1. The claims follow from these

observations.

The surface W arises as a Z/mZ branched covering t : W → V . By construction, the covering

s ◦ t : W → X coincides with p ◦ q ◦ r. We write Q[H] = Q[σ, τ, ζ] with the understanding that

σ, τ, ζ are subject to the relations in H. Under this identification, the cover t : W → V has deck

group 〈ζ〉.
The homology of the branched cover requires a more delicate analysis than in the unbranched

case, and will require some preliminary ideas.

Definition 2.5 (Planar form). Let f : Σ → Σ′ be a regular branched covering of Riemann

surfaces with deck group Z/mZ. Let L ⊂ Σ′ denote the branching locus. Then f is said to be in

planar form relative to D if there is a disk D ⊂ Σ′ such that L ⊂ D, and such that f−1(Σ′ \D)

is a disjoint union of m copies of Σ′ \D.

For example, the covering q : Z → Y depicted in Figure 2 is in planar form relative to the

disk D formed by a regular neighborhood of γ1 ∪ γ2.

Definition 2.6 (G-curve). Let f : Σ→ Σ′ be a branched covering in planar form relative to D.

Let γ ⊂ D be an arc connecting distinct points p1, p2 ∈ L, such that γ is disjoint from all other

elements of L. Then an associated G-curve, written Gγ , is one of the m curves consisting of the

two copies of γ on adjacent sheets of f−1(D). (Sheets D1, D2 are “adjacent” if a loop encircling

p1 starting on D1 has endpoint on D2.)

Referring again to Figure 2, the two preimages of γ1 in Y1 and Y2 together comprise a G-curve.

Remark 2.7. Note that the different choices for Gγ are all equivalent under the action of the

deck group for f : Σ→ Σ′.

When f : Σ→ Σ′ is in planar form, H1(Σ) has a simple description in terms of H1(Σ′) and a

system of G-curves.

14
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Lemma 2.8. Let f : Σ→ Σ′ be a Z/mZ-branched covering in planar form relative to D; identify

Z/mZ ∼= 〈ζ〉. Let {γi} be a collection of arcs as in Definition 2.6 such that {[γi]} generates

H1(D,L). Then there is a surjective map of Q[ζ]-modules

g : Q[ζ]H1(Σ′)⊕Q[ζ]〈{Gγi}〉 → H1(Σ).

Moreover, g is injective when restricted to Q[ζ]H1(Σ′).

Proof. As f is in planar form, the Mayer-Vietoris sequence provides an exact sequence

H1(f−1(∂D))→ H1(f−1(Σ′ \D))⊕H1(f−1(D))→ H1(Σ)→ 1.

Again since f is in planar form, f−1(Σ′ \D) consists of m disjoint copies of Σ′ \D, acted on in

the obvious way by the deck group 〈ζ〉. Thus H1(f−1(Σ′ \D)) ∼= Q[ζ]H1(Σ′). It remains to be

seen that H1(f−1(D)) is generated as a Q[ζ]-module by {[Gγi ]} under the assumption that {[γi]}
generate H1(D,L).

Let D◦ denote the disk D with a small neighborhood of each branch point pi ∈ L for 1 6 i 6 k

removed. Thus D◦ is a sphere with k + 1 boundary components. We describe a cell structure on

D◦. The zero-skeleton is given by

(D◦)(0) = {v1, . . . , vk, w},

with each vi on the boundary component associated to pi, and w ∈ ∂D. Next, take

(D◦)(1) = {c1, . . . , ck, e1, . . . , ek, d},

with both ends of ci attached to vi, each ei connecting vi and w, and both ends of d attached to

w. Then (D◦)(2) consists of a single 2-cell attached in the obvious way.

The above cell structure lifts to a Q[ζ]-equivariant cell structure on f−1(D◦). The boundary

maps on the 1-cells are Q[ζ]-linear and are given by

∂(ci) = (ζ − 1)ci, ∂(ei) = vi − w, ∂(d) = 0.

A priori, one knows that H0(f−1(D◦)) = Q. Thus, ∂ : C1(f−1(D◦))→ C0(f−1(D◦)) has corank 1

as a map of Q-vector spaces. A dimension count then shows that Z1(f−1(D◦)) has dimension

mk + 1 over Q. An argument in elementary linear algebra then implies that Z1(f−1(D◦)), and

hence H1(f−1(D◦)), is generated over Q[ζ] by the set

{(
m∑
j=1

ζj)ci | 1 6 i 6 k} ∪ {(ζ − 1)(e1 − ei) + (ci − c1) | 2 6 i 6 k} ∪ {d}.

Topologically, the inclusion map f−1(D◦) → f−1(D) attaches k disks along the boundary

components encircling the branch points pi. The boundary of these disks are represented by the

classes {(
∑m

j=1 ζ
j)ci | 1 6 i 6 k}. It follows that H1(f−1(D)) is generated over Q[ζ] by the set

{(ζ − 1)(e1 − ei) + (ci − c1) | 2 6 i 6 k} ∪ {d}.

The summand spanned by [d] clearly corresponds to H1(f−1(∂D)). The result will now follow
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from the description of a surjective map

π : Q[ζ]H1(D,L)→ Q[ζ]〈(ζ − 1)(e1 − ei) + (ci − c1) | 2 6 i 6 k〉 6 H1(f−1(D)).

such that π(γ) = Gγ for all arcs γ connecting two points of L.

Using the cell structure on D◦ described above (which can be extended to a cell structure

on D by adding k additional 2-cells), the set L is identified with the set {v1, . . . , vk}. Then a

generating set for H1(D,L) consists of the k − 1 elements e1 − ei for 2 6 i 6 k. Define π by

setting

π(e1 − ei) = (ζ − 1)(e1 − ei) + (ci − c1).

It is evident from the construction that π(e1 − ei) = Ge1−ei and that [Gγ1+γ2 ] = [Gγ1 ] + [Gγ2 ].

The result now follows by linearity.

We now apply Lemma 2.8 to the branched covering t : W → V . Continuing to abuse notation,

we let Ei ⊂W denote a single component of the preimage (s ◦ t)−1(Ei), and define Fi similarly.

Recalling the construction of X in terms of the polygon ∆, we observe that V can be constructed

from m2 copies of ∆ indexed by elements (i, j) ∈ (Z/mZ)2. Each ∆i,j has a marked point pi,j

corresponding to the unique branch point for t contained in ∆i,j . We define γh to be the arc

starting at p0,0 that crosses e1 onto ∆1,0 and ends at p1,0. Likewise, γv is defined to be the arc

starting at p0,0 that crosses f1 onto ∆0,1 and ends at p0,1. Then the curves Gh and Gv on W are

defined by

Gh := Gγh , Gv := Gγv (10)

in the sense of Definition 2.6.

Lemma 2.9. The simple closed curves

{Ei, Fi | 1 6 i 6 g0} ∪ {Gh, Gv}

generate H1(W ) as a Q[H]-module. Moreover, the submodule spanned by Ei, Fi for 2 6 i 6 g0

determines a free Q[H]-module of rank 2g0 − 2.

Proof. In order to apply Lemma 2.8, it is necessary to identify a disk D relative to which

t : W → V is in planar form. It is straightforward to verify that a small regular neighborhood of

the collection of arcs

{σiτ jγh | 0 6 i 6 m− 2, 0 6 j 6 m− 1} ∪ {τ jγv | 0 6 j 6 m− 2}

is a disk D ⊂ V containing all points pi,j . Moreover, the components of s−1(E1), s−1(F1) passing

through ∆0,0 are disjoint from D, and the same is true for the entire preimage s−1(Ej), s
−1(Fj)

for j > 2. In particular, these curves generate H1(V ) over Q[σ, τ ].

Applying Lemma 2.8, we now see that H1(W ) is generated as a Q[H] module by {Ei, Fi | 1 6
i 6 g0}, along with a certain subset of curves in the Q[H]-orbit of Gh and Gv. This proves the

first claim. The second claim follows from the second assertion of Lemma 2.8 in combination with

Lemma 2.4.
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Define the element

Πna = (m− (1 + ζ + · · ·+ ζm−1)) ∈ Z[H];

over Q, this determines the projection onto the summand of Q[H] spanned by irreducible H-

representations that do not factor through the abelianization Hab. (We call such representations

non-abelian, c.f. Section 8.)

Lemma 2.10. For d = 2g0 − 1, there is an isomorphism

ΠnaH1(W ;Q) ∼= ΠnaQ[H]d

of ΠnaQ[H]-modules.

Proof. This follows readily from the determination of the Q[H]-module structure of H1(W ;Q)

via the method of Chevalley-Weil. This in turn follows from an elaboration of the method of

Lemma 2.8. Place a cell structure on X◦ as follows: there are two zero-cells v, w; 2g0 + 2 one-cells

a1, b1, . . . , ag0 , bg0 , c, e; and one two-cell F . Each cell ai, bi has both ends attached to v, the cell c

has both ends attached to w, and e connects v to w. The two-cell F is attached in the obvious

way (this does not need to be described in detail).

This gives rise to the chain complex C•(X
◦) computing H1(X◦;Q):

Q〈F 〉 → Q〈a1, . . . , bg0 , c, e〉 → Q〈v, w〉 → 0.

Lifting this cell structure along the covering map W ◦ → X◦, we arrive at an H-equivariant cell

structure on W ◦. On the level of chain complexes,

C•(W
◦) = Q[H]⊗Q C•(X

◦).

We wish to determine the character χ(H1(W ◦;Q)). This can be obtained by taking the Euler

characteristic of the chain complex C•(W
◦), viewed as a virtual character of H. Since every Q[H]

module is semisimple,

χ(C•(W
◦)) = χ(H•(W

◦;Q)).

This provides the following equality of characters:

χ(C0(W ◦))− χ(C1(W ◦)) + χ(C2(W ◦)) = χ(H0(W ◦;Q))− χ(H1(W ◦;Q)) + χ(H2(W ◦;Q)).

By construction, each Ci(W
◦) is a free Q[H]-module on 2, 2g0 + 2, 1 generators, respectively.

On the right-hand side, we observe that H0(W ◦;Q) ∼= Q and H2(W ◦;Q) = 0. Altogether, this

determines the character of H1(W ◦;Q) completely and furnishes an isomorphism

H1(W ◦;Q) ∼= Q[H]2g0−1 ⊕Q.

To determine H1(W ;Q) as a Q[H]-representation, we exploit the H-equivariant exact sequence

1→ K → H1(W ◦;Q)→ H1(W ;Q)→ 1 (11)

induced by the inclusion map W ◦ →W . The kernel K is the subspace of H1(W ◦;Q) spanned by

loops around the punctures of W ◦. The cover W → X factors through the intermediate cover V ,
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and the covering V → X is unbranched. Consequently, the punctures of W ◦ are in one-to-one

correspondence with the elements of the covering group Hab ∼= (Z/mZ)2, and this bijection

intertwines the action of the deck group H with multiplication by Hab.

On the level of H1(W ◦;Q), this implies that K is spanned by the H-orbit of a single puncture

[c], and that [c] is stabilized by [H,H] = 〈ζ〉. The Q-span of h[c] for h ∈ Hab is subject to the

single relation ∑
h∈Hab

h[c] = 0.

In other words, there is an isomorphism of Q[H]-modules

K ∼= Q[Hab]/Q[1];

here Q[1] denotes the trivial submodule.

Taking the Euler characteristics of the short exact sequence (11), we determine the character

of H1(W ;Q) and find that

H1(W ;Q) ∼= Q2 ⊕Q[H]2g0−2 ⊕Q[H]/Q[Hab]. (12)

Finally, to determine ΠnaH1(W ;Q) as a ΠnaQ[H]-module, we multiply both sides of (12) by

Πna and obtain

ΠnaH1(W ;Q) ∼= ΠnaQ[H]2g0−1.

Below, we record some properties of the intersection form (·, ·) on H1(W ) in the basis specified

by Lemma 2.9.

Lemma 2.11. Let N1 6 H1(W ) denote the Q[H]-submodule spanned by the set {Ei, Fi | 1 6 i 6
g0}, and let N2 denote the Q[H]-submodule spanned by Gh, Gv.

(i) N1 and N2 are orthogonal with respect to (·, ·).

(ii) Let ξ, η ∈ H and C1, C2 ∈ {Ei, Fi | 1 6 i 6 g0} be given. Then

(ξC1, ηC2) =

±1 if ξ = η and {C1, C2} = {Ei, Fi} for some i,

0 otherwise.

Proof. This follows immediately from the explicit construction of W described above. The various

orthogonality relations above are all consequences of the disjointness of the curves representing

the homology classes in question.

3. Monodromy of surface bundles

This section collects the necessary background on monodromy groups of surface bundles, especially

those that arise from (branched) covering constructions.

The monodromy group. Theorem C is concerned with arithmetic properties of the monodromy

of the bundle E(X,m) → B′. In (13) below we define the monodromy groups in question.
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Throughout E → B will denote an arbitrary bundle (in particular, the base space B is not the

particular base of the Atiyah–Kodaira bundle). For a proof of Proposition 3.1 below (as well as

general background on surface bundles), see [FM12, Section 5.6.1]. Recall that the mapping class

group

Mod(Σg) := π0 Diff(Σg)

is the group of diffeomorphisms of Σg, up to isotopy.

Proposition 3.1 (Existence of monodromy representation). Let B be any paracompact Hausdorff

space and Σg a closed oriented surface of genus g > 2. Associated to any Σg-bundle π : E → B is

a homomorphism called the monodromy representation

µ : π1(B, b)→ Mod(Σg),

well-defined up to conjugacy. Informally, µ records how a local identification of the fiber π−1(b) ∼=
Σg changes as the fiber is transported around loops in B.

We will also require a version of Proposition 3.1 for a Σg-bundle with k disjoint sections. In

this case the monodromy takes values in

Mod(Σg, k) := π0 Diff(Σg, k),

where Diff(Σg, k) is the group of diffeomorphisms that preserve a k-element set of marked points

on Σg. Sometimes when there is only one marked point p ∈ Σ, we write Mod(Σ, p) instead of

Mod(Σ, 1).

While understanding this mapping class group-valued monodromy will be essential in the

ensuing analysis, our ultimate goal is to understand an algebraic “approximation” to µ.

Definition 3.2 (The symplectic representation). Let

Ψ : Mod(Σg)→ Aut(H1(Σg;Z), (·, ·))

be the homomorphism induced by the action of Homeo(Σg) onH1(Σg;Z). Here Aut(H1(Σg;Z), (·, ·))
denotes the group of automorphisms of H1(Σg;Z) preserving the algebraic intersection pairing

(·, ·). This group is isomorphic to the symplectic group Sp(2g,Z). For E → B a Σg bundle with

monodromy representation µ, the symplectic representation is the composition

ρ := Ψ ◦ µ.

For the remainder of the paper, we fix the notation µX,m for the monodromy of E(X,m), as

well as

Γ̂X,m := Im(µX,m)

and

ΓX,m := Im(ρX,m). (13)

Often X and/or m will be implicit and we will write simply Γ̂,Γ.
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Fiberwise coverings and monodromy. As described above, the Atiyah–Kodaira bundle

is constructed as a fiberwise branched covering. In this paragraph we establish some basic

facts concerning the structure of monodromy representations of such bundles. Throughout this

paragraph, we fix the following setup: let Σ→ Σ′ be a regular covering of Riemann surfaces with

finite deck group G, possibly branched. Suppose that π : E → B is a Σ-bundle, π′ : E′ → B is a

Σ′-bundle, and there is a fiberwise branched covering E → E′. The monodromy representations

for π : E → B and π′ : E′ → B will be denoted µ, µ′, respectively.

Proofs for Lemmas 3.3 – 3.6 to follow can be found in [Loo97] and [GLLM15].

Lemma 3.3. Let Mod(Σ)G 6 Mod(Σ) denote the centralizer of the subgroup G 6 Mod(Σ). Then

there is a finite cover B′ → B such that µ |π1(B′) has image in Mod(Σ)G.

The action of G on Σ endows H1(Σ;Q) with the structure of a Q[G]-module. Since G is finite,

H1(Σ;Q) is a semisimple module, and thus there is a decomposition

H1(Σ;Q) ∼=
⊕
Ui

Umi
i (14)

where the sum runs over the simple Q[G]-modules Ui. The summands Umi
i are known as isotypic

factors. The classical Chevalley-Weil theorem gives a complete description of each multiplicity mi,

as long as one has a complete list of the simple Q[G]-modules (or their characters). The latter can

be worked out in theory, but can be tedious in practice. Up through 7 we will not need to know

the mi (nor even the Ui) explicitly. We’ll see that the mere existence of the decomposition (14)

has consequences for the study of the monodromy µ. (Later in Section 9 we will need to know

something about the decomposition for G the Heisenberg group – we establish the necessary facts

in Section 8.)

In light of Lemma 3.3, in the remainder of the paragraph we will assume that µ is valued

in Mod(Σ)G. The following shows that such an assumption has strong consequences for the

symplectic monodromy representation ρ : π1(B)→ Aut(H1(Σ), (·, ·)).

Definition 3.4 (Reidemeister pairing). Let G 6 Mod(Σ) be a finite subgroup. The Reidemeister

pairing relative to G is the form

〈·, ·〉G : H1(Σ;Z)×H1(Σ;Z)→ Z[G]

defined by

〈x, y〉G =
∑
g∈G

(x, g · y)g.

If the group G is implicit, we will write simply 〈·, ·〉.

Lemma 3.5. The Reidemeister pairing satisfies the following properties.

(i) 〈·, ·〉 is Z[G]-linear in the first argument,

(ii) 〈·, ·〉 is skew-Hermitian: 〈y, x〉 = −〈x, y〉, where · : Z[G]→ Z[G] is the involution induced by

the map g 7→ g−1 on G.
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(iii) The restriction of 〈·, ·〉 to each isotypic factor of the decomposition (14) is non-degenerate.

Lemma 3.6. Let φ ∈ Mod(Σ)G be given. Then Ψ(φ) ∈ Aut(H1(Σ;Z), (·, ·)) preserves the Rei-

demeister pairing 〈·, ·〉G. Moreover, φ preserves each isotypic factor. Thus, Ψ(φ) belongs to the

subgroup ∏
Ui

AutG(Umi
i , 〈·, ·〉G) 6 Aut(H1(Σ;Q), (·, ·)).

The arguments in Section 4 and 5 make use of some of the explicit structure of the Reidemeister

pairing 〈·, ·〉H on H1(W ). We record these here for later use.

Lemma 3.7. Let S = {E1, F1, . . . , Eg0 , Fg0} 6 H1(W ).

(i) Any v ∈ S is isotropic: 〈v, v〉H = 0.

(ii) Any v ∈ {Ei, Fi}, w ∈ {Ej , Fj} for i 6= j distinct are orthogonal: 〈v, w〉H = 0.

(iii) 〈Ei, Fi〉 = 1 for any 1 6 i 6 g0.

Proof. These are all direct consequences of the definition of 〈·, ·〉H and the results of Lemma

2.11.

4. The Atiyah–Kodaira monodromy (I)

Point-pushing diffeomorphisms. In this section and the next, we carry out a topological

analysis of the monodromy map µX,m. In this section, we describe the monodromy of simple

elements in the language of point-pushing diffeomorphisms and work out some general formulas.

These formulas are the main objective of the section and appear as Lemmas 4.12 and 4.14. In the

subsequent section, we will apply these results to analyze a specific class of monodromy elements

in preparation for the algebraic portion of the argument as carried out in Sections 6-9.

Definition 4.1. Let Σ be a closed surface with marked point p, and let γ ∈ π1(Σ, p) be a based

loop. There is an isotopy Πt(γ) of Σ that “pushes” p along the path γ at unit speed. The point

push map P (γ) ∈ Mod(Σ, p) is defined by

P (γ) = Π1(γ).

Suppose now that γ determines a simple closed curve on Σ. Let γL, γR be the left-hand, resp.

right-hand sides of γ, viewed as simple closed curves on Σ \ {p}.

Fact 4.2. For a simple closed curve c on Σ, let Tc denote the left-handed Dehn twist about c.

For γ a simple closed curve based at p,

P (γ) = TγLT
−1
γR
∈ Mod(Σ, p)

Proof. See [FM12, Fact 4.7].
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From a topological point of view, the monodromy µ is closely related to point-pushing maps.

Recall from Proposition 2.3 our construction of the W -bundle E(X,m) → B′. The branched

covering W → X factors as

s ◦ t : W → V → X,

with s : V → X an unramified (Z/mZ)2-covering and t : W → V a ramified Z/mZ-covering

branched over s−1(p) for some point p ∈ X. Following the “global” treatment of Enn(X,m) given

in Section 2, we see that E(X,m) arises as a Z/mZ fiberwise branched covering

E(X,m)→ B′ × V

of the product bundle B′ × V → B′. The branch locus ∆ ⊂ B′ × V can be described as follows.

Let ∆X ⊂ X ×X denote the diagonal. There is a natural covering map

Q : B′ × V → X ×X

(as both B′ and V arise as unbranched covers of X), and ∆ = Q−1(∆X).

This description makes the connection with point-pushing maps apparent. Indeed, one can view

the bundle B′ × V → B′ as a trivial V -bundle equipped with m2 disjoint sections corresponding

to ∆. As mentioned after Proposition 3.1, there is a monodromy representation

µ′ : π1(B′)→ Mod(V,m2).

The monodromy about some loop γ ∈ B′ can be described in terms of point-pushing maps. Under

the covering map B′ → X, the loop γ ⊂ B′ determines a loop on X. Taking the preimage of γ

under s : V → X, one obtains m2 parameterized loops γi,j(t) on V , such that for each fixed t, the

m2 points {γi,j(t)} are distinct. The monodromy µ′(γ) is thus a simultaneous multipush along

the curves γi,j . More generally, we can apply this construction to any loop γ ⊂ X, not merely

those γ that lift to B′.

Given any covering Σ → Σ′ of surfaces, basic topology implies that there is a finite-index

subgroup LMod 6 Mod(Σ′) that lifts to Σ, in the sense that there is a homomorphism ` : LMod→
Mod(Σ). The following lemma is immediate from the global topological construction of E(X,m)

given above.

Lemma 4.3. Let µ′ : π1(B′)→ Mod(V,m2) be the simultaneous multipush map described above,

and let LMod 6 Mod(V,m2) be the subgroup admitting a lift ` : LMod → Mod(W,m2). Then

µ′ |π1(B′)6 LMod. Consequently, there is a factorization

µ = ` ◦ µ′.

Remark 4.4. Let f ∈ Mod(V,m2) lift to f̃ ∈ Mod(W,m2). Observe that ζkf̃ ∈ Mod(W,m2) is

also a lift for any k ∈ Z. Thus it is ambiguous to speak of “the” lift of an element of Mod(V,m2).

In the remainder of the section, we will determine explicit formulas for µ(γ) on certain special

elements γ ∈ π1(B′). To avoid cumbersome notation and exposition, we will ignore this ambiguity

wherever possible. The one place where this is not possible is in our study of lifts of separating

Dehn twists following Lemma 4.7, but the difficulties introduced are minor.
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Lifting Dehn twists. The preceding analysis gives a satisfactory description of µ′(γ). To study

µ, it therefore remains to understand the lifting map `. We will be especially interested in a study

of lifting Dehn twists Tc. Our treatment here follows [Loo97, Section 3.1], but there are some

crucial differences arising from the fact that we are studying branched coverings. Recalling that a

branched covering of compact Riemann surfaces becomes unbranched after deleting the branch

locus, we formulate the results here for unbranched coverings of possibly noncompact Riemann

surfaces.

The following lemma appears in [Loo97, Section 3.1]. We will analyze when the reverse

implication fails to hold in the next subsection.

Lemma 4.5. Let q : Σ → Σ′ be an unbranched cyclic m-fold covering, classified by f ∈
H1(Σ′;Z/mZ). Let c be a simple closed curve on Σ′. Then the Dehn twist power T dc lifts

to Mod(Σ) if (but not necessarily only if) the equation d · f(c) = 0 holds in Z/mZ.

The preimage q−1(c) has [Z/mZ : 〈f(c)〉] components, in correspondence with the set of cosets

(Z/mZ)/〈f(c)〉. Let c̃ denote one such component. For d = |f(c)|, where |f(c)| denotes the order

in Z/mZ, there is a distinguished lift

T̃ dc =
∏

g∈(Z/mZ)/〈f(c)〉

Tg·c̃.

We wish to describe Ψ(T̃ dc ) ∈ Sp(H1(Σ;Z)). The formula is best expressed using the Reide-

meister pairing 〈·, ·〉 described in Section 3.

Proposition 4.6 (Cf. [Loo97, (3.1)]). With all notation as above, Ψ(T̃ dc ) ∈ Sp(H1(Σ;Z)) is given

by

Ψ(T̃ dc )(x) = x+ d−1〈x, c̃〉[c̃]. (15)

Lifting separating Dehn twists. We return to the setting of Lemma 4.5. Our objective is to

understand when a Dehn twist power T dc lifts to a mapping class on Σ even when the equation

d · f(c) = 0 fails to hold. This phenomenon is a consequence of the degeneracy of the intersection

pairing on a noncompact Riemann surface.

Lemma 4.7. Let Σ′ be a Riemann surface with two or more punctures, and let q : Σ → Σ′ be

an unbranched cyclic covering classified by f ∈ H1(Σ′;Z/mZ). Suppose c is a separating simple

closed curve on Σ′. Then Tc lifts to a diffeomorphism T̃c of Σ regardless of the value of f(c).

Proof. Choose p ∈ Σ′ such that Tc(p) = p. By covering space theory, Tc lifts to Σ if and only if Tc

preserves the subgroup π1(Σ) = ker(f) of π1(Σ′, p). Since the cover Σ→ Σ′ is abelian, it suffices

to show that the action of Tc on H1(Σ′,Z) is trivial. The result now follows, since the action of a

Dehn twist Tc on homology is given by the transvection formula

x 7→ x+ (x, c)[c],

and (x, c) = 0 for all x since c is separating.
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The diffeomorphism T̃c is ambiguously defined: there are m distinct lifts of Tc to Σ, each

differing by an element of the covering group for q : Σ→ Σ′. To fix a choice, observe that since c is

separating, there is a decomposition Σ′ = Σ′L ∪Σ′R with ∂(Σ′L) = ∂(Σ′R) = c. Choosing an orienta-

tion of c distinguishes Σ′L by the condition that Σ′L lie to the left of c. There is exactly one lift of Tc

to Σ such that q−1(Σ′L) is pointwise fixed: we take this as our definition of the distinguished lift T̃c.

The aim of this subsection is again to determine Ψ(T̃c). There are various possibilities,

depending on the value of f(c). This value depends on a choice of orientation on c, which we fix

once and for all. Our primary case of interest is when f(c) = 1 ∈ Z/mZ.

Lemma 4.8. Let c ⊂ Σ′ be separating, and suppose that f(c) = 1. Necessarily q−1(c) is a single

separating curve on Σ that gives a decomposition Σ = ΣL ∪ ΣR. Then

H1(Σ;Z) ∼= H1(ΣL;Z)⊕H1(ΣR;Z).

Relative to this decomposition, Ψ(T̃c) acts on H1(ΣL;Z) trivially, and on H1(ΣR;Z) by ζ, where

ζ is the generator of the covering group of q : Σ→ Σ′.

Proof. The action of Φ(T̃c) on H1(ΣL;Z) is trivial because T̃c fixes ΣL pointwise. Any curve

a ⊂ Σ′R is fixed by Tc. Then if ã ⊂ ΣR is a lift of a, then T̃c(ã) = ζkã for some k. To determine k,

fix a small arc α crossing c from a point pL ∈ Σ′L to pR ∈ Σ′R. Let α̃ be a lift connecting points

p̃L ∈ ΣL and p̃R ∈ ΣR. By the assumption f(c) = 1 and basic covering space theory, the arc

Tc(α) lifts to an arc T̃c(α) that connects p̃L to ζ · p̃R. It follows that T̃c acts on H1(ΣR;Z) by ζ

as claimed.

Lifting a point-push. We now fix our attention on the branched covering t : W → V . Let

b ∈ L ⊂ V be a branch point, and let γ be a simple closed loop on V based at b that is disjoint

from L \ {b}. As above, γ determines curves γL, γR ⊂ V ◦. We seek a formula for (Ψ ◦ `)(P (γk))

for k such that P (γk) lifts to W ◦.

Since γL ∪ γR bounds an annulus on V containing b, there is an equality in H1(V ◦;Z/mZ) of

the form

[γR] = [γL] + C,

where, as above, C denotes the homology class of a small loop encircling b counterclockwise.

Recall that the unbranched covering t : W ◦ → V ◦ is classified by θ ∈ H1(V ◦;Z/mZ), where

θ(C) = 1. It now follows from the discussion of the preceding section that P (γk) = T kγLT
−k
γR

lifts

to Z◦ if m | k.

Lemma 4.9. Suppose that θ(γL) = 0. Then (Ψ ◦ `)(P (γm)) is given by

(Ψ ◦ `)(P (γm))(x) = x+ (m− (1 + ζ + · · ·+ ζm−1))〈x, γ̃L〉t[γ̃L].

Here, 〈·, ·〉t denotes the Reidemeister pairing with respect to the 〈ζ〉-covering t : W → V .
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Proof. A formula for (Ψ ◦ `)(P (γm)) can be found by applying the results of the previous section.

Suppose first that θ(γL) = 0. Then θ(γR) = 1. Thus t−1(γL) consists of m disjoint components,

while t−1(γR) is a single curve. Moreover, the annulus bounded by γL, γR on V lifts to a surface

with these m+ 1 boundary components. On the level of homology, this implies

(1 + ζ + · · ·+ ζm−1)[γ̃L] = [γ̃R].

From Proposition 4.6,

Ψ(T̃mγL)(x) = x+m〈x, γ̃L〉t[γ̃L],

while

Ψ(T̃−mγR )(x) = x−m−1〈x, γ̃R〉t[γ̃R].

As [γ̃R] = (1 + · · ·+ ζm−1)[γ̃L], the skew-Hermitian property of the Reidemeister pairing and the

equation (1 + · · ·+ ζm−1)2 = m(1 + · · ·+ ζm−1) implies the formula.

Monodromy of clean elements. Our analysis of µ hinges on a study of a special class of

elements of π1(X,x0).

Definition 4.10 (Clean element). An element γ ∈ π1(X,x0) is clean if the following conditions

are satisfied.

(i) γ has a representative as a simple closed loop on X based at x0,

(ii) γ ∈ π1(V ) 6 π1(X),

(iii) θ(γ̃L) = 0 for any (hence all) lifts γ̃L of the left-hand curve γL to V ◦.

Remark 4.11. The assignment γ 7→ γL assigns an unbased simple closed curve γL ⊂ X◦ to a

based loop γ ⊂ X. Observe that conditions (2) and (3) above are well-defined on the level of

simple closed curves on X◦. Moreover, if γL ⊂ X◦ is a simple closed curve for which (2) and (3)

hold, then for any choice of representative γ of γL as a simple closed loop based at x0 ∈ X, the

element γ is clean. In this way, we can extend the notion of cleanliness to simple closed curves on

X◦.

If γ is clean, then s−1(γ) ⊂ V consists of m2 disjoint components which are permuted by the

covering group 〈σ, τ〉 ∼= (Z/mZ)2 of s : V → X. Choosing a distinguished lift γ̃, the monodromy

µ′(γ) then consists of m2 point-push maps about the disjoint curves σiτ j γ̃.

Lemma 4.12. Suppose that γ is clean. Then γm lifts to an element of Mod(W ), in the sense that

µ(γm) is defined. For any x ∈ H1(W ),

ρ(γm)(x) = x+ (m− (1 + ζ + · · ·+ ζm−1))〈x, γ̃L〉s◦t[γ̃L].

Here, 〈·, ·〉s◦t denotes the Reidemeister pairing with respect to the H-covering s ◦ t : W → X.
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Proof. The monodromy ρ factors as ρ = Ψ◦`◦µ′. Topologically, µ′(γ) consists of the simultaneous

point-push maps about the m2 disjoint curves σiτ j γ̃. By the (Z/mZ)2-symmetry, this is given by

µ′(γ) =
∏

(i,j)∈(Z/mZ)2

(σiτ j) · P (γ̃).

The result now follows from applying Lemma 4.9:

ρ(γm)(x) =
∏

(i,j)∈(Z/mZ)2

(σiτ j)(Ψ ◦ `)(P (γ̃m))(x)

= x+
∑

(i,j)∈(Z/mZ)2

(σiτ j) · (m− (1 + · · ·+ ζm−1))〈x, γ̃L〉t[γ̃L]

= x+ (m− (1 + · · ·+ ζm−1))〈x, γ̃L〉s◦t[γ̃L].

There is a sub-class of clean elements which will be of particular importance.

Definition 4.13 (W -separating). A clean element γ such that each component of t−1(γ̃L) is a

separating curve on W is said to be W -separating.

Lemma 4.14. Suppose γ is W -separating. Then γ (and not merely γm) lifts to an element of

Mod(W ). Such γ induces a decomposition

H1(W ) = H1(W ′)⊕H1(W ′′)

with W ′ the subsurface of W lying to the left of t−1(γR). Relative to this, γ acts on x ∈ H1(W )

via the formula

x 7→

x x ∈ H1(W ′)

ζ−1 · x x ∈ H1(W ′′).

Proof. As discussed above,

µ′(γ) =
∏

(i,j)∈(Z/mZ)2

(σiτ j) · P (γ̃) (16)

=
∏

(i,j)∈(Z/mZ)2

(σiτ j) · Tγ̃LT
−1
γ̃R
. (17)

The assumption implies that γ̃L and γ̃R are both separating on V and hence on V ◦. By Lemma

4.7 (as applied to the unbranched covering t : W ◦ → V ◦), both Tγ̃L and T−1
γ̃R

lift to elements of

Mod(W ). As γ is clean, θ(γ̃L) = 0 by assumption. It follows that γ̃L lifts to a collection of m

curves on W , each of which is separating by assumption. Thus the action of the lift of Tγ̃L on

H1(W ) is trivial.

Since θ(γ̃L) = 0, it follows that θ(γ̃R) = 1. Lemma 4.8 can therefore be applied to give a

formula for the action of T−1
γ̃R

on H1(W ). The claimed formula now follows by combining this

and (17).
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5. The Atiyah–Kodaira monodromy (II)

Lemmas 4.12 and 4.14 give a formula for the monodromy of a clean (resp. clean and W -separating)

loop γ on X. In both cases, the formulas hinge on an understanding of the homology class of

a component of a preimage γ̃ on W . The purpose of this section is to obtain a large but finite

collection of such elements. The results of the section are collected as Lemma 5.1. In Section

7, this will be combined with some algebraic ideas (developed in Section 6) in order to prove

Theorem C.

Before proceeding, the reader may wish to re-acquaint themselves with the generating set

{Ei, Fi | 1 6 i 6 g0} ∪ {Gh, Gv}

for H1(W ) described in Lemma 2.9.

Lemma 5.1.

(i) The element [e2, f2] ∈ π1(X) is clean and W -separating.

(ii) Fix ξ ∈ H and v ∈ {Ei, Fi | 3 6 i 6 g0} arbitrary. Then there exists a clean element

γv,ξ ∈ π1(X) so that in the notation of Proposition 4.6, there is some k ∈ Z/mZ such that

[(̃γv,ξ)L] = E2 + ζkξ · v.

(iii) There exist clean elements γE , γF ∈ π1(X) such that

[(̃γE)L] = E1 + ζ

(
E3 +mF3 −

m−1∑
i=0

σiζ−iF3

)
=: E1 + wE ,

[(̃γF )L] = F1 + ζ−1

(
E3 +mF3 −

m−1∑
i=0

τ iF3

)
=: F1 + wF .

(iv) There exist clean elements Gh
′
, Gv

′ ∈ π1(X) such that in H1(W ;Z),

[G̃h] = [Gh] +

5∑
i=3

(ξi[Ei] + ηi[Fi])

[G̃v] = [Gv] +
5∑
i=3

(ξi[Ei] + ηi[Fi])

for some elements ξi, ηi ∈ H.

Curve-arc sums. In order to make the subsequent work with (fairly elaborate) simple closed

curves as painless as possible, we introduce here two operations on curves.

The first of these is the curve-arc sum procedure. Let Σ be a surface, and γ1, γ2 be disjoint

oriented simple closed curves on Σ. Let α be an arc on Σ beginning at some point on the left side

of γ1 and ending on the left side of γ2 that is otherwise disjoint from γ1 ∪ γ2. The curve-arc sum

of γ1 and γ2 along α is the simple closed curve γ1 +α γ2 defined pictorially in Figure 3.

Lemma 5.2.
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γ1

α
γ2

γ1 +α γ2

Figure 3. The curve-arc sum (the orientations on γ1, γ2 are implicit).

(i) For oriented simple closed curves γ1, γ2 ⊂ Σ and an arc α connecting γ1 and γ2,

[γ1 +α γ2] = [γ1] + [γ2]

as elements of H1(Σ,Z).

(ii) Suppose that γ ∈ π1(X) is clean, and that δ ⊂ X◦ is clean in the sense of Remark 4.11. Let

α ⊂ X◦ be any arc such that γ +α δ is a simple closed curve. Then γ +α δ is clean.

Proof. (1) is immediate. For (2), it is necessary to check the conditions of Definition 4.10. Condition

(1) holds by hypothesis. Condition (2) holds by the fact that s : V → X is an abelian covering, in

combination with Lemma 5.2.1. This implies that any component of the preimage s−1(γ +α δ) is

itself a curve-arc sum on V ◦. Then Condition (3) follows from the fact that t : W ◦ → V ◦ is also

an abelian covering, again appealing to Lemma 5.2.1.

De-crossing. The second operation we will require is de-crossing. Suppose that γ ⊂ Σ is non-

simple, with a self-intersection at p ∈ Σ. Suppose that S ⊂ Σ is a subsurface with S ∼= Σ1,1, such

that S ∩ γ contains only the self-intersection at p. Then the de-crossing of γ along S is the curve

DC(γ, S) with one fewer self-intersection depicted in Figure 4.

Figure 4. De-crossing of γ along S. The two local strands of γ have been depicted in different

stroke styles for clarity.

In practice, the portion of S connecting p to the rest of S can be quite long and thin. Where

the clarity of a figure dictates, this will sometimes be depicted as an arc connecting p to some
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genus 1 subsurface.

Non-simple curves will arise as the image of simple curves under covering maps. Suppose

f : Σ→ Σ′ is a regular covering of surfaces with deck group G. Let p ∈ Σ′ be given, and identify

the fiber f−1(p) with the set G · p. If γ ⊂ Σ passes through points g · p, h · p ∈ Σ, then the image

f(γ) will have a double point at p. In this situation, we say that γ has local branches in sheets

g, h. The following lemma records some properties of the de-crossing procedure in this context.

Lemma 5.3. Let f : Σ→ Σ′ be a regular covering with deck group G. Suppose γ ⊂ Σ is a simple

closed curve; let γ ⊂ Σ′ be the image f(γ). Let p be a double point of γ, and let S ⊂ Σ′ be a

genus 1 subsurface disjoint from γ except in a neighborhood of p, and endowed with geometric

symplectic basis E,F . Suppose that f−1(S) is a disjoint union of surfaces each homeomorphic to

S. Define γ′ to be the de-crossing of γ along S. Then the following assertions hold:

(i) γ′ lifts to a simple closed curve γ′ ⊂ Σ.

(ii) Suppose the double point p of γ arises from local branches of γ in sheets g, h. Then in H1(Σ),

[γ′] = [γ] + g · E + h · F.

Proof. Both items will follow from an analysis of f−1(γ′) via the path-lifting construction. Choose

a point q ∈ γ not contained in f−1(S), and consider the component γ+ of f−1(γ′) that passes

through q. This lift will follow γ until entering a component of f−1(S), where it follows some

arc α into the interior of f−1(S), runs once around the preimage of E, then follows f−1(f(α))

back out of f−1(S) and rejoins the preimage of γ. By the assumption that E lifts to Σ, it follows

that γ+ rejoins γ itself and not some other component of f−1(γ). The same analysis applies the

second time that γ passes over p ∈ Σ′; this time, γ+ looks locally like the curve-arc sum of γ with

some preimage of F . After passing through both points in γ ∩ f−1(p), the lift γ+ is still following

γ and not some other component of f−1(γ). Since γ and γ′ coincide outside of S, it follows that

γ+ will follow γ back to q, closing up as a simple closed curve as claimed.

5.1 Proof of Lemma 5.1.i

Consider Figure 5. The branch cuts used in the construction of the cover W → X (i.e. the images

of the arcs γh, γv as in (10)) are depicted as dashed lines. Since neither γL nor γR cross E1, F1,

both curves lift to a union of separating curves on V ◦. As moreover no component of s−1(γL)

crosses a branch cut, it follows that γ is W -separating as desired.

5.2 Proof of Lemma 5.1.ii

Lemma 5.1.ii is established using curve-arc sums. Figure 6 depicts an arc αi,j ⊂ X connecting

E2 to an arbitrary element v ∈ {Ei, Fi | 3 6 i 6 g0}. For any element σiτ j ∈ (Z/mZ)2, it is

possible to construct an arc αi,j such that the difference of the endpoints of the lift s−1(αi,j)

corresponds to the element σiτ j (here we treat the sheets of the covering s : V → X as a torsor
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X◦

γL γR

Figure 5. The curves γL, γR for the element γ = [e2, f2] ∈ π1(X). We warn the reader that

γL and γR have not been drawn in their entirety; there are small portions of each contained

in a small neighborhood of the vertex. In this and the remaining figures, we suppress the edge

identifications specified in Section 2.2.

over (Z/mZ)2). Let ξ ∈ H have the form ξ = σiτ jζk. The curve γv,ξ is then defined to be

γv,ξ := E2 +αi,j v.

By construction, each component of the preimage s−1(γv,ξ) is a curve-arc sum, with one particular

component given by

E2 +s−1(αi,j) σ
iτ jv.

Moreover, the preimage (s ◦ t)−1(γv,ξ) is also a union of curve-arc sums, one of which is

E2 +(s◦t)−1(αi,j) σ
iτ jζkv,

since the difference of the endpoints (s◦ t)−1(αi,j) is σiτ jζk for some k. The factor of ζk appearing

above is not within our control, since the construction of αi,j does not give any control over which

sheet of the covering t : W → V the lift t−1(s−1(αi,j)) ends in.

Proof of Lemma 5.1.iii. The proof proceeds as before, essentially by directly exhibiting clean

elements in the fundamental group. Figure 7 depicts the curve γE , illustrated there for m = 3.

Panel 1 shows how to build γE as an iterated curve-arc sum of E3 and m copies of E1. Panel 2

depicts the result of the construction, the curve γE . Panel 3 comprises the bottom half of the

figure and consists of three sheets ∆, σ∆, σ2∆ of the 9-sheeted cover V ◦ → X◦ (again for the

case m = 3). The curve γE has been lifted along the covering s : V ◦ → X◦, where it remains

a simple closed curve. The dashed lines shown in Panel 3 indicate the branch cuts used in the

construction of the covering t : W ◦ → V ◦. In the sheets ∆, σ∆, one sees (s−1(γE))L crossing a

branch cut twice, once in each direction. This shows that (γE)L lifts to W ◦ as a simple closed

curve, or equivalently, θ(s−1((γE)L)) = 0. Altogether, Figure 7 then shows that γE is a clean

element of π1(X). The determination of [(̃γE)L] ∈ H1(W ) is a direct computation, obtained by
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(1) (2)

(3) (4)

E2

α0

αi,j

v

iE1

jF1

Figure 6. The construction of γv,ξ, illustrated for ξ = σ2τ2. Panel 1: the constituent parts. Panel

2: First, resolve all intersections of the multicurve iE1 + jF1. Panel 3: To construct αi,j , run α0

along each component of iE1 + jE2, working from top to bottom. Panel 4: Finally, attach αi,j to

v.

duality from a determination of 〈(̃γE)L, ·〉. One must remember to check that

〈(̃γE)L, G〉 = 0

for any G ∈ Z[H]〈Gh, Gv〉, but this is easy: each such G is either disjoint from (̃γE)L or else

crosses (̃γE)L exactly twice with opposite signs.

The construction of γF proceeds along very similar lines. One performs an m-fold iterated

curve-arc sum of E3 and F1 using the arc indicated in Figure 8. The rest of the argument then

follows that for γE .

Proof of Lemma 5.1.iv. The first panel of Figure 9 shows the image Gh of Gh in X◦. To obtain

this figure, we have perturbed the original curve Gh := (1− ζ)γh so that it does not pass through

the branch locus of W , and then projected via (s ◦ t) : W ◦ → X◦. As depicted, Gh has three

double points which we wish to resolve. This can be accomplished via the de-crossing procedure,

shown in panel 2. The assumption g0 > 5 is used here to ensure the existence of three disjoint
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(1)

E3

mE1

(2)

γE

(3)

∆ σ∆ σ2∆

s−1(γE)

Figure 7. The curve γE , illustrated for m = 3 (c.f. Lemma 5.1.iii).

Figure 8. The curve γF , illustrated for m = 3 (c.f. Lemma 5.1.iii).

subsurfaces S3, S4, S5 of genus 1, each disjoint from the curves E1, F1, E2, F2, and each satisfying

the hypotheses of Lemma 5.3. The result of the de-crossing is a simple curve Gh
′ ⊂ X◦. We can

convert Gh
′

into a simple based loop by attaching G′h to the basepoint x0 ∈ X.

By Lemma 5.3.1, Gh
′

lifts to W ◦ and so determines a clean element of π1(X). Moreover,

Lemma 5.3.2 asserts that the lift G̃h to W satisfies

[G̃h] = [Gh] +

5∑
i=3

(ξi[Ei] + ηi[Fi])

for some elements ξi, ηi ∈ H. The argument for Gv is virtually identical.
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(1)

Gh

(2)
S3 S4

S5

Figure 9. Resolving the double points of Gh by de-crossing (c.f. Lemma 5.1.iv).

6. Generating arithmetic groups by unipotents

We now move from the topological portion of the argument into the algebraic. In this section we

establish the general setup that will allow us to prove arithmeticity of the image. The material

here recasts and combines some results from [Loo97] and [Ven14]. The main result is Proposition

6.1 which gives a criterion for a group to be arithmetic. We will also make frequent usage of

Lemmas 6.4 and 6.5 in later sections.

Let G be a finite group. Fix a quotient ring Q[G]� A; we write the Wedderburn decomposition

A ∼=
∏
Aj . Let R < A be the image of Z[G] in A, and let Rj < Aj be the image of Z[G] in Aj .

Note that R <
∏
Rj has finite index. Let M ∼= Ad be a free A-module with a skew-Hermitian

form 〈·, ·〉 : M ×M → A and automorphism group G = AutA(M, 〈·, ·〉). The decomposition

A =
∏
Aj induces a decomposition M =

⊕
Mj and forms 〈·, ·〉 : Mj ×Mj → Aj , and we denote

Gj = AutAj (Mj , 〈·, ·〉).

Assume that there are isotropic integral vectors x1, x
∗
1 ∈M with 〈x1, x

∗
1〉 = 1 and assume that

each spans a free submodule A{x1, x
∗
1} ∼= A2. Let F ,F− be the flags

F := A{x1} ⊂ A{x1}⊥ ⊂M and F− := A{x∗1} ⊂ A{x∗1}⊥ ⊂M. (18)

and let P,P− and U ,U− be the corresponding parabolic and unipotent subgroups of G. Specifically,

P is the group that preserves the flag F , and U < P is the subgroup that acts trivially on successive

quotients M/A{x1}⊥ and A{x1}⊥/A{x1}. The groups P− and U− are defined similarly. After

choosing a basis (x, . . . , x∗), we can write

U = {g =

 1 −(Qv̄)t w

0 I v

0 0 1

 : v ∈ Ad−2 and 〈v, v〉 = w̄ − w}, (19)

where Q is the matrix of 〈·, ·〉 restricted to A{x1, x
∗
1}⊥ ∼= Ad−2 with respect to the given basis.

Denoting U := Ad−2, there is a surjection

π : U → U
g 7→ v.

(20)
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Proposition 6.1 (Generated by enough unipotents). We use the notation of the preceding

paragraphs. Fix Γ < G(R)
.
=
∏

Gj(Rj). Assume that A{x1, x
∗
1}⊥ contains isotropic vectors

x2, x
∗
2 with 〈x2, x

∗
2〉 = 1 that each span a free A-submodule. Suppose that the homomorphisms

Γ ∩ U → U(R) and Γ ∩ U− → U−(R) are almost onto (i.e. the image has finite index). Then

(i) the image of Γ→ Gj(Rj) has finite index in Gj(Rj) for each j, and

(ii) Γ has finite index in G(R).

Of course (ii) implies (i), but in order to prove (ii) we will use (i). The proof of (i) will

follow quickly from [Ven14, Cor. 1] (stated below as Theorem 6.3), which builds off work of Tits,

Vaserstein, Raghunathan, Venkataramana, and Margulis. We will also need the following lemma.

Lemma 6.2 (Finite-index subgroups of U(R)). Let U and π : U → U be as in (19) and (20).

Assume there are y, y∗ ∈ Rd−2 ⊂ A{x1, x
∗
1}⊥ with 〈y, y∗〉 = 1. Then for Λ < U(R), if π(Λ) has

finite index in U(R) ∼= Rd−2 (as an abelian group), then Λ has finite index in U(R).

Proof. There is an exact sequence 0→ R0 → U(R)→ U(R)→ 0, where R0 = {w ∈ R : w̄ = w}.
A subgroup Λ < U(R) has finite index if and only if Λ ∩R0 has finite index in R0 and π(Λ) has

finite index in U(R). Since we assume the latter, we need only show the former.

We can identify U(R) ∼= Rd−2 ×R0 (as sets) via 1 −(Qv̄)t z − 1
2〈v, v〉

0 I v

0 0 1

↔ (v, z).

Under this bijection, the multiplication on U(R) becomes

(u, z) · (u′, z′) =
(
u+ u′, z + z′ + δ(u, u′)

)
,

where δ(u, u′) = 1
2

[
〈u, u′〉 − 〈u′, u〉

]
.

With these coordinates, (u, z)−1 = (−u,−z), and the commutator of (u, z) and (u′, z′) is[
(u, z), (u′, z′)

]
=
(
0, 2δ(u, u′)

)
By assumption, there exists y, y∗ ∈ Rd−2 with 〈y, y∗〉 = 1. Let {αi} be a finite generating set of

R0 as an abelian group. Since π(Λ) < U(R) has finite index, there exists ` > 0 and zi, z ∈ R0 so

that h = (`y∗, z) ∈ Λ and gi = (`αiy, zi) ∈ Λ for every i. Then

[gi, h] =
(
0, 2δ(`αiy, `y

∗)
)

= (0, 2`2αi).

In particular, Λ ∩ R0 contains the subgroup generated by {2`2αi}, which has finite index in

R0.

Theorem 6.3 (Corollary 1 in [Ven14]). Suppose G is an algebraic group over K that is absolutely

simple and has K-rank > 2. Let P and P− be opposite parabolic K-subgroups, and let U ,U−

be their unipotent radicals. Denoting OK ⊂ K the ring of integers, for any N > 1, the group

∆N (P±) generated by N -th powers of the elements of U(OK) and U−(OK) has finite index in

G(OK).
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Proof of Proposition 6.1. To prove (i) we apply Theorem 6.3 to Gj for each j.

First we identify Gj as an algebraic group. To do this, it will help to first recall the structure

of Aj . According to Wedderburn’s theorem, each Aj is isomorphic to a matrix algebra Matk(∆)

over a division ring ∆ (of course n and ∆ depend on j, but we omit j from the notation). The

center L := Z(∆) is a number field, and we denote K < L the subfield fixed by the involution

(either K = L or [L : K] = 2).

The group Gj = AutAj (Mj , 〈·, ·〉) can be identified with matrices g ∈ Matd(A
op
j ) ∼= EndAj (Mj)

with gtQj ḡ = Qj , where Qj ∈ Matr(Aj) is the matrix for 〈·, ·〉 : Mj ×Mj → Aj with respect

to a given basis. Given the isomorphism Matd(Aj) ∼= Matdk(∆), we can also view Gj as the

automorphism group of a non-degenerate skew-Hermitian form on ∆dk. There is a homomorphism

Gj ⊂ Matdk(∆) ↪→ Matdkr(K) induced from a linear map ∆ → Matr(K) defined by left

multiplication of ∆ on ∆ ∼= Kr. Given Gj ↪→ Matdkr(K) it is easy to deduce that Gj is an

algebraic group over K. In fact, Gj is one of the classical groups and is an absolutely almost

simple over K (see [PR94, §2.3.3] and [Mor15, §18.5] for more details). Furthermore, Gj(OK) is

commensurable with Gj(Rj), and the K-rank of Gj is at least 2, since by our assumption M

contains a 2-dimensional isotropic subspace A{x1, x2} ∼= A2.

The subgroups P,P− <
∏

Gj project to opposite parabolic subgroups Pj ,P−j < Gj , and

U ,U− project to the corresponding unipotent radicals Uj < Pj . Since U(R)
.
=
∏
Uj(Rj) and

U(R)
.
=
∏
U j(Rj) are commensurable, by our assumption, the image of Γ ∩ Uj(Rj)→ U j(Rj)

has finite index in U j(Rj) for each j. By Lemma 6.2, Γ ∩ Uj(Rj) has finite index in Uj(Rj).
Similarly, Γ ∩ Uj−(Rj) has finite index in Uj−(Rj), and so by Theorem 6.3 the image of Γ in

Gj(Rj) has finite index.

Now we address (ii). To show that Γ has finite index in G(R)
.
=
∏

Gj(Rj), we will show Γ

contains
∏

Λj , where Λj < Gj(Rj) has finite index for each j. Let Γj be the image of Γ in Gj .

By (i), we know Γj is a lattice. Let Γ̂j be the kernel of Γ∩G→
∏
i 6=j Gi. Observe that Γ̂j < Γj is

a normal subgroup. By the Margulis normal subgroups theorem, Γ̂j is either finite or finite index

in Γj . Thus to prove (ii) it suffices to show that Γ̂j contains an infinite order element for each j.

By assumption, we have isotropic vectors x2, x
∗
2 ∈M ′ ∼= Rd−2 with 〈x2, x

∗
2〉 = 1. For simplicity

denote y = x2 and y∗ = x∗2, and let yj , y
∗
j denote the projection to M ′j

∼= Rd−2
j . Note that 〈yj , y∗j 〉

is equal to the identity element ej ∈ Rj .

Since the image of Γ ∩ Uj(Rj) → U j(Rj) ∼= Rd−2
j has finite index, there exists ` > 0 and

z, z∗ ∈ R0 so that (`yj , z) and (`y∗j , z
∗) belong to Γ ∩ U(R). By the computation from Lemma

6.2, the commutator of (`yj , z) and (`y∗j , z
∗) is (0, 2`2ej). This element of Γ has infinite order and

is in the kernel of G→
∏
i 6=j Gi. This completes the proof.

We end this section with a few lemmas about the algebraic structure of P and U . These

results will be essential for our computation in Section 7. Set

M ′ = A{x1, x
∗
1}⊥.

35



Nick Salter and Bena Tshishiku

Note that A{x1}⊥ = A{x1} ⊕M ′.

Lemma 6.4 (Commutator trick). Fix v = ax1 + u ∈ A{x1} ⊕M ′ with u isotropic, and define

Tv : M →M by Tv(x) = x+ 〈x, v〉v. Fix nonzero, central ζ ∈ A, and define R : M →M by

R : x 7→

{
x x ∈ A{x1, x

∗
1}

ζ−1x x ∈M ′.

Then Tv, R ∈ P and [Tv, R] ∈ U . Furthermore, π
(
[Tv, R]

)
= ā(ζ−1 − 1)u.

Lemma 6.5 (Parabolic action on unipotent). Fix

g =

 1 −(Qū)t w

0 I u

0 0 1

 ∈ U and h =

 a ∗ ∗
0 B ∗
0 0 c

 ∈ P.
Then hgh−1 ∈ U and π

(
hgh−1

)
= Buc−1.

Both lemmas follow from direct computation. For Lemma 6.5, it is useful to recall the Levi

decomposition P =MU , where M consists of block diagonal matrices.

7. Proof of Theorem C

The proof of Theorem C has two components. In Section 7.1, we find an “upper bound” for

the monodromy group Γ; this appears as Lemma 7.1. In Section 7.2, we apply the arithmeticity

criterion of Proposition 6.1 to give a precise meaning to the notion of “enough unipotents”. Finally

in Section 7.3 we apply the results of Lemma 5.1 to see that Proposition 6.1 is satisfied.

7.1 The image of ρ

We return to the setting of Section 3. As established in Lemma 3.6, the monodromy group

Γ = Γ(X,m) is a subgroup of the product∏
Ui

AutH(Umi
i , 〈·, ·〉H) 6 Aut(H1(W ;Q), (·, ·)), (21)

where here H = H (Z/mZ) as usual and the product Ui runs over the isomorphism classes of

simple Q[H]-modules Ui. (We could also use Section 8 to write the left-hand side of (21) as∏
k,χ AutH(Mk,χ, 〈·, ·〉H), but that won’t be necessary in this section.) Recall that we say that Ui

is abelian if the H-action on Ui factors through the abelianization Hab ∼= (Z/mZ)2; otherwise Ui

is said to be nonabelian.

Lemma 7.1. The projection of Γ to any factor of (21) corresponding to an abelian Ui is trivial.

Consequently,

Γ 6
∏

Ui nonabelian

Aut(Umi
i , 〈·, ·〉H). (22)
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Proof. Let K 6 H be any subgroup. Associated to K is the intermediate cover W →WK with

covering group K. Transfer provides an isomorphism

H1(W ;Q)K ∼= H1(WK ;Q).

Moreover, this isomorphism is compatible with the decomposition

H1(W ;Q) ∼=
⊕
Ui

Umi
i ,

so that

H1(WK ;Q) ∼=
⊕
Ui

(UKi )mi .

Let K = 〈ζ〉; it is easy to see that K = [H,H]. In the notation of Section 2, the associated

surface WK is given by V . As K is also central in H and hence acts by scalars on any simple

Q[H]-module Ui, it follows that the K-invariant space UKi is nontrivial if and only if Ui is abelian.

This implies that

H1(V ;Q) ∼=
⊕

Ui abelian

(Ui)
mi .

To summarize, the action of Γ on the summand of H1(W ;Q) corresponding to the collection

of abelian representations is governed by the monodromy action on the intermediate cover V . To

prove the claim, it therefore suffices to show that this action is trivial.

This is easy to see. The cover V → X is regular with covering group H/K ∼= (Z/mZ)2.

By construction, this is the maximal unramified cover intermediate to W → X. To study the

monodromy action on the fiber V , we pass to the punctured surface V ◦. The monodromy action

on V ◦ is the lift of simultaneous multi-pushes on X◦. Since the cover V → X is unramified, these

lift on V ◦ to simultaneous multi-pushes. As is well-known, these diffeomorphisms act trivially on

H1(V ), since they become isotopic to the identity after passing to the inclusion V ◦ → V .

7.2 “Enough” unipotents

To proceed, we must give an explicit description of the unipotent subgroups U(R) and U−(R) (as

well as their abelian quotients U(R) and U−(R)) appearing in the statement of Proposition 6.1.

We specialize the discussion of Section 6 to the situation at hand. Recall that

Πna = (m− (1 + ζ + · · ·+ ζm−1)) ∈ Z[H].

In the notation of Section 6, we take A = ΠnaQ[H]. Then R = ΠnaZ[H]. We also take M =

ΠnaH1(W ;Q). The Reidemeister pairing on H1(W ;Q) (see Section 3) induces a skew-Hermitian

form 〈·, ·〉 : M ×M → A. Note that M is a free A-module by Lemma 2.10.

Lemma 7.2. In the notation of Section 2, consider the elements E2, F2, E3, F3 6 H1(W ;Q).

Denote the projections of these elements to M = ΠnaH1(W ;Q) by x1, x
∗
1, x2, x

∗
2, respectively.

Then the following hold:

(i) Each such element is isotropic,
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(ii) 〈x1, x
∗
1〉H = 〈x2, x

∗
2〉H = 1,

(iii) {x2, x
∗
2} ⊂ A{x1, x

∗
1}⊥,

(iv) A{x1, x
∗
1} ∼= A{x2, x

∗
2} ∼= A2.

Consequently, the unipotent subgroups U(R) and U−(R) associated to the flags

F = A{x1} ⊂ A{x1}⊥ ⊂M and F− = A{x∗1} ⊂ A{x∗1}⊥ ⊂M

satisfy the hypotheses of Proposition 6.1.

Proof. Claims (1)-(3) follow from Lemma 3.7, while (4) follows from Lemma 2.9.

The following lemma establishes a direct-sum decomposition for the abelian quotients U(R)

and U−(R). The proof of Theorem C will handle each summand in turn. For the statement

of the next lemma, recall from the definition of U(R) in (20) that U(R) is identified with

A{x1, x
∗
1}⊥ ⊂M .

Lemma 7.3. Fix the flags F ,F− as in Lemma 7.2. Define the following submodules of M =

ΠnaH1(W ;Z) spanned by the indicated elements.

M1 = R{Ei, Fi | i > 3}

M2 = R{E1, F1}

M3 = R{Gh, Gv}

Then M1 +M2 +M3 is a subgroup of finite index in both U(R) and U−(R).

Proof. According to Lemma 2.10, there is an isomorphism of A-modules

ΠnaH1(W ;Q) ∼= Ad.

Consequently, ΠnaH1(W ;Z) is commensurable to Rd. Lemma 2.9 implies that ΠnaH1(W ;Z) is

spanned as an R-module by the elements {Ei, Fi | 1 6 i 6 g0} ∪ {Gh, Gv}. By our choice of

flag and the definitions of U(R) and U−(R), it follows that U(R) and U−(R) are spanned as an

R-module by the Πna-projection of the elements

{Ei, Fi | 1 6 i 6 g0, i 6= 2} ∪ {Gh, Gv}.

This generating set is partitioned into the three pieces corresponding to the generators for

M1,M2,M3. The result follows.

7.3 Proof of Theorem C

We prove Theorem C by applying Proposition 6.1 with M = ΠnaH1(W ;Q) and with U(R),U−(R)

defined as in Lemma 7.2. In order to apply Proposition 6.1, it remains to show that the homo-

morphisms Γ ∩ U → U(R) and Γ ∩ U− → U−(R) are almost onto. By Lemma 7.3, it suffices to

prove the following Lemma 7.4. We remark here that our arguments for U and U− will be visibly

identical, and we will formulate the results for U only.
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Lemma 7.4.

(i) π(Γ ∩ U) contains a finite-index subgroup of M1.

(ii) π(Γ ∩ U) contains a finite-index subgroup of M2.

(iii) π(Γ ∩ U) contains a finite-index subgroup of M3.

Once we prove Lemma 7.4, it follows directly from Proposition 6.1 that Γ is arithmetic, and

has Zariski closure given in (22) (or equivalently, as given in the statement of Theorem C).

Proof of Lemma 7.4. The calculations of Lemma 5.1 are designed to plug in to proving the lemma.

For the reader’s convenience, we reproduce here the statement of Lemma 5.1.

(i) The element [e2, f2] ∈ π1(X) is clean and W -separating.

(ii) Fix ξ ∈ H and v ∈ {Ei, Fi | 3 6 i 6 g0} arbitrary. Then there exists a clean element

γv,ξ ∈ π1(X) so that in the notation of Proposition 4.6, there is some k ∈ Z/mZ such that

[(̃γv,ξ)L] = E2 + ζkξ · v.

(iii) There exist clean elements γE , γF ∈ π1(X) such that

[(̃γE)L] = E1 + ζ

(
E3 +mF3 −

m−1∑
i=0

σiζ−iF3

)
=: E1 + wE ,

[(̃γF )L] = F1 + ζ−1

(
E3 +mF3 −

m−1∑
i=0

τ iF3

)
=: F1 + wF .

(iv) There exist clean elements Gh
′
, Gv

′ ∈ π1(X) such that in H1(W ;Z),

[G̃h] = [Gh] +
5∑
i=3

(ξi[Ei] + ηi[Fi])

[G̃v] = [Gv] +

5∑
i=3

(ξi[Ei] + ηi[Fi])

for some elements ξi, ηi ∈ H.

Proof of Lemma 7.4.i. This follows from items (i) and (ii) of Lemma 5.1. As an abelian group,

M1 is generated by the following set S:

S := {Πnaξv | ξ ∈ H, v ∈ {Ei, Fi | 3 6 i 6 g0}}.

To prove Lemma 7.4.i, it therefore suffices to produce, for each v ∈ S, an element Tv ∈ Γ ∩ U
such that π(Tv) = nv for some n ∈ Z, n 6= 0. Applying Lemma 4.12 to the element γv,ξ of Lemma

5.1.ii, it follows that for x ∈M ,

ρ(γmv,ξ)(x) = x+ Πna〈x,E2 + ζkξv〉[E2 + ζkξv].

In particular, ρ(γmv,ξ) ∈ P . By Lemma 5.1.i, the element [e2, f2] ∈ π1(X) is clean and W -separating.

Define

R := ρ([e2, f2]).
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By Lemma 4.14, R(E2) = E2 and R(v) = ζ−1v. Define

Tv,ξ := [ρ(γmv,ξ), R].

Now applying the commutator trick (Lemma 6.4), it follows that

π(Tv,ξ) = Πna(ζ
−1 − 1)ζkξv.

Thus π(Γ ∩ U) contains all elements of the form Πna(ζ
−1 − 1)ζkξv for ξ ∈ H and v ∈ {Ei, Fi |

3 6 i 6 g0} arbitrary. Letting R ∈ P act on π(Γ ∩ U) by conjugation, Lemma 6.5 implies that

Πna(ζ
−1 − 1)ζkξv ∈ π(Γ ∩ U) (23)

for k arbitrary, hence simply Πna(ζ
−1 − 1)ξv ∈ π(Γ ∩ U).

By construction, the action of ζ on ΠnaH1(W ) is fixed-point free. Hence the endomorphism

(ζ−1 − 1) is invertible, and so the Q-span of the vectors given in (23) is Q ⊗M1. Lemma 7.4.i

follows.

Proof of Lemma 7.4.ii. This will follow from the previous part and Lemma 5.1.iii. As an

abelian group, M2 is generated by the set

S = {Πnaξv | ξ ∈ H, v ∈ {E1, F1}}.

To prove Lemma 7.4.ii, it therefore suffices to produce, for each v ∈ S, an element Tv ∈ Γ ∩ U
such that π(Tv) = nv for some n ∈ Z, n 6= 0.

Since the arguments in the two cases will be very similar, we will set v ∈ {E1, F1} and suppress

the subscript on γE , γF in what follows. Applying Lemma 4.12 to the element γ = γE , γF of

Lemma 5.1.iii produces

ρ(γmv )(x) = x+ Πna〈x, v + w〉[v + w].

Note in particular that ρ(γmv ) ∈ P. Appealing to Lemma 7.4.i, for ξ ∈ H arbitrary there is an

element Tξ ∈ Γ ∩ U such that π(Tξ) = nΠnaξF3 for some n 6= 0. We record that

〈ξF3, w〉 = ξζ±,

the value of the sign being determined by whether w = wE or w = wF . Applying Lemma 6.5 to

ρ(γmv ) ∈ P and Tξ ∈ U , we find

π(ρ(γmv )Tξ ρ(γmv )−1) = ρ(γmv )(nΠnaξF3)

= nΠnaξF3 + Πna〈nΠnaξF3, v + w〉[v + w]

= nΠnaξF3 − nΠ2
naξζ

±(v + w).

By linearity and Lemma 7.4.i, this shows nΠ2
naξζ

±v ∈ π(Γ ∩ U). As Π2
na = mΠna, Lemma 7.4.ii

follows.

Proof of Lemma 7.4.iii. This follows the same principle as in Lemma 7.4.ii. Once again the

arguments for Gh and Gv are essentially identical, and the subscripts will be suppressed. Applying
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Lemma 4.12 to the element G
′

of Lemma 5.1.iv,

ρ(G
′m

)(x) = x+ Πna〈x,G+
5∑
i=3

(ξi[Ei] + ηi[Fi])〉[G+
5∑
i=3

(ξi[Ei] + ηi[Fi])].

In particular, ρ(G
′
) ∈ P. Appealing to Lemma 7.4.ii, for χ ∈ H arbitrary there is an element

Tχ ∈ Γ ∩ U such that π(Tχ) = nΠnaχξ3F3 for some n 6= 0. Observe that

〈χξ3[F3],

5∑
i=3

(ξi[Ei] + ηi[Fi])〉 = −χξ3ξ
−1
3 = −χ.

Applying Lemma 6.5 to ρ(G
′m

) ∈ P and Tχ ∈ U , we find

π(ρ(G
′m

)Tχρ(G
′m

)−1) = ρ(G
′m

)(nΠnaχξ3F3)

= nΠnaχξ3F3 + Πna〈nΠnaχξ3F3, G+
5∑
i=3

(ξiEi + ηiFi)〉[G+
5∑
i=3

(ξiEi + ηiFi)]

= nΠnaχξ3F3 − χ[G+

5∑
i=3

(ξiEi + ηiFi)].

Lemma 7.4.iii now follows as in the previous part.

8. Representations of finite Heisenberg groups

In these final two sections of the paper we return the the “classical” (non-normalized) Atiyah-

Kodaira manifolds in order to establish Theorems A and B. The strategy is essentially to apply

the transfer homomorphism to relate the monodromy actions on the various covers involved.

In order to carry this out, it is necessary to understand the structure of representations of the

Heisenberg groups over Q. The main result of this section is Proposition 8.2.

Fix m > 2, and let H = H (Z/mZ) be the Heisenberg group, c.f. (7). Here we detail the

representation and character theory of H over C and Q. Our main interest in this is to obtain

information about the decomposition H1(W ;Q) =
⊕

k|m
⊕

χMk,χ into isotypic factors. This will

be needed to prove Theorem A.

Proposition 8.1 (Representations of H). Let φ be the Euler totient function.

(a) Fix k | m. There are (m/k)2 ·φ(k) simple C[H]-modules of dimension k (up to isomorphism).

They are indexed Ua,b,c for a, b ∈ Z/(mk )Z and c ∈ (Z/kZ)×. Furthermore, varying over k,

these account for all the simple C[H]-modules.

(b) Fix U = Ua,b,c of dimension k, and let χ be its character. The trace field Q(χ) is isomorphic

to the cyclotomic field Q(ζL), where L = lcm
(
k, m/k

gcd(a,b,m/k)

)
. The sum over the orbit of χ

under the Galois group Gal(Q(ζL)/Q) is the character of an irreducible H-representation

over Q.

(c) Let Ik be the set of characters of irreducible k-dimensional H representations over C, and

let Īk be the quotient of Ik by the action of Gal(Q(ζm)/Q). Then Q[H] decomposes into
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simple algebras

Q[H] ∼=
∏
k|m

∏
[χ]∈Īk

Matk(Q(χ)).

The decomposition of the group ring into simple algebras is a particular instance of the

Wedderburn decomposition of a semisimple algebra.

Proof of Proposition 8.1. To begin we describe the simple C[H]-modules of dimension k, or

equivalently the k-dimensional irreducible H-representations over C. Set ` = m/k, and fix

a, b ∈ Z/`Z and c ∈ (Z/kZ)×. Define a representation ρ = ρa,b,c : H → GLk(C) by

ρ(σ) = ζam



0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0


ρ(τ) = ζbm


1

ζck
. . .

ζ
(k−1)c
k

 ρ(ζ) = ζ−ck · id (24)

It is easy to see that these representations are irreducible for each choice of a, b, c, and by looking

at their characters one finds that no two are isomorphic. Since∑
k|m

∑
a,b∈Z/m

k
Z

c∈(Z/kZ)×

dim(ρa,b,c)
2 =

∑
k

φ(k) · (m/k)2 · k2 = m3 = dimC[H],

we conclude that these are all the simple C[H]-modules. This proves (a).

We must next determine the trace field Q(χ). Note that χ(σpτ qζr) = 0 unless k divides both p

and q. Furthermore, ρ(σkp
′
τkq

′
ζr) = α · id with α = ζap

′+bq′

` ζ−crk . It follows that Q(χ) = Q(ζk, ζ`′),

where `′ = `
gcd(a,b,`) . Since Q(ζk, ζ`′) = Q(ζL), where L = lcm(k, `′), this proves the first part of

(b).

Next we describe the simple Q[H]-modules. References for this are [Ser77, §12] and [Isa76, §9-

10]. We continue to fix the character χ of the k-dimensional simple C[H]-module Ua,b,c. The

character

χ̂ =
∑

ε∈Gal(Q(χ)/Q)

χε

is invariant under Gal(Q(χ)/Q), and so it is Q-valued. Then m · χ is the character of a simple

Q[H]-module, where m = mQ(χ) is the Schur index. According to a theorem of Roquette

(see [Isa76, Cor. 10.14] and [JOdRo12, Thm. 4.7]), mQ(χ) = 1 for every irreducible character of

H. This is a special fact about nilpotent groups; if 2 | m, we also need the fact that H(Z/2iZ)

does not admit a split surjection H → Q8 to the quaternion group of order 8.

Now the Wedderburn decomposition for Q[H] can be determined. Q[H] decomposes as a

product of simple algebras Matk(∆), one for each simple Q[H]-module. Here ∆ is a division

algebra over Q(χ) and dimQ(χ) ∆ = m2, where m is again the Schur index [Ser77, §12.2]. Since

the Schur index is always 1, this proves (c).
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As a consequence of Proposition 8.1, for any Q[H]-module W , the decomposition of U into

isotypic factors has the form W =
⊕

k|m
⊕

χ∈Īk Wk,χ.

Abelian and nonabelian representations. In studying Γ(X,m), we are mainly interested in

the H-representations that are nonabelian. We call a representation of H (over C or Q) abelian

if it factors through the abelianization Hab ∼= (Z/mZ)2. These are precisely the representations

where ζ acts trivially. For example, over C the irreducible abelian representations are the 1-

dimensional representations Ua,b,1 with a, b ∈ Z/mZ. For any H-representation W , multiplication

by Πna = m− (1 + ζ + · · ·+ ζm−1) ∈ Q[H] defines a projection W → ΠnaW onto the subspace of

nonabelian isotypic factors.

If m is prime, then there are φ(m) = m− 1 nonabelian irreducible H-representations over C.

They all have dimension m, and ΠnaC[H] ∼= Matm(C)×m−1. Over Q, there is a single nonabelian

irreducible representation. It has dimension m(m− 1) and ΠnaQ[H] ∼= Matm(Q(ζm)).

When m is composite, the expression for ΠnaQ[H] is more complicated. For example, if m = 4,

then ΠnaQ[H] ∼= Mat2(Q)×4 ×Mat4(Q(i)), and for m = 6,

ΠnaQ[H] ∼= Mat2(Q)×Mat2(Q(ζ3))×4 ×Mat3(Q(ζ3))×4 ×Mat6(Q(ζ6)).

τ-invariants of H-representations. Recall the subgroup Q 6 H is the cyclic group generated

by ζ.

Proposition 8.2 (τ -invariants of Q[H]-modules). Let ρa,b,c : H → GLk(C) be the irreducible

representation (24). Denote U the corresponding vector space.

(i) The τ -invariant subspace U 〈τ〉 is nontrivial if and only if b = 0. If b = 0, then U 〈τ〉 is a

1-dimensional representation of C[Q] where ζ acts with order k.

(ii) For k = m, there is a single simple Q[H]-module where ζ acts with order m. For 1 < k < m,

there are non-isomorphic simple Q[H]-modules U1, U2 such that U
〈τ〉
j 6= 0 and ζ acts on Uj

with order k.

Proof. Claim (1) can be deduced directly from the description of the representation given in (24).

We prove Claim (2). First note that Im has m− 1 elements, which are permuted transitively

by Gal(Q(ζm)/Q) ∼= (Z/mZ)×. This explains the first sentence of the claim. For the second part,

it is not hard to see that if 1 < k < m, then the k-dimensional representations U0,0,1 and U1,0,1

are in different orbits of Gal(Q(ζm)/Q). Then these two representations give rise to distinct

irreducible H-representations over Q with the desired properties.

9. Monodromy of the classical Atiyah–Kodaira manifolds

In Section 2.1 we gave a construction of the “classical” Atiyah–Kodaira manifolds Enn(X,m).

Recall that the fiber of Enn(X,m) is the surface Z, an intermediate cover of W → X. In this
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section, we return to the problem of computing the monodromy group Γnn(X,m) of these classical

Atiyah–Kodaira manifolds, and we prove Theorems A and B.

Fix X and m and denote Γnn = Γnn(X,m). The subgroup Γnn 6 Aut(H1(Z;Q), (·, ·)) is

centralized by the covering group Q ∼= Z/mZ for the branched covering Z → Y . To understand

this constraint, we first recall the representation theory of Q[Q] ∼= Q[Z/mZ].

Proposition 9.1 (Representations of Z/mZ). Let Q = 〈ζ〉 ∼= Z/mZ. For each k | m, there is a

unique (isomorphism class of) simple Q[Q]-module where ζ acts with order k. This module can

be identified with the cyclotomic field Q(ζk) with ζ ∈ Q acting by multiplication by ζk = e2πi/k.

Consequently, there is a Wedderburn decomposition Q[Q] =
∏
k|mQ(ζk).

Then we decompose H1(Z;Q) ∼=
⊕

k|mNk into isotypic factors, and via Lemma 3.6, we have

Γnn 6
∏
k|m

AutQ(Nk, 〈·, ·〉Q).

We denote Gk = AutQ(Nk, 〈·, ·〉Q).

Lemma 9.2. The projection of Γnn to G1 is trivial.

Proof. This is similar to Lemma 7.1. The claim is equivalent to showing that Γnn acts trivially

on N1 = H1(Z;Q)〈ζ〉. By transfer H1(Z;Q)〈ζ〉 ∼= H1(Y ;Q), so the action of Γnn on N1 is by

the monodromy of the bundle B × Y → B. The monodromy of this bundle is by point-pushing

homeomorphisms, which act trivially on H1(Y ).

This establishes the “obvious upper bound” Gnn <
∏
k|m, k 6=1 Gk on the Zariski closure Gnn

of Γnn mentioned in the introduction. Our first aim will be to compute Gnn precisely using

Theorem C.

Relating “non-normalized” and “normalized” monodromies. We explain how Gnn can

be computed from the Zariski closure G of the monodromy group Γ = Γ(X,m) of the normalized

Atiyah–Kodaira bundle E(X,m)→ B′. The proof of Theorem A will follow from this analysis. To

begin, observe that the cover W → Z is regular with covering group 〈τ〉. From this point of view,

Q ∼= 〈τ, ζ〉/〈τ〉 ∼= 〈ζ〉 ∼= Z/mZ.

By the transfer homomorphism,

H1(Z;Q) ∼= H1(W ;Q)〈τ〉.

Next we compare the module structures on H1(W ;Q) and H1(Z;Q). Let H1(W ;Q) =
⊕

k|mMk

be the decomposition into Q[Q]-isotypic factors. Since Q < H is central, each Mk is a Q[H]

module. We denote Gk = AutH(Mk, 〈·, ·〉H) and we denote the image of Γ in Gk by Γk.

Lemma 9.3. Fix k | m. Taking τ -invariants Mk ;M
〈τ〉
k induces a homomorphism αk : Gk → Gnn

k .

Furthermore, αk(Γk) is a subgroup of finite index in Γnnk .
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Proof. By transfer, Nk = M
〈τ〉
k . If f ∈ AutH(Mk, 〈·, ·〉H), then f commutes with each h ∈ H, and

in particular with τ and ζ, so f preserves M
〈τ〉
k and commutes with the Q-action on M

〈τ〉
k . To

show the Reidemeister pairing is preserved, choose a set T ⊂ H of coset representatives for Q\H
with 1 ∈ T . For x, y ∈Mk we write

〈x, y〉H =
∑
t∈T

∑
q∈Q

(x, qty)qt =
∑
t∈T
〈x, ty〉Qt.

Then 〈fx, fy〉H = 〈x, y〉 implies that 〈fx, fy〉Q = 〈x, y〉, since T ⊂ Q[H], as a set of coset

representatives, is linearly independent over Q[Q].

To see that αk(Γk) < Γnnk has finite index, consider the following commutative diagram (with

the notation from Section 2).

π1(B′) Γk

π1(B) Γnnk

// //
� _

�� ��
αk

// //

The horizontal maps are surjective by definition. Since π1(B′) < π1(B) has finite index, so too is

αk(Γk) < Γnnk .

Next we determine the kernel of αk. Since Mk is a Q[H]-module, it decomposes further into

H-isotypic factors Mk =
⊕

χ∈Īk Mk,χ as in Section 8. We decompose Īk = Ī ′k t Ī ′′k according

to whether the τ -invariant subspace of the corresponding simple Q[H]-module is trivial or

nontrivial, respectively. Denoting Gk,χ = AutH(Mk,χ, 〈·, ·〉H), we have Gk =
∏
χ∈Īk Gk,χ and also

Gk =
∏
Ī′k

Gk,χ ×
∏
Ī′′k

Gk,χ.

Lemma 9.4. The kernel of αk is
∏
Ī′k

Gk,χ.

Proof. It is clear that
∏
Ī′k

Gk,χ < kerαk. The fact that the kernel is not larger follows from

inspection of the irreducible representations of H. For each, the τ -eigenspaces are permuted

transitively by σ ∈ H. It follows that if f ∈ AutH(Mk, 〈·, ·〉H) acts trivially on Nk =
⊕

I′′k
M
〈τ〉
k,χ,

then f acts trivially on
⊕

I′′k
Mk,χ.

In summary, there is a homomorphism α : G → Gnn such that (i) the image of α is

isomorphic to
∏
k|m, k>1

∏
Ī′′k

Gk,χ, and (ii) the group α(Γ) is of finite index in Γnn. It follows that

Gnn ∼=
∏
k|m, k>1

∏
Ī′′k

Gk,χ. Furthermore, by Theorem C, α(Γ) < Gnn is arithmetic. Thus Γnn is

also arithmetic. This establishes Theorem A.

Comparing Gk and Gnn
k . Next we explain Theorem B, which amounts to showing that Gk

and Gnn
k are isomorphic if and only if k = m.

The group Gnn
k = AutQ(Nk, 〈·, ·〉Q) is an algebraic Q(ζk)

+-group, where Q(ζk)
+ < Q(ζk) is

the maximal real subfield. The module Nk is a vector space over Q(ζk) of dimension md, where

d = 2g0 − 1 and g0 is the genus of X. Choose an isomorphism Nk
∼= Q(ζk)

md. The matrix

B ∈ Matmd(Q(ζk)) for 〈·, ·〉Q with respect to the standard basis of Q(ζk)
md is skew-Hermitian
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with respect to the involution ζk 7→ ζ̄k. Therefore,

Gnn
k
∼= {g ∈ Matmd(Q(ζk)) : gtBḡ = B}.

When k = 1 or 2, the involution on Q(ζk) is trivial, and Gnn
k is a symplectic group over Q. If

k > 2, then Gnn
k is a unitary group. This situation is similar to what is detailed in [Loo97]. In

any case, Gnn
k is an absolutely almost simple algebraic Q(ζk)

+-group [Mor15, §18.5].

There is a similar description for Gk. Recall that Gk =
∏

Gk,χ, where Gk,χ = AutH(Mk,χ, 〈·, ·〉H).

The Reidemeister pairing restricted to Mk,χ takes values in Matk(Q(χ)) (the corresponding factor

in the Wedderburn decomposition of Q[H]). According to Lemma 2.10, Mk,χ
∼= Matk(Q(χ))d

where d = 2g0 − 1. After choosing a basis, we express 〈x, y〉H = x̄tCy for x, y ∈ Mk,χ, where

C ∈ Matd(Matk(Q(χ))) ∼= Matkd(Q(χ)) is a skew-Hermitian matrix. Then

Gk,χ
∼= {g ∈ Matkd(Q(χ)) : gtCḡ = C}

In order for
∏
Ī′′k

Gk,χ < Gnn
k to be finite index, we must have |Ī ′′k | = 1. This is because Gnn

k

is almost simple, and if |Ī ′′k | > 1, then
∏
Ī′′k

Gk,χ is not almost simple. According to Proposition

8.2, if k > 1, then |I ′′k | = 1 if and only if k = m. In this case, we show

Proposition 9.5. The homomorphism αm : Gm → Gnn
m is an isomorphism.

Proof. Recall that Mm ⊂ H1(W ;Q) and Nm ⊂ H1(Z;Q) ∼= H1(W ;Q)〈τ〉 are the subspaces where

ζ ∈ Q < H acts with order m. From Lemma 2.10, we know Mm
∼= Adm, where Am ∼= Matm(Q(ζm)).

Henceforth we will drop the subscript m and simply write M,N,A. To prove the proposition, we

will compare the forms 〈·, ·〉H : M ×M → A and 〈·, ·〉Q : N ×N → Q(ζm). Once we show that

these forms define the same algebraic group, it will follow that αm is an isomorphism.

First we describe the form 〈·, ·〉H : M ×M → A. There is a basis {E2, F2, . . . , Eg0 , Fg0 , x} for

M over A, where the vector x is in the submodule spanned by E1, F1 and Gv, Gh (technically, we

mean to take the projection of Ei, Fi to M , since Ei, Fi /∈M). With respect to this basis, 〈·, ·〉H
has matrix

C =

 0 I(d−1)/2 0

−I(d−1)/2 0 0

0 0 〈x, x〉H

 ∈ Matd(A).

In what follows, it will be helpful to understand 〈x, x〉H ∈ A via the isomorphism A ∼=
Matm(Q(ζm)).

Let ρ : Q[H] → Matm(Q(ζm)) be the surjection of (24) with a = b = 0 and c = 1. This

surjection splits via the map ρ(h) 7→ h ·e, where e = 1− 1
m(1+ζ+ · · ·+ζm−1) (thus e is a primitive

central idempotent). Using this, in what follows we will conflate a matrix in Matm(Q(ζm)) with

the corresponding element of Q[H]. Let Eij ∈ Matm(Q(ζm)) denote the matrix with 1 in the

(i, j)-entry and zeros elsewhere. For 1 6 i, j 6 m, observe that

Eij =
1

m

m−1∑
`=0

(ζ1−iτ)`σi−je.
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We write 〈x, x〉H = 〈x, x〉He =
∑

h∈H(x, hx)he. By writing each he as a sum of matrix coefficients

(e.g. τe =
∑

i ζ
i−1
m Eii), we can write 〈x, x〉H =

∑
〈x, x〉H;ij Eij , where

〈x, x〉H;ij = m
m−1∑
k=0

(x, ζkEijx)ζ−km .

This expression gives the entries of the matrix 〈x, x〉H ∈ A ∼= Matm(Q(ζm)).

Next we compare the matrix C with the matrix for 〈·, ·〉Q : N × N → Q(ζm). Recall

N ∼= M 〈τ〉 ∼= (Ad)〈τ〉 ∼= (A〈τ〉)d. Here τ acts on A by left multiplication by ρ(τ), so A〈τ〉 ∼= Q(ζm)m

is generated by E11σ
i for 0 6 i 6 m− 1. Then the basis {E2, F2, . . . , Eg0 , Fg0 , x} for M gives a

basis for N , and with respect to this basis, the form 〈·, ·〉Q has matrix with blocks of the following

form

B =

 0 Im(d−1)/2 0

−Im(d−1)/2 0 0

0 0 β

 ∈ Matmd(Q(ζm)).

Here β ∈ Matm(Q(ζm)) is the matrix βij = 〈E11σ
1−ix,E11σ

1−jx〉Q. One computes (recalling that

τE11 = τ · 1
m

∑m−1
`=0 τ ` = E11) that

βij =
∑m−1

k=0 (E11σ
1−ix, ζkE11σ

1−jx)ζ−km

=
∑m−1

k=0
1
m

∑m−1
`=0 (τ `σ1−ix, ζkE11σ

1−jx)ζ−km

=
∑m−1

k=0 (x, ζkσi−1E11σ
1−jx)ζ−km

=
∑m−1

k=0
1
m(x, ζk

∑m−1
`=0 (ζ1−iτ)`σi−jx)ζ−km

=
∑m−1

k=0 (x, ζkEijx)ζ−km

= 1
m〈x, x〉H;ij

Note that ζ−km appears rather than ζkm because ζ ∈ Q < H acts by ζ−1
m on N = M 〈τ〉. From the

above computation, we conclude that B,C ∈ Matmd(Q(ζm)) define the same unitary group, so

Gm
∼= Gnn

m .

This finishes the proof of Theorem B. To end this section, we give an example that illustrates

the case of Theorem B when m is composite.

Example 9.6. Take m = 4. Here the centralizer Sp2g(Q)Q is isomorphic to Sp2g′(Q)×Sp2g′+2(Q)×
SU(g′, g′ + 2;Q(i)), where g′ is the genus of Y = Z/Q (in terms of g0 = genus(X), g′ = 4g0 − 3).

In this case Gnn is isomorphic to

Spg′+1(Q)× Spg′+1(Q)× SU(g′, g′ + 2;Q(i)) < Sp2g′+2(Q)× SU(g′, g′ + 2;Q(i)).
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